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When a chaotic attractor lies in an invariant subspace, as in systems with symmetry, riddling can
occur. Riddling refers to the situation where the basin of a chaotic attractor is riddled with holes
that belong to the basin of another attractor. We establish properties of the riddling bifurcation
that occurs when an unstable periodic orbit embedded in the chaotic attractor, usually of low period,
becomes transversely unstable. An immediate physical consequence of the riddling bifurcation is that
an extraordinarily low fraction of the trajectories in the invariant subspace diverge when there is a
symmetry breaking. [S0031-9007(96)00503-0]

PACS numbers: 05.45.+b

Recently, the phenomenon of riddled basins in chaotiznstable. Since this periodic orbit is already unstable in
dynamical systems has become an area of intensive studlye attractor, it becomes a repeller in the two-dimensional
[1-5]. The description of riddled basins was introduced inphase space. Specifically, kef be an unstable periodic
Ref. [1] where the following was shown for certain classegoint embedded in the chaotic attractor in the invariant sub-
of dynamical systems with an invariant subspace: (i) ifspace. To simplify notation, we assume it is a fixed point.
there is a chaotic attractor in the invariant subspace; (iifhe unstable pointis stable transversely to this subspace, as
if there is another attractor in the phase space; and (iii) iEhown in Fig. 1(a). Riddling occurs when soxg loses
the Lyapunov exponent transverse to the subspace is neigs transverse stability as a paramgtgrasses through the
ative, then the basin of the chaotic attractor in the invari<critical valuep.. For such systems, the loss of transverse
ant subspace can be riddled with holes belonging to thstability is induced by the collision gt = p. of two re-
basin of the other attractor. That is, for every initial condi-pellersr; andr_, located symmetrically with respect to
tion that asymptotes to the chaotic attractor in the invarianthe invariant subspace, with the saddlexgt (a saddle-
subspace, there are initial conditions arbitrarily nearby thatepeller pitchfork bifurcation). These two repellers exist
asymptote to the other attractor. Invariant subspaces amnly for p < p., as shown in Fig. 1(a). Fqr > p., the
particularly common for systems with symmetry. Rigor-saddlex, becomes a repeller, and the two repeliersand
ous results on the dynamics of riddled basins for discrete_ off the invariant subspace do not exist anymore.
maps were presented in Refs. [1] and [2]. The dynamics As we will argue shortly, due to nonlinearity, a “tongue”
of riddled basins was subsequently investigated in [3] usepens atx, allowing trajectories near the invariant sub-
ing a more realistic physical model. A more extreme typespace to escape fgr > p., as shown in Fig. 1(b). Each
of basin structure referred to as “intermingled basins,” inpreimage ofx, also develops a tongue simultaneously.
which the basins of more than one chaotic attractor ar&ince preimages of, are dense in the invariant subspace,
riddled, was also studied using both discrete maps [1] andn infinite number of tongues open simultaneously at
a more realistic physical system [4]. Riddled basins have., indicating that initial conditions arbitrarily close to
been verified in experiments conducted using coupled elethe invariant subspace may asymptote to another attrac-
trical oscillators [5,6]. The mechanism for riddling to oc- tor. Trajectories in the chaotic attractor, however, remain
cur, and the basin structure associated with the riddlingthere even forp > p., since the subspace in which the
were investigated by Ashwin, Buescu, and Stewart [6]. chaotic attractor lies is invariant and each tongue has a

