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Effects of Geometric Phases in Josephson Junction Arrays
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We show that theen route vortex velocity dependent part of the Magnus force in a Josephson
junction array is effectively zero, and predict zero Hall effect in the classical limit. However, geometric
phases due to the finite superfluid density at superconductor grains have a profound influence on the
guantum dynamics of vortices. Subsequently we find rich and complex Hall behaviors analogous to the
Thouless—Kohmoto—Nightingale—den Nijs effect in the quantum regime. [S0031-9007(96)00668-0]

PACS numbers: 74.20.-z, 03.65.Bz, 72.15.Gd, 74.50.+r

There have been extensive research activities on thinked to the finite superfluid density in the superconduc-
vortex dynamics in Josephson junction arrays, whergor grains. The vortices should be considered as scattered
physical quantities which determine the vortex dynamicsby a periodic array of the Aharonov-Bohm type fluxes,
such as the vortex potential, the effective vortex massand we have set up a tight-binding hard-core boson model
and viscosity, are tunable by nanofabrication techniquego capture the main feature. A straightforward way to find
One area which has started to attract attention recentlgolutions for this boson model is to map it onto a fermion
is the Hall effect in Josephson junction arrays. In aproblem. Rich quantum Hall behaviors are obtained fol-
homogeneous superconductor film it is known that thdowing the work of Thoulest al. [6]. In the following
motion of a vortex resembles that of an electron in thewe present our analysis leading to the above results. Tun-
presence of a uniform magnetic field. The counterpart ofeling junctions and a square Josephson junction array
the Lorentz force for an electron is the vortex velocitywill be assumed in the present paper. Our analysis can
dependent part of the Magnus force (hereafter callethe carried over to other types of junctions and arrays with
the transverse force) [1]. Naturally, using the analogynecessary modifications.
for the fractional quantum Hall effect in semiconductor We first show that the effect of the contact transverse
heterojunctions, the existence of the quantum Hall effectorce is zero, but, nevertheless, geometric phases will
in a 2D Josephson junction array has been argued bye associated with the motion of vortices in a Joseph-
various authors [2—4]. These proposals not only possiblgon junction array. We will start from the nonlinear
have opened a new practical way to utilize JosephsoSchrodinger Lagrangian for the motion of the supercon-
junction arrays, they also have a fundamental physicaducting condensate of a type Il superconductor in the
implication: the realization of quantum Hall effect in clean limit [7,8], because it contains all low energy, long
boson systems, which can be used to test out ouwavelength dynamics at zero temperature, such as vor-
theoretical understandings. In order to put the abovéex dynamics and Josephson relations. The nonlinear
attractive proposal on a firm theoretical ground, a seriou$chrédinger Lagrangiah is
and thorough scrutiny should be conducted. In the present ok h? « "
paper we concentrate our attention on the role played by L = iy — 5 Vi -V = VT y). (1)
the transverse force. We have found that extreme caution
should be exercised when using the transverse force i
Josephson junction arrays. As a consequence, the resu
which we have obtained are different from those of earl S : i

Cooper pair is2e. The coupling to the electromagnetic

work [2—-4]. ield can be put in. Since it will not influence our

Our main results are the following. Because of a ver emonstration of the absence of the effect of the contact
large energy required, superconducting grains are maccegénsverse force, it will not be written out explicitly. The

sible to vortices. The vortex motion in a Josephson junc, .~ = "~ 2 * o :
tion array is confined to the voids (nonsuperconductin ction is§ = [ did’r L(‘/' ). V."?l”.at'on of the_ action,
6S = 0, gives the nonlinear Schrédinger equation for the

areas) and tunneling barriers. Therefore the local CON: ' Jensate motion. Writing the wave functipras
tact transverse force is effectively zero in the classicaf : 9

limit. However, in the quantum dynamics of the vor- ¥ = Jp explif), (2)
tices, the transverse “force” does play a role because dhe nonlinear potential V. is given by V =

the Aharonov-Bohm type [5] scattering of the vortices by(p — po)?/2N(0), where N(0) is the density of states
the superconducting grains. The phase of the wave funder each spin projection, and, the average Cooper pair
tion for a vortex will be influenced by a vector potential density [7]. Now we are ready to consider the motion of a

