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When a chaotic attractor lies in an invariant subspace, as in systems with symmetry, riddling can
occur. Riddling refers to the situation where the basin of a chaotic attractor is riddled with holes
that belong to the basin of another attractor. We establish properties of the riddling bifurcation
that occurs when an unstable periodic orbit embedded in the chaotic attractor, usually of low period,
becomes transversely unstable. An immediate physical consequence of the riddling bifurcation is that
an extraordinarily low fraction of the trajectories in the invariant subspace diverge when there is a
symmetry breaking. [S0031-9007(96)00503-0]
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Recently, the phenomenon of riddled basins in cha
dynamical systems has become an area of intensive s
[1–5]. The description of riddled basins was introduced
Ref. [1] where the following was shown for certain class
of dynamical systems with an invariant subspace: (i
there is a chaotic attractor in the invariant subspace;
if there is another attractor in the phase space; and (ii
the Lyapunov exponent transverse to the subspace is
ative, then the basin of the chaotic attractor in the inv
ant subspace can be riddled with holes belonging to
basin of the other attractor. That is, for every initial con
tion that asymptotes to the chaotic attractor in the invar
subspace, there are initial conditions arbitrarily nearby
asymptote to the other attractor. Invariant subspaces
particularly common for systems with symmetry. Rigo
ous results on the dynamics of riddled basins for disc
maps were presented in Refs. [1] and [2]. The dynam
of riddled basins was subsequently investigated in [3]
ing a more realistic physical model. A more extreme ty
of basin structure referred to as “intermingled basins,”
which the basins of more than one chaotic attractor
riddled, was also studied using both discrete maps [1]
a more realistic physical system [4]. Riddled basins h
been verified in experiments conducted using coupled e
trical oscillators [5,6]. The mechanism for riddling to o
cur, and the basin structure associated with the riddl
were investigated by Ashwin, Buescu, and Stewart [6]

In this Letter, we describe the riddling bifurcation
chaotic systems, and we investigate the behavior w
a symmetry-breaking parameter is introduced. The
set of riddling is determined by a saddle-repeller bifur
tion (eigenvalue11) [7]. For simplicity, we emphasize
the case of two-dimensional phase space and, hence
invariant subspace is a line. Before the bifurcation,
chaotic attractor attracts all points in some of its neighb
hood, and all the periodic orbits embedded in the cha
attractor are saddles. At the bifurcation, one of the
riodic orbits, usually of low period, becomes transvers
0031-9007y96y77(1)y55(4)$10.00
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unstable. Since this periodic orbit is already unstable
the attractor, it becomes a repeller in the two-dimensio
phase space. Specifically, letxp be an unstable periodic
point embedded in the chaotic attractor in the invariant s
space. To simplify notation, we assume it is a fixed poi
The unstable point is stable transversely to this subspac
shown in Fig. 1(a). Riddling occurs when somexp loses
its transverse stability as a parameterp passes through the
critical valuepc. For such systems, the loss of transver
stability is induced by the collision atp ­ pc of two re-
pellersr1 and r2, located symmetrically with respect t
the invariant subspace, with the saddle atxp (a saddle-
repeller pitchfork bifurcation). These two repellers ex
only for p # pc, as shown in Fig. 1(a). Forp . pc, the
saddlexp becomes a repeller, and the two repellersr1 and
r2 off the invariant subspace do not exist anymore.

As we will argue shortly, due to nonlinearity, a “tongue
opens atxp allowing trajectories near the invariant sub
space to escape forp . pc, as shown in Fig. 1(b). Each
preimage ofxp also develops a tongue simultaneous
Since preimages ofxp are dense in the invariant subspac
an infinite number of tongues open simultaneously atp ­
pc, indicating that initial conditions arbitrarily close t
the invariant subspace may asymptote to another att
tor. Trajectories in the chaotic attractor, however, rem
there even forp . pc, since the subspace in which th
chaotic attractor lies is invariant and each tongue ha
zero width there. But trajectories near the chaotic attr
tor have a finite probability of being in the open and den
set of tongues. Trajectories having initial conditions in t
tongues asymptote to the other attractor. So, forp * pc,
most initial conditions, off but close to the chaotic attracto
asymptote to it, but there is an open and dense set of in
conditions that asymptote to the other attractor. Thus,
basin of attraction for the chaotic attractor is a Cantor se
leaves of positive Lebesgue measure, signifying riddlin
Physically, since the onset of riddling induces the creat
of these supernarrow tongues near the invariant subsp
© 1996 The American Physical Society 55
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FIG. 1. (a) The unstable saddle fixed point in the invari
subspace and two repellers off the invariant subspace
p , pc (before the saddle-repeller pitchfork bifurcation). (
The tongue structure formed forp . pc, after the onset of
riddling. Trajectories originated from initial conditions insid
the tongues escape the invariant subspace.

it leads to superpersistent chaotic transient behavior [7
the vicinity of the chaotic attractor. This should be co
trasted to the typical average lifetime of transient ch
that scales algebraically [8]. For points chosen at rand
at a small distanced from the attractor, the probability o
not being attracted depends on the distanced as

Psdd , expf2Kd2gg , (1)
where g . 0 is a positive exponent, andK . 0 is a
constant that can be expressed in terms of the Lyapu
exponent of the chaotic attractor.