In this Letter, we describe the riddling bifurcation in zero width there. But trajectories near the chaotic attrac-
chaotic systems, and we investigate the behavior whetor have a finite probability of being in the open and dense
a symmetry-breaking parameter is introduced. The onset of tongues. Trajectories having initial conditions in the
set of riddling is determined by a saddle-repeller bifurcatongues asymptote to the other attractor. Sopfee p.,
tion (eigenvalue+1) [7]. For simplicity, we emphasize most initial conditions, off but close to the chaotic attractor,
the case of two-dimensional phase space and, hence, thsymptote to it, but there is an open and dense set of initial
invariant subspace is a line. Before the bifurcation, theconditions that asymptote to the other attractor. Thus, the
chaotic attractor attracts all points in some of its neighborbasin of attraction for the chaotic attractor is a Cantor set of
hood, and all the periodic orbits embedded in the chaotiteaves of positive Lebesgue measure, signifying riddling.
attractor are saddles. At the bifurcation, one of the pePhysically, since the onset of riddling induces the creation
riodic orbits, usually of low period, becomes transverselyof these supernarrow tongues near the invariant subspace,
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(@ p<p, where, fore = 0, y = 0 defines the invariant subspace as
atrajectoryy = Owillremain so forever, and, b > 0O are
it parameters. The symmetry-breaking parameter is for the
) symmetryy — —y. Thus, the dynamics in the invariant
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attractor subspace is described by the logistic map; = ax,(1 —
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x,,) for which chaotic attractors occur for parameter values
in a positive Lebesgue measure set [9].

To understand how riddling occurs fer= 0, we note
that the two eigenvalues of the unstable fixed poipt
(x=x,=1-1/a,y=0)are(A,, Ay) =(2—a, p). Thus,

X, is stable in they direction for p <1 and unstable
for p>1. This fixed point is a saddle foz > 3 and

p < 1. For p <1, there are two other unstable fixed
points located at+ = (x,, =4/ — p). These two fixed
points have eigenvalué® — a,3 — 2p), both being pure
repellers fora > 3 and p < 1, as shown in Fig. 1(a).
These two repellers collide with each other and with
the saddle ap = p. = 1 in a saddle-repeller pitchfork
bifurcation with eigenvalue-1 at p = 1; they do not exist

I\ | invariant for p > 1. Thus, forp > 1, two tongues, symmetrically
| ¢ I subspace located with respect to the invariant subspace, open-at
0 X 1 x,, allowing trajectories near = 0 to escape tdy| = o.

To understand why these occur, observe that the cubic

FIG. 1. (a) The unstable saddle fixed point in the invarian . : .
subspace and two repellers off the invariant subspace féyerm in they dynamics guara_ntees that[if,| > 1 thgn
ya+1l > ly.l > 1. Once a trajectory reachgs = 1, its

p < p. (before the saddle-repeller pitchfork bifurcation). (b)
The tongue structure formed fgr > p., after the onset of Yy value asymptotes to infinity rapidly. Sg| = « can
riddling. Trajectories originated from initial conditions inside be regarded as the second attractor of Eq. (3) besides the
the tongues escape the invariant subspace. chaotic attractor in the = 0 plane (invariant subspace).

To understand why tongues are formed, take an open set
it leads to superpersistent chaotic transient behavior [7] ifijy| > 1) intersecting the transverse unstable manifold of
the vicinity of the chaotic attractor. This should be con-x,. By taking inverse images, this open set approaches
trasted to the typical average lifetime of transient chaosk, asymptotically. There are two inverse images, but
that scales algebraically [8]. For points chosen at randorwe choose only the one with = x,. By continuity, it
at a small distancd from the attractor, the probability of remains an open set. lIts inverse images are a subset of a
not being attracted depends on the distashes tongue that opens up at,, as shown in Fig. 1(b). The

P(d) ~ exd—Kd "], (1) tongues are the intersection of all escaping open sets [10].
where y > 0 is a positive exponent, an& > 0 is a For € >0, trajectories can leave the chaotic attractor at

constant that can be expressed in terms of the Lyapunay— 9 ( = 0is nolonger an invariant subspace) and, hence,
exponent of the chaotic attractor. the chaotic attractor becomes a chaotic saddle. Compu-

We consider the following general class of dynamicalt@tion of Eq. (3) shows one interesting phenomenon. Be-

systems: cause of the tongue structure formeghat= 1, only a very
small fraction of the points at = 0 diverges toward the
X1 = £xn), (2) |yl = attractor. The transient time can easily be longer
Yo+1 = € + pg(x,)y, + high order odd terms o, , than, say, 10 iterates even wher =0.014. As € de-

wherex € RY (N = 1), y € RM (M = 1), f(x,) is a creases towards zero, the transient time increases drasti-

map that has a chaotic attractor in the invariant subspacglly. For insgqnce, at =0.01, the typical transient time
va = 0, g(x,) = | at some unstable periodic orbit of IS Over3 X 10° iterations. This indicates a unigue conse-

