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Effects of Geometric Phases in Josephson Junction Arrays
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We show that theen route vortex velocity dependent part of the Magnus force in a Josephso
junction array is effectively zero, and predict zero Hall effect in the classical limit. However, geomet
phases due to the finite superfluid density at superconductor grains have a profound influence o
quantum dynamics of vortices. Subsequently we find rich and complex Hall behaviors analogous to
Thouless–Kohmoto–Nightingale–den Nijs effect in the quantum regime. [S0031-9007(96)00668-0
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There have been extensive research activities on
vortex dynamics in Josephson junction arrays, whe
physical quantities which determine the vortex dynamic
such as the vortex potential, the effective vortex ma
and viscosity, are tunable by nanofabrication techniqu
One area which has started to attract attention recen
is the Hall effect in Josephson junction arrays. In
homogeneous superconductor film it is known that t
motion of a vortex resembles that of an electron in t
presence of a uniform magnetic field. The counterpart
the Lorentz force for an electron is the vortex veloci
dependent part of the Magnus force (hereafter cal
the transverse force) [1]. Naturally, using the analo
for the fractional quantum Hall effect in semiconducto
heterojunctions, the existence of the quantum Hall effe
in a 2D Josephson junction array has been argued
various authors [2–4]. These proposals not only possi
have opened a new practical way to utilize Josephs
junction arrays, they also have a fundamental physi
implication: the realization of quantum Hall effect in
boson systems, which can be used to test out o
theoretical understandings. In order to put the abo
attractive proposal on a firm theoretical ground, a serio
and thorough scrutiny should be conducted. In the pres
paper we concentrate our attention on the role played
the transverse force. We have found that extreme caut
should be exercised when using the transverse force
Josephson junction arrays. As a consequence, the res
which we have obtained are different from those of ea
work [2–4].

Our main results are the following. Because of a ve
large energy required, superconducting grains are inacc
sible to vortices. The vortex motion in a Josephson jun
tion array is confined to the voids (nonsuperconducti
areas) and tunneling barriers. Therefore the local co
tact transverse force is effectively zero in the classic
limit. However, in the quantum dynamics of the vor
tices, the transverse “force” does play a role because
the Aharonov-Bohm type [5] scattering of the vortices b
the superconducting grains. The phase of the wave fu
tion for a vortex will be influenced by a vector potentia
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linked to the finite superfluid density in the supercondu
tor grains. The vortices should be considered as scatt
by a periodic array of the Aharonov-Bohm type fluxe
and we have set up a tight-binding hard-core boson mo
to capture the main feature. A straightforward way to fi
solutions for this boson model is to map it onto a fermi
problem. Rich quantum Hall behaviors are obtained f
lowing the work of Thoulesset al. [6]. In the following
we present our analysis leading to the above results. T
neling junctions and a square Josephson junction a
will be assumed in the present paper. Our analysis
be carried over to other types of junctions and arrays w
necessary modifications.

We first show that the effect of the contact transve
force is zero, but, nevertheless, geometric phases
be associated with the motion of vortices in a Jose
son junction array. We will start from the nonlinea
Schrödinger Lagrangian for the motion of the superco
ducting condensate of a type II superconductor in
clean limit [7,8], because it contains all low energy, lon
wavelength dynamics at zero temperature, such as
tex dynamics and Josephson relations. The nonlin
Schrödinger LagrangianL is

L ­ ih̄cp Ùc 2
h̄2

2mp =cp ? =c 2 V scp, cd , (1)

where mp is the Cooper pair mass, twice the electr
mass. The Cooper pair wave functionc is normalized
to half the superfluid electron density. The charge o
Cooper pair is2e. The coupling to the electromagnet
field can be put in. Since it will not influence ou
demonstration of the absence of the effect of the con
transverse force, it will not be written out explicitly. Th
action isS ­

