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Rotons and Roton Wave Packets in Superfluid4He
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We give new information on the excitations in superfluid4He. By a variational computation
we obtain a very accurate description of the excitations; the energy spectrum has deviation from
experiment at the level of5%. The first microscopic study of roton wave packets is presented.R1

and R2 rotons cannot be described as single particle excitations due to interference effects between
neighboring atoms. The roton minimum corresponds to the special wave vector where this interference
disappears and the local density and momentum essentially coincide with those of a single particle
excitation. [S0031-9007(96)02056-X]

PACS numbers: 67.40.Db
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Many of the properties of superfluid4He are determined
by the elementary excitations of the system. If th
is some general agreement on the nature of the lo
wavelength small energy excitations, i.e., phonons, th
not the case for the roton excitations. A number of mod
have been considered, from the picture of a roton as
atomically small vortex ring put forward by Feynman a
Cohen [1] and recently revived by Williams [2], to th
view of a roton as a renormalized single particle excitat
which goes back to Miller, Pines, and Nozieres [3] a
to Chester [4]. The different temperature behavior
the neutron scattering in the phonon and in the ro
region has motivated Glyde and Griffin [5] to propose t
the phonon-maxon-roton excitation curve arises from
quite distinct processes, a zero sound mode at smallq and
a single particle mode beyond the maxon wave vectorq.

The microscopic variational theory started by Feynm
and Cohen [1] and developed by many workers
been able to account for the shape of the excita
spectrumEsqd. In spite of this the exact nature of
roton is still generally considered as not being underst
[6]. This has two motivations. These computatio
are quite complex and basically the only outcome
the energy, an integrated quantity which hardly give
physical picture of the excitation. Second, even the m
elaborate theories [7,8] give a roton energy of order
10 K at standard vapor pressure, more than15% above
experiment. This can be contrasted with the typical5%
or even smaller deviation for the ground state energyE0
coming from a good variational computation. This leav
the doubt that some important physics is missing in
description of rotons.

In this Letter we present new results on rotons a
more generally on the fullEsqd. First, by improving
upon previous computations [9] based on shadow w
function (SWF) we show that the excitation spectrum c
be described at a level of accuracy similar to that of
ground state. Second, we present the first computa
of roton wave packets built with these accurate exc
states. With these localized excitations we can study lo
properties like the density and the momentum, we pre
0031-9007y96y77(27)y5401(4)$10.00
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the first detailed study of backflow at short distanc
and the role of particle indistinguishability can be clear
identified.

The introduction of SWF has given a great impuls
to the variational study both of the ground state a
of the excited states of superfluid4He. With this type
of wave function interparticle correlations of all orde
beyond the pair (Jastrow) level are implicitly introduce
through a set of subsidiary variables, the shadows, wh
are integrated over. For this reason the SWF techniq
has been found to be very important for the heliu
system in which correlations between atoms are v
strong and not limited to the pair level. In addition, b
writing the phase factors of an excited state in term
of these subsidiary variables, backflow effects betwe
the He atoms are implicitly introduced and terms of a
order in the density fluctuationsr $q ­

P
j expsi $q ? $rjd are

generated [9]. Without any variational parameter a rot
energy of about10 K was obtained. We improve the
previous computations in two ways. First, we introdu
in the wave functionC $q an explicit backflow contribution
[10], i.e., we write

C $qsRd ­
Z

dS FsR, Sds̃ $qsSdyN 1y2
q . (1)

R ­ h$r1, . . . , $rNj is the set of positions ofN 4He atoms
and S ­ h$s1, . . . , $sN j is the set of subsidiary variables
Nq is the normalization constant. Interparticle correl
tions are introduced byFsR, Sd which is a product of
terms, FsR, Sd ­ fpsRdfssSd

Q
i fpssj$ri 2 $sijd. fpsRd

is a Jastrow factor,fpsRd ­
Q

i,j fpsrijd, and similarly
for fssSd. The momentum carrying term in (1) is

s̃ $qsSd ­
X

j

ei $q? $̃sj , $̃sj ­ $sj 1
X

lsfijd
s$sj 2 $sldlssjld .

(2)
If l ­ 0, s̃ $q is simply a density fluctuation in the
shadow variables and the structure ofC $q coincides
with the one previously studied [9].lssd introduces
an explicit backflow, and we have assumed the sh
range formlssd ­ Afssyr0d 2 2g2 exph2fss 2 r0dyvg2j
© 1996 The American Physical Society 5401
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for s , 2r0, lssd ­ 0 for s . 2r0. A, r0, andw are the
variational parameters for the excited states.