f(x,), p is a system parameter, ang(x,) is assumed duence of the onset of riddling: Trajectories in the vicinity
to be positive. We call = 0 the symmetry-breaking Of they =0 attractor belonging to the basin of the = o
parameter. Notice that, for initiapy = 0 and e =0,  attractor spend an extremely long transient time near the
trajectories have, = 0 for all times. Our main goal now Y =0 attractor before they asymptoteltd = [7]. This

is to understand how riddling occurs pgpasses through S @ physically observable phenomenon accompanying the

pe. whene = 0. To illustrate our findings, we consider onset of riddling. _ o
the following version of Eq. (2): To get the scaling on how the transient time increases as

Xyt = ax,(1 — x,) the symmetry-breaking parameterapproaches zero, we
ntl " (” ’ : 3) decreases from 0.04 and compute the average transient
b(x—x, 2

Yn+1 = € + pe Vo + 2, time 7 for a large number of trajectories at = p..
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Specifically, for each value @f, we randomly choose 1000 € + y3. This gives
initial conditions withx, uniformly distributed in (0,1) and

1
yo = 0. Atrajectory is regarded as having escaped once it T = [ dy 3
satisfieyy > 1. The average transient time increases faster 0o €ty
than exponential growth asdecreases towards zero. We s V3 2 - e 13 T
find that, for Eq. (3)7 scales withe as - 3 tan J3el3 6
T ~ eX[{Kefz/S], 4 N l|n (61/3 +1)? ]

. . : — €l/3 2/3

whereK is a constant to be determined shortly. This be- 61— €l + e

havior is shown in Fig. 2 as a plot of lag vs € ~2/3 for = Ce 2, (7)
0.01 < € < 0.04. The plot can be fitted by a straight line, 32 ,
implying Eq. (4). The scaling relation Eq. (4) indicates Where C = O(1) and C — 7/3"/* as e — 0. Substi-
that, ase — 0, the average transient time approaches inluting this expression into _Eq. (6), we obtain the lower
finity rapidly, a superpersistent chaotic transient behavioroound of the average transient time,

We now derive Eq. (4_) analytically. The first step is to 7 ~ exdCre 23], 8)
estimate, fore = 0, the sizes of the opening ay = 0 for
a trajectory of transient lifetim@. Note thatT depends which is Eq. (4), wher&k = CA. Alternatively, instead
on e. Since they = 0 attractor is chaotic, its maximum of looking at the width of the tongue at= 0 ande > 0,
Lyapunov exponentA is positive. LetL, = e¢* > 1, we could have estimated the width at height= d and
which is the expanding rate of an infinitesimal vector ine = 0. In this case, we get Eq. (1) with = 2/3.

the x direction. Since the transient time 1§ we have Note that Eq. (4) is the lower bound for the average
(L,)"8 < 1, which gives transient time because of the inequality in Eqg. (6). The
actual transient time could be longer than that predicted

&< 1/(L,)". (5) 9 P

by Eq. (4). Thus, the exponent could be larger thaa.2

We next examine the probability that a trajectory falls intoNote that this exponent is a consequence of ytheerm

the tongue of sizé aty = 0 for e = 0. This probability in the'y dynamics. If we replace the® term by, say,

is proportional tos. The average time for a trajectory to a y* term, then the exponent would b2l Thus, the

fall into the tongue is exponent 23 in Eq. (8) is specific to our model system
. - Eqg. (3). However, the scaling relation Eq. (1) is general,

T~ 8 > (L) = expAT). (6)  with the exponeny being positive.