R
dtd2r Lscp, cd. Variation of the action,

dS ­ 0, gives the nonlinear Schrödinger equation for t
condensate motion. Writing the wave functionc as

c ­
p

r expsiud , (2)

the nonlinear potential V is given by V ­
s r 2 r0d2y2Ns0d, where Ns0d is the density of states
for each spin projection, andr0 the average Cooper pai
density [7]. Now we are ready to consider the motion o
© 1996 The American Physical Society
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single vortex in a homogeneous superconductor film. T
corresponding phaseu is a function of the vortex position
rystd, satisfying = 3 =usr, ryd ­ 2pq d2sr 2 rydẑ.
Here q ­ 61 is the sign of vorticity andẑ the unit
vector perpendicular to the film. We consider the vort
as a point particle, andrystd is defined as the center o
the vortex core. To obtain a LagrangianLy for the vor-
tex, we will perform the integration overr in the action
S ­

R
dtd2r Lsr, t, ryd. Only the first term in the

nonlinear Schrödinger Lagrangian, Eq. (1), is releva
We begin byÙusr 2 ryd ­ =ry

usr 2 ryd ? Ùry . After the
spatial integration, the first term in the LagrangianL in
Eq. (1) gives rise to a term in the vortex LagrangianLy

asqAy ? Ùry with

qAy ­ 2h̄
Z

d2rr0=ry
usr 2 ryd . (3)

Comparing with the known Lagrangian for an electron
magnetic fieldLe ­ smy2dÙr2 1 e Ùr ? A, we conclude that
the vortex is moving in a fictitious magnetic field. Th
“magnetic field” for a vortex is identified as

By ­ =ry
3 Ay ­ 2hr0ẑ . (4)

Therefore the transverse force on a moving vortex is giv
by Fm ­ q Ùry 3 By .

Next we consider a case in which the Cooper p
density is smoothly modulated in space over the sc
of the vortex core size,r ­ r0srd. In such a case, by
repeating the above derivation, we have

Bysryd ­ 2qh̄
Z

d2rrsrd=ry
3 =ry

usr, ryd . (5)

Generally, the phaseusr, ryd in an inhomogeneous supe
conductor consists of two parts: rotational and irrotation
The irrotational part will not contribute to the above int
gral. The rotational partur still satisfies

= 3 =ur sr, ryd ­ 2pqd2sr 2 ryd , (6)

which is required by the single valuedness of the wa
function and the presence of a vortex. Using the symm
try betweenr andr0 in the above equation, we obtain

Bysryd ­ 2hẑ
Z

d2rrsrdd2sr 2 ryd ­ 2hr0srydẑ .

(7)
We notice that the fictitious magnetic fieldBy is pro-
portional to the Cooper pair density at the vortex po
tion. In other words, the transverse force on a vortex
a local property, just as the Lorentz force on an electr
Here the local Cooper pair densityr0srd should be under-
stood as the average value over a regime much larger
the vortex core, but smaller than the length scale for
density varying appreciably, the condition of the smoo
variation.

Now we consider the extreme inhomogeneous ca
a Josephson junction array. If the superfluid density
some portions of the superconductor film is smooth
he
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reduced to zero, voids are formed. According to Eq. (
the local contact transverse force is zero for a vortex
a void. Voids are connected by low superfluid dens
regions, the tunneling barriers. The typical situation
a Josephson junction array is that the energy cost fo
vortex to be at a tunneling barrier is much smaller th
the cost at a superconductor grain. Therefore vortic
are confined to move on voids and tunneling barrie
an example of the guided vortex motion. Although th
transverse force is finite on a tunneling barrier, its effe
on the classical vortex motion is zero, because vortic
must move along tunneling junctions. To summarize t
above analysis, the local contact transverse force does
play a role in vortex dynamics in a Josephson juncti
array. Subsequently, in the classical limit the transve
force can be ignored. We note that our above conclus
differs with the one in a recent preprint [9], where n
such energetic constraint has been applied [10]. T
absence of theen routetransverse force is in agreemen
with experimental observations on the classical vort
dynamics in Josephson junction arrays at relatively h
temperatures and with large effective masses such
vortices moving perpendicular to the driving current [11
no detectable Hall effect [12], and the straight-line balis
motion [13]. The condition for the classical limit will be
given at the end of the paper.