We consider the following general class of dynami
systems:

xn11 ­ fsxnd ,
(2)

yn11 ­ e 1 pgsxndyn 1 high order odd terms ofyn ,
where x [ RN sN $ 1d, y [ RM sM $ 1d, fsxnd is a
map that has a chaotic attractor in the invariant subsp
yn ­ 0, gsxnd ­ 1 at some unstable periodic orbit o
fsxnd, p is a system parameter, andpgsxnd is assumed
to be positive. We calle $ 0 the symmetry-breaking
parameter. Notice that, for initialy0 $ 0 and e $ 0,
trajectories haveyn $ 0 for all times. Our main goal now
is to understand how riddling occurs asp passes through
pc when e $ 0. To illustrate our findings, we conside
the following version of Eq. (2):

xn11 ­ axns1 2 xnd ,

yn11 ­ e 1 pe2bsx2xpd2

yn 1 y3
n ,

(3)
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where, fore ­ 0, y ­ 0 defines the invariant subspace
a trajectory,y ­ 0 will remain so forever, anda, b . 0 are
parameters. The symmetry-breaking parameter is for
symmetryy ! 2y. Thus, the dynamics in the invarian
subspace is described by the logistic mapxn11 ­ axns1 2

xnd for which chaotic attractors occur for parameter valu
in a positive Lebesgue measure set [9].

To understand how riddling occurs fore ­ 0, we note
that the two eigenvalues of the unstable fixed pointxp

sx ; xp ­ 1 2 1ya, y ­ 0d areslx , lyd ­ s2 2 a, pd. Thus,
xp is stable in they direction for p , 1 and unstable
for p . 1. This fixed point is a saddle fora . 3 and
p , 1. For p , 1, there are two other unstable fixe
points located atr6 ­ sxp , 6

p
1 2 p d. These two fixed

points have eigenvaluess2 2 a, 3 2 2pd, both being pure
repellers fora . 3 and p , 1, as shown in Fig. 1(a).
These two repellers collide with each other and w
the saddle atp ­ pc ­ 1 in a saddle-repeller pitchfork
bifurcation with eigenvalue11 atp ­ 1; they do not exist
for p . 1. Thus, forp . 1, two tongues, symmetrically
located with respect to the invariant subspace, open atx ­
xp allowing trajectories neary ­ 0 to escape tojyj ­ `.
To understand why these occur, observe that the cu
term in they dynamics guarantees that ifjynj . 1 then
jyn11j . jynj . 1. Once a trajectory reachesjyj ­ 1, its
y value asymptotes to infinity rapidly. Sojyj ­ ` can
be regarded as the second attractor of Eq. (3) besides
chaotic attractor in they ­ 0 plane (invariant subspace
To understand why tongues are formed, take an open
sjyj . 1d intersecting the transverse unstable manifold
xp. By taking inverse images, this open set approac
xp asymptotically. There are two inverse images, b
we choose only the one withx ­ xp. By continuity, it
remains an open set. Its inverse images are a subset
tongue that opens up atxp , as shown in Fig. 1(b). The
tongues are the intersection of all escaping open sets [

For e . 0, trajectories can leave the chaotic attractor
y ­ 0 (y ­ 0 is no longer an invariant subspace) and, hen
the chaotic attractor becomes a chaotic saddle. Com
tation of Eq. (3) shows one interesting phenomenon. B
cause of the tongue structure formed atpc ­ 1, only a very
small fraction of the points aty ­ 0 diverges toward the
jyj ­ ` attractor. The transient time can easily be long
than, say, 105 iterates even whene ­ 0.014. As e de-
creases towards zero, the transient time increases dr
cally. For instance, ate ­ 0.01, the typical transient time
is over3 3 106 iterations. This indicates a unique cons
quence of the onset of riddling: Trajectories in the vicini
of they ­ 0 attractor belonging to the basin of thejyj ­ `

attractor spend an extremely long transient time near
y ­ 0 attractor before they asymptote tojyj ­ ` [7]. This
is a physically observable phenomenon accompanying
onset of riddling.

To get the scaling on how the transient time increase
the symmetry-breaking parametere approaches zero, we
decreasee from 0.04 and compute the average transie
time t for a large number of trajectories atp ­ pc.
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Specifically, for each value ofe, we randomly choose 100
initial conditions withx0 uniformly distributed in (0,1) and
y0 ­ 0. A trajectory is regarded as having escaped onc
satisfiesy . 1. The average transient time increases fas
than exponential growth ase decreases towards zero. W
find that, for Eq. (3),t scales withe as

t , expfKe22y3g , (4)

whereK is a constant to be determined shortly. This b
havior is shown in Fig. 2 as a plot of log10t vs e22y3 for
0.01 , e , 0.04. The plot can be fitted by a straight line
implying Eq. (4). The scaling relation Eq. (4) indicate
that, ase ! 0, the average transient time approaches
finity rapidly, a superpersistent chaotic transient behav