here m™ is the Cooper pair mass, twice the electron
ass. The Cooper pair wave functignis normalized
0 half the superfluid electron density. The charge of a
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single vortex in a homogeneous superconductor film. Theeduced to zero, voids are formed. According to Eq. (7),
corresponding phageis a function of the vortex position the local contact transverse force is zero for a vortex at
r,(r), satisfying V X VO(r,r,) = 2mwq 6’(r — r,);. a void. Voids are connected by low superfluid density
Here ¢ = =1 is the sign of vorticity andz the unit regions, the tunneling barriers. The typical situation in
vector perpendicular to the film. We consider the vortexa Josephson junction array is that the energy cost for a
as a point particle, and,(r) is defined as the center of vortex to be at a tunneling barrier is much smaller than
the vortex core. To obtain a Lagrangidép for the vor- the cost at a superconductor grain. Therefore vortices
tex, we will perform the integration ovar in the action are confined to move on voids and tunneling barriers,
S = [dtd®*r L(r,t,r,). Only the first term in the an example of the guided vortex motion. Although the
nonlinear Schrodinger Lagrangian, Eq. (1), is relevanttransverse force is finite on a tunneling barrier, its effect
We begin byé(r — r,) = V,, 0(r — r,) - r,. Afterthe on the classical vortex motion is zero, because vortices
spatial integration, the first term in the Lagrangiarin ~ must move along tunneling junctions. To summarize the
Eg. (1) gives rise to a term in the vortex Lagrangian  above analysis, the local contact transverse force does not

asgA, - r, with play a role in vortex dynamics in a Josephson junction
array. Subsequently, in the classical limit the transverse
gA, = —hf d*rpoV,, 0(r —1,). (3) force can be ignored. We note that our above conclusion

] ) ) _ differs with the one in a recent preprint [9], where no
Comparing with the known Lagrangian for an electron ingych energetic constraint has been applied [10]. The
magnetic field., = (m/2)f* + er - A, we conclude that  apsence of then routetransverse force is in agreement
the vortex is moving in a fictitious magnetic field. The yith experimental observations on the classical vortex
“magnetic field” for a vortex is identified as dynamics in Josephson junction arrays at relatively high

B, =V, XA, =—hpoZ. (4) temperatures and with large effective masses such as
yortices moving perpendicular to the driving current [11],

Therefcire t.he transverse force on a moving vortexis 9VeTho detectable Hall effect [12], and the straight-line balistic
by F, = gr, X B,.

Next we consider a case in which the Cooper pailmotion [13]. The condition for the classical limit will be

density is smoothly modulated in space over the scalg“@g ?Ltjrt:?oetﬂi (Ii{zatneef?:gei: the quantum regime. Zero
of the vortex core sizep = po(r). In such a case, by r q gime.

. I ansverse force itself does not necessarily exclude all
repeating the above derivation, we have possible quantum Hall effects. The differe)rllce between
B,(r,) = —qﬁ[ Prp(e)Vy. X Ve 0(r,r,).  (5) the classical and quantum dynamic_s lies in the rolg playeq

' ' by the phase, such as the geometric phase associated with
Genera"y’ the phas@(r’ ru) in an |nhomogeneous Super- the vector pOtentIal deSCI’Ibed in Eq (3), Where the vector
conductor consists of two parts: rotational and irrotationalPotential can be finite although the magnetic field is zero.

The irrotational part will not contribute to the above inte- This is precisely the case of the Aharonov-Bohm effect
gral. The rotational par” still satisfies which illustrates that, in quantum mechanics, potentials

are more fundamental than forces [5]. The analogy of
VX VO (r,r,) = 2mqd%(r — 1), ®)  the Aharonov-Bohm effect has been[s]tudied in Ref.g[)i4].
which is required by the single valuedness of the wavén the remaining part of the paper we explore the logical
function and the presence of a vortex. Using the symmeeonsequences of the geometric phases for the quantum
try betweenr andr’ in the above equation, we obtain Hall effect in a Josephson junction array. In order to
reveal the essential physics and to gain the physical
B,(r,) = —hif d*rp(r)8*(r — r,) = —hpo(r,)z. insight, we will idealize our problem and approximate
vortices as hard-core bosons.
(7) To be commensurated with the existence of the vortex
We notice that the fictitious magnetic fieB, is pro- inaccessible regions and the geometric phases, we consider
portional to the Cooper pair density at the vortex posi-the tight-binding limit of vortex motion. The correspond-
tion. In other words, the transverse force on a vortex isng Hamiltonian may be written as
a local property, just as the Lorentz force on an electron. _— n n
Here the local Cooper pair densipy(r) should be under- H = fz ajaje” + Zaz ajVijajaj, (8)
stood as the average value over a regime much larger than (.J) Li
the vortex core, but smaller than the length scale for thevherea; is the boson annihilation operator for a vortex
density varying appreciably, the condition of the smoothat jth void, and() stands for the summation over nearest
variation. neighbors. The phask; is defined on the links connected
Now we consider the extreme inhomogeneous casdhe nearest neighbors, and its sum around a plaquette
a Josephson junction array. If the superfluid density ais equal to the geometric phager ¢y: Zplaqume Ay =
some portions of the superconductor film is smoothly27¢¢. A uniform geometric phase will be assumed,
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where the number of “fluxesdy is the number of Cooper system is then [16,18]