We turn to the Hall effect in the quantum regime. Ze
transverse force itself does not necessarily exclude
possible quantum Hall effects. The difference betwe
the classical and quantum dynamics lies in the role play
by the phase, such as the geometric phase associated
the vector potential described in Eq. (3), where the vec
potential can be finite although the magnetic field is ze
This is precisely the case of the Aharonov-Bohm effe
which illustrates that, in quantum mechanics, potenti
are more fundamental than forces [5]. The analogy
the Aharonov-Bohm effect has been studied in Ref. [1
In the remaining part of the paper we explore the logic
consequences of the geometric phases for the quan
Hall effect in a Josephson junction array. In order
reveal the essential physics and to gain the phys
insight, we will idealize our problem and approxima
vortices as hard-core bosons.

To be commensurated with the existence of the vor
inaccessible regions and the geometric phases, we cons
the tight-binding limit of vortex motion. The correspond
ing Hamiltonian may be written as

H ­ t
X
sl,jd

a
y
l ajeiAlj 1

X
l,j

a
y
l alVlja

y
j aj , (8)

whereal is the boson annihilation operator for a vorte
at jth void, ands d stands for the summation over neare
neighbors. The phaseAlj is defined on the links connecte
the nearest neighbors, and its sum around a plaqu
is equal to the geometric phase2pf0:

P
plaquette Alj ­

2pf0. A uniform geometric phase will be assume
563
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where the number of “fluxes”f0 is the number of Coope
pairs on a superconductor grain, which may be contro
by a gate voltage. The interaction between vortices
described byVlj , which is long range and repulsive. W
will treat it as a short range repulsive interaction for
first approximation. The tunneling matrix elementt is,
in terms of the parameters for a Josephson junction
order of

p
EJEC exph2Os1d

p
EJyECj, where EJ is the

Josephson junction energy andEC the junction charging
energy [15]. The energy scale for the repulsive interact
is EJ [15], which is much larger than the tunneling matr
elementt. Nevertheless, with a considerable amount
energy, two vortices can be put on one position. T
suggests that vortices are hard-core bosons. Then we
approximate the vortex problem described by Eq. (8)
a hard-core boson problem, an approximation has alre
been implemented in Refs. [3] and [4].

We are ready to discuss the quantum Hall effect
the idealized vortex problem. We do this by mappi
the hard-core boson problem onto a fermion problem
attaching odd number of fluxes on each vortex. This
a standard procedure [16]. The resulting Hamiltonian
the fermion problem is

H ­ t
X
sl,jd

c
y
l cjeifAlj1Aljg, (9)

where cj is the corresponding fermion annihilation o
erator at thejth void. The number of statistical fluxe
fs at thejth void satisfies the constraintfs ­ 2s2m 1

1d kcy
j cjl, with

P
plaquette Alj ­ 2pfs, which means that

2m 1 1 fluxes have been attached to each vortex.
assume that this mapping will give a mean-field solut
with an energy gap separated from its excitations. T
the statistical fluxes can be adiabatically smeared over
lattice and effectively detached from vortices, as shown
Ref. [17]. In this case,fs ­ 2s2m 1 1dn, with n is the
magnetic flux frustration, the number of vortices per p
quette. Then the resulting mean field problem is exa
the Harper-Azbel-Wannier-Hofstadter problem, where
ergy gaps do exist. The quantum Hall behaviors of suc
problem have been studied in detail by Thoulesset al. [6].
For such a system the quantum Hall conductances

f
H is

s
f
H ­ tr , (10)

with the integer tr the solution of the Diophantine
equation

r ­ srq 1 trp . (11)

Here the number of fluxes per plaquettef ­ f0 2

fs ­ pyq, with p and q coprime, n ­ ryq, and r,
sr , tr integers with jtr j # qy2. Remember that the
mapping has generated a Chern-Simons term, which h
contribution to the Hall conductance as

ss
H ­

1
2m 1 1

. (12)