We now derive Eq. (4) analytically. The first step is
estimate, fore $ 0, the sized of the opening aty ­ 0 for
a trajectory of transient lifetimeT. Note thatT depends
on e. Since they ­ 0 attractor is chaotic, its maximum
Lyapunov exponentl is positive. Let Lu ­ el . 1,
which is the expanding rate of an infinitesimal vector
the x direction. Since the transient time isT, we have
sLudT d , 1, which gives

d , 1ysLudT . (5)

We next examine the probability that a trajectory falls in
the tongue of sized at y ­ 0 for e $ 0. This probability
is proportional tod. The average time for a trajectory t
fall into the tongue is

t , d21 . sLudT ­ expslTd . (6)

The final step is to evaluateT, the time it takes for
the trajectory to exit once it has fallen into the tongu
Near xp, we have expf2bsx 2 xpd2g ø 1. For initial
conditions chosen aty0 ­ 0, we haveyn $ e for n $ 1.
For small e it takes many iterations for a trajectory t
reach y ­ 1. Thus, they dynamics within the tongue
can be approximated by the differential equationdyydt ­

FIG. 2. Average transient timet vs the symmetry-breaking
parametere for 0.01 # e # 0.04 at p ­ pc ­ 1. We used
1000 random initial conditions withx [ f0, 1g and y ­ 0 to
computet. The parameter setting isa ­ 3.8 and b ­ 5.0 in
Eq. (3). The plot is log10t vs e22y3.
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e 1 y3. This gives

T ­
Z 1

0

dy
e 1 y3

­ e22y3

(p
3

3

"
tan21 2 2 e21y3

p
3e1y3

2
p

6

#

1
1
6

ln
se1y3 1 1d2

1 2 e1y3 1 e2y3

)
­ Ce22y3, (7)

where C ­ Os1d and C ! py33y2 as e ! 0. Substi-
tuting this expression into Eq. (6), we obtain the low
bound of the average transient time,

t , expfCle22y3g , (8)

which is Eq. (4), whereK ; Cl. Alternatively, instead
of looking at the width of the tongue aty ­ 0 ande . 0,
we could have estimated the width at heighty ­ d and
e ­ 0. In this case, we get Eq. (1) withg ­ 2y3.

Note that Eq. (4) is the lower bound for the avera
transient time because of the inequality in Eq. (6). T
actual transient time could be longer than that predic
by Eq. (4). Thus, the exponent could be larger than 2y3.
Note that this exponent is a consequence of they3 term
in the y dynamics. If we replace they3 term by, say,
a y2 term, then the exponent would be 1y2. Thus, the
exponent 2y3 in Eq. (8) is specific to our model system
Eq. (3). However, the scaling relation Eq. (1) is gener
with the exponentg being positive.

The escaping behavior of trajectories, once they h
fallen into the tongue, can be seen by monitoring th
traces in the phase space before they reachy ­ 1. Since
the tongues are supernarrow atp ­ pc, it is numerically
convenient to examine the case wherep . pc. Figure 3
shows the last 50 points for 600 trajectories before th
reachy ­ 1, wherep ­ 1.18 and e ­ 0.005. We see
that there is a “mushroom-shape” (tongue) crowd of t
jectory points in the phase space located above the fi
point xp ø 0.7368. The red curves in Fig. 3 indicate th
envelope of the tongue. These curves can be derived
lytically by considering the escaping dynamics in the vici
ity of xp [10]. After a trajectory falls into the tongue a
xp, they move inside the tongue to escape they ­ 0 attrac-
tor. There are also many other narrower tongues in Fig
These correspond to the preimages of the tongue atxp —
an infinite number of them, though of course the numbe
limited since we examine only 50 iterates before the e
and the tongues become narrower very fast. Thus, im
diately after the fixed pointxp loses its transverse stability
an infinite number of tongues open immediately, allowi
trajectories in the vicinity of they ­ 0 attractor to escape

In summary, we have studied the fundamental
furcation for riddling to occur in chaotic dynamica
systems; namely, the riddling bifurcation is induced
the loss of transverse stability of an unstable perio
orbit embedded in the chaotic attractor in the invaria
57
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FIG. 3(color). Mushroom-shaped phase-space regi
(tongues) through which trajectories escape they ­ 0 chaotic
attractor atp ­ 1.18 ande ­ 0.005.

subspace. The most interesting consequence acc
panying riddling is the occurrence of a superpersist
chaotic transient behavior [11]. The basin structure
the attractor not in the invariant subspace is made up
an open and dense set of tongues. We stress that
model system Eq. (3), in which we rigged the unstab
fixed point to lose its transverse stability first, is on
for the purpose of illustrating the fundamental mech
nism for riddling to occur and showing how symmet
breaking yields superpersistent transients. For m
complicated systems, it is difficult to determine whic
unstable periodic orbits would lose transverse stabi
first. In all examples we have studied, it is a low-perio
periodic orbit, but we have no proof that this is the gene
case.
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