pairs on a superconductor grain, which may be controlled 1 1 1
by a gate voltage. The interaction between vortices is — =5+t . (13)
described by;;, which is long range and repulsive. We TH OH TH

will treat it as a short range repulsive interaction for aConverting back into the electric Hall conductance and
first approximation. The tunneling matrix elements,  putting back the unit, we find that the electric quantum
in terms of the parameters for a Josephson junction, agonductance of the Josephson junction array is

order of \JE;Ec exd{—O(1)\yE;/Ec}, where E; is the 402 1
Josephson junction energy alg the junction charging oy = ——. (14)
energy [15]. The energy scale for the repulsive interaction h on

is E; [15], which is much larger than the tunneling matrix It is interesting to observe that a boson-to-fermion map-
elements. Nevertheless, with a considerable amount ofping has been used here to find the incompressible quan-
energy, two vortices can be put on one position. Thigum Hall states, while in the usual fractional quantum Hall
suggests that vortices are hard-core bosons. Then we maffect it is the other way around [19]. As is well known
approximate the vortex problem described by Eqg. (8) ai the previous study of quantum Hall effect [16,18] for a
a hard-core boson problem, an approximation has alreadyiven set of the “flux”¢, and the frustratiom, there may
been implemented in Refs. [3] and [4]. exist several values of:, that is, several mappings, with
We are ready to discuss the quantum Hall effect oftheir mean-field solutions all corresponding to filled bands
the idealized vortex problem. We do this by mappingwhich are separated from excitations by energy gaps. |If
the hard-core boson problem onto a fermion problem byuch a case occurs, detailed calculation is needed to find
attaching odd number of fluxes on each vortex. This ighe m with the largest energy gap, which is the most
a standard procedure [16]. The resulting Hamiltonian forstable one.
the fermion problem is One can check that the following symmetries hold
b A+ for the quantum Hall conductancey: the periodic-
H = fZCz cje T, ity, og(do,n) = og(po + 1,n); the odd symmetry,
(.j) ou(po,n) = —ou(—¢o,n); the particle-hole symme-
where ¢; is the corresponding fermion annihilation op- try, o (¢, n) = —ou(do,1 — n). Becaugea;; is a
erator at thejth void. The number of statistical fluxes nonmonotonic and rapidly varying function of the flux
¢ at the jth void satisfies the constraigt; = —(2m +  (number of Cooper pairs per plaquetté), and the
1)<c;rcj>, With 31 quete “A1j = 27 ¢y, which means that  frustrationn, so will be o. Particularly, both positive
2m + 1 fluxes have been attached to each vortex. Wend negative Hall conductance may be easily reached.
assume that this mapping will give a mean-field solutionFor example, forn = 1/5 and ¢, = 1/3, we find that
with an energy gap separated from its excitations. Thewry = (10/3) (4¢%/h) with m = 1; and forn = 1/3 and
the statistical fluxes can be adiabatically smeared over the, = 1/5, oy = —(6/5) (4e?/h) with m = —1. This
lattice and effectively detached from vortices, as shown iris in sharp contrast with the previous proposal of the
Ref. [17]. In this case¢, = —(2m + 1)n, with n isthe  quantum Hall effect in a Josephson junction array [2—4].
magnetic flux frustration, the number of vortices per pla-There are special sets @fy andn such thalmn = ¢y,
quette. Then the resulting mean field problem is exactlthat is, in a boson-to-boson mapping the statistical flux
the Harper-Azbel-Wannier-Hofstadter problem, where eneancels the real flux. In this case, the mean-field solution
ergy gaps do exist. The quantum Hall behaviors of such & automatically within a gap, and the Hall conductance is
problem have been studied in detail by Thoulesal. [6].

‘o 4¢?
For such a system the quantum Hall conductanges oy = 2m W (15)
oh =1, (10)

This is in contrast with the fermion-to-fermion mapping
with the integer, the solution of the Diophantine case discussed in Ref. [20], where there is no energy
equation gap that separates the mean-field solution and excitations.
r=sq+tp. (11) \_Nit_h thesg speci_fic sets apy and n, and in the zero
Here the number of fluxes per plaqueti = b — I!m!t of their fr.actlor? pgrts, one can take the continuous
limit of the tight-binding model [16] to recover the

s T p|é tqe’ :’r';h V\ﬁthal?dl q <Cof;'m%enm:n:ég} ?r:ft rt’he previous proposed quantum Hall effect based on the
Sro Ir 9 rn = 4/= contact transverse force [2—4].

mapping.has generated a Chern-Simons term, which has 4Two comments concerning previous work are also in

contribution to the Hall conductance as order. First, the conditions to observe the Aharonov-
s 1 (12) Casher effect in a Josephson junction array have been
B om+ 17 discussed in Ref. [14]. Because of the extensive spread-

The quantum Hall conductance of the original vortexing of the associated magnetic field, they are unlikely
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