The quantum Hall conductance of the original vort
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system is then [16,18]

1
s

y
H

­
1

s
f
H

1
1

s
s
H

. (13)

Converting back into the electric Hall conductance a
putting back the unit, we find that the electric quantu
conductance of the Josephson junction array is

sH ­
4e2

h
1

s
y
H

. (14)

It is interesting to observe that a boson-to-fermion ma
ping has been used here to find the incompressible qu
tum Hall states, while in the usual fractional quantum H
effect it is the other way around [19]. As is well know
in the previous study of quantum Hall effect [16,18] for
given set of the “flux”f0 and the frustrationn, there may
exist several values ofm, that is, several mappings, with
their mean-field solutions all corresponding to filled ban
which are separated from excitations by energy gaps.
such a case occurs, detailed calculation is needed to
the m with the largest energy gap, which is the mo
stable one.

One can check that the following symmetries ho
for the quantum Hall conductancesH : the periodic-
ity, sH sf0, nd ­ sH sf0 1 1, nd; the odd symmetry,
sH sf0, nd ­ 2sHs2f0, nd; the particle-hole symme-
try, sHsf0, nd ­ 2sH sf0, 1 2 nd. Becauses

f
H is a

nonmonotonic and rapidly varying function of the flu
(number of Cooper pairs per plaquette)f0 and the
frustrationn, so will be sH . Particularly, both positive
and negative Hall conductance may be easily reach
For example, forn ­ 1y5 and f0 ­ 1y3, we find that
sH ­ s10y3d s4e2yhd with m ­ 1; and forn ­ 1y3 and
f0 ­ 1y5, sH ­ 2s6y5d s4e2yhd with m ­ 21. This
is in sharp contrast with the previous proposal of t
quantum Hall effect in a Josephson junction array [2–
There are special sets off0 andn such that2mn ­ f0,
that is, in a boson-to-boson mapping the statistical fl
cancels the real flux. In this case, the mean-field solut
is automatically within a gap, and the Hall conductance

sH ­ 2m
4e2

h
. (15)

This is in contrast with the fermion-to-fermion mappin
case discussed in Ref. [20], where there is no ene
gap that separates the mean-field solution and excitatio
With these specific sets off0 and n, and in the zero
limit of their fraction parts, one can take the continuo
limit of the tight-binding model [16] to recover the
previous proposed quantum Hall effect based on
contact transverse force [2–4].

Two comments concerning previous work are also
order. First, the conditions to observe the Aharono
Casher effect in a Josephson junction array have b
discussed in Ref. [14]. Because of the extensive spre
ing of the associated magnetic field, they are unlike
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to be fulfilled, which applies to the situation consider
in Ref. [3]. Second, in Ref. [4] the quantum Hall effe
was argued from the dynamics of Cooper pairs (charg
bosons), a dual picture of the vortices. Our comment h
is that even in this dual picture the contact Lorentz for
is not responsible for the quantum Hall effect, but the r
Aharonov-Bohm phase similar to the vortex picture,
discussed in the preceding paragraphs, is responsible
this effect.

To summarize, the effect of the vortex velocity depe
dent part of the Magnus force is found to be zero in t
vortex dynamics in a Josephson junction array. Inste
the geometric phases are important in the vortex quan
dynamics. We predict that, in the classical limit, there
no Hall effect at all, but, in the quantum limit, rich quan
tum Hall behaviors should exist: positive and negati
Hall conductances determined by the Thouless–Kohmo
Nightingale–den Nijs effect and the Chern-Simons con
bution. The relevant energy scale is the tunneling ma
elementt. For a Josephson junction energyEJ , 1 K,
and the junction charging energyEC with a value such
that EJyEC , 1, we find t , 100 mK. When the tem-
perature is higher thant, thermal fluctuation will destroy
the quantum coherence and the vortices move classic
The quantum regime is realized for temperatures low
than t where the phase coherence is preserved. Exp
mentally, the quantum regime should be accessible
principle, and a recent report has already shown the
istence of the Hall effect at low temperatures [21].
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