The final step is to evaluatd, the time it takes for ~ The escaping behavior of trajectories, once they have

the trajectory to exit once it has fallen into the tongue.fallen into the tongue, can be seen by monitoring their

Near x,, we have exp-b(x — x,)2] = 1. For initial  traces in the phase space before they reaeh1. Since

conditions chosen at, = 0, we havey, = € forn = 1.  the tongues are supernarrowmat= p., it is numerically

For small e it takes many iterations for a trajectory to convenient to examine the case where- p.. Figure 3

reachy = 1. Thus, they dynamics within the tongue Shows the last 50 points for 600 trajectories before they

can be approximated by the differential equatibridr =  reachy =1, wherep = 1.18 and e = 0.005. We see

that there is a “mushroom-shape” (tongue) crowd of tra-

jectory points in the phase space located above the fixed

pointx, = 0.7368. The red curves in Fig. 3 indicate the

7 envelope of the tongue. These curves can be derived ana-
lytically by considering the escaping dynamics in the vicin-
6 1 ity of x, [10]. After a trajectory falls into the tongue at
xp, they move inside the tongue to escapeythe 0 attrac-
®o 51 tor. There are also many other narrower tongues in Fig. 3.
P These correspond to the preimages of the tongug at
= 4 an infinite number of them, though of course the number is
3 limited since we examine only 50 iterates before the exit,
and the tongues become narrower very fast. Thus, imme-
9 B diately after the fixed point, loses its transverse stability,
8 10 12 14 16 18 20 22 an infinite number of tongues open immediately, allowing

g2 trajectories in the vicinity of the = 0 attractor to escape.
FlG. 2. A wansient i " iv-breaki In summary, we have studied the fundamental bi-
. 2. Average transient time vs the symmetry-breaking ; gy i : ;
parametere for 0.01 = € = 0.04 at p — p. — 1. We used furcation for riddling to occur in chaotic dynamical

1000 random initial conditions wit € [0,1] andy = 0 to  SyStems; namely, the riddling bifurcation is induced by
computer. The parameter setting is = 3.8 andb = 5.0 in  the loss of transverse stability of an unstable periodic
Eq. (3). The plotis logr vs e /3. orbit embedded in the chaotic attractor in the invariant
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The most interesting consequence accom-

panying riddling is the occurrence of a superpersistent

chaotic transient behavior [11].

The basin structure of

the attractor not in the invariant subspace is made up of

an open and dense set of tongues.

We stress that the

model system Eq. (3), in which we rigged the unstable

fixed point to lose its transverse stability first, is only

for the purpose of illustrating the fundamental mecha-

nism for riddling to occur and showing how symmetry
For more
complicated systems, it is difficult to determine which

breaking vyields superpersistent transients.

unstable periodic orbits would lose transverse stability

first. In all examples we have studied, it is a low-period

periodic orbit, but we have no proof that this is the generic

case.
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After a trajectory falls into the escaping channel located at
x,, it dynamics can be approximated by (&)+; —x,) =

(2 = a)(x, — x,) and (2)y,+1 =~ € + py, +y*. Letz, =

|x, — x,|; thex dynamics becomes, ;; =12 — alz, = (a—

2)z, (we only consider the case wheagields chaotic dy-
namics,a > 3.6). For p close top. ande small, it takes a
huge number of iterations for a typical trajectory to escape
due to the long chaotic transient. It is thus anexcellent ap-
proximation to describe the discrete dynamics inside the
tongue via differential equations. Tzeandy dynamics be-
comedz/dt = pz (Wherep = a — 3) anddy/dt = e+

(p — 1)y + y3. We then obtain a formula for the edge of
the tongue where = 0 andp > 1,

p/(p=1)
y
7= —m—= forp > p. = 1.
(x/(p - D+ y2>

The solid curves in Fig. 3 arex, * z, respectively.
Clearly, this is a good representation for the envelope
of the tongue. In principle, one must consider additional
terms such agxy (c is constant) in thely/dr equation,

but analysis shows that this has a negligible effect on the
results. In more general cases, when the system does not
have a skew-product structure, one should also consider
terms in thex equation such asy, €y?, or even higher-
order terms iny. But for y small (near the invariant
subspace) we havey < y. Thus, these terms have a
negligible effect on our conclusions.

Superpersistent chaotic transients have also been identified
in spatiotemporal chaotic systems [for example, J.P.
Crutchfield and K. Kaneko, Phys. Rev. Le@0, 2715
(1988); A. Hastings and K. Higgins, Scien@&3 1133
(1994); Y.C. Lai and R. L. Winslow, Phys. Rev. Lef4,

5208 (1995)]. While we have investigated superpersistent
chaotic transients associated with riddling bifurcation in
this paper, the mechanism for spatiotemporal transients
remains unknown.