In the previous computations [9] the ground st
factor FsR, Sd was based on simple parametrizatio
of the correlating factors or pseudopotentials. Rece
[11], with the basis set method it has been poss
to achieve the full optimization of all three correlatin
factors, fp, fs, and fps, and these are what we us
here. This fully optimized SWF gives the best variation
result of the ground state energy E0 of 4He at all
densities. For instance, atreq E0 ­ 26.94 Kyatom,
0.2 K above experiment, and at freezingr ­ 1.2req,
E0 ­ 26.38 Kyatom,0.18 K above experiment. The us
of optimized pseudopotentials is important in order to
sure that the excitation energy is not affected by a p
choice of the ground state.

The excitation energy is computed by a Monte Ca
method as in previous computations [9] and the Aziz
interatomic potential is used. We have performed [
the computation at two densities, at equilibriumreq ­
0.0218 Å23 and at r ­ 1.2req. The energy spectrum
Esqd is shown in Fig. 1 together with the experimen
result [13]. The roton energy is9.05 6 0.29 K at req
and7.73 6 0.25 K at 1.2req to be compared with the ex
perimental values [14]8.61 6 0.01 K and 7.3 6 0.2 K,
respectively. Atreq the full spectrum is in very good
agreement with experiment, the deviation being at
level of 5%. Similar agreement for the roton is foun
at higher density, and this is remarkable in view of t
difficulties found by other theories to treat the high de
sity regime. The agreement with experiment is not li
ited to the energy but extends to the strengthZq of the
single excitation peak in the dynamical structure fac
Ssq, vd. The result for the relative strength of this pea
i.e., fsqd ­ ZsqdySsqd whereSsqd is the static structure

FIG. 1. Energy spectrum for single excitations and dou
roton excitations atreq and1.2req and experimental results.
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factor, is compared with experiment in Fig. 2. There is
very good agreement with recent results [15], and this
important because this quantity is rather sensitive to
structure of the wave function.fsqd in the roton region
is almost density independent, but in the maxon reg
there is a significant decrease offsqd at the higher den-
sity. This is exactly what is found experimentally [15].

The energy of the single excited state (1) is in sign
cant disagreement with experiment in two cases: at la
q above,2.5 Å21 and in the maxon region for the highe
r. In both cases the experimentalEsqd is about twice the
roton energy so that we might expect that these excitati
are a mixture of single and double excitations. To pro
that this is relevant we have extended our computat
to a double roton excited state,C$k, $q2$k. This is obtained

by replacing in (1)s̃ $q by s̃$ks̃ $q2$k, k and j $q 2 $kj being
the roton wave vector. The results for a few values
q are also shown in Fig. 1. We indeed find that in the
two regions the energy of a double excitation is belo
the one of the single excitation and close to experime
This proves that under these conditions (1) is not a go
representation of the excited state and a mixture of sta
should be considered.

Our wave function has the same structure at allq. What
is changing withq is only the strengthA of the backflow
which changes in a continuous way and it turns out
be maximum for the roton. For instance, atreq A ­ 0.3
for the roton andA ­ 0.15 for the maxon. The length
parametersr0 and w are insensitive toq. Therefore the
uniform agreement of ourEsqd with experiment gives no
hints of the possible different nature [5] of the excitatio
at small and at largeq, at least at small temperatures. Th
question remains,what is a roton? In order to throw
some light on this we have considered Gaussian-like w
packets built with the states (1). For a packet centere

FIG. 2. Theoretical and experimentalfsqd ­ ZsqdySsqd at
req and1.2req; for a Feynman wave functionfsqd ­ 1.
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$r0 we take as wave functionC$r0, $q0,DsRd the form (1) with
s̃ $q replaced by

s̃$r0, $q0,DsSd ­
X

j

fsj $̃sj 2 $r0jd expfi $q0 ? s $̃sj 2 $r0dg , (3)

with fssd ­ e2D2s2
1 e2D2ss2Ld2

2 2eD2sLy2d2
for s ,

Ly2, f ­ 0 for s . Ly2. $q0 and D determine, respec
tively, the characteristic wave vector and spread of
wave packet in momentum space. This modified Gaus
shapefssd has been introduced so that the packet comp
with the periodic boundary condition. The system is
longer uniform, and we have computed the local den
krs$rdl and the local momentumk $ps$rdl. We center the
packet at$r0 ­ 0, the center of the simulation box of sid
L. If we choose$q0 in thez direction, due to the symmetr
of the problemkrs$rdl ­ rsz, r'd wherer' ­ $q0 ? $ryq0.
Similarly k $pl is function ofz and ofr'.

We show the results for three wave packets atreq. The
first is centered at̄q ­ qR ­ 1.93 Å21, the roton wave
vector, the second is aR1 roton with q̄ ­ 1.99 Å21, and
the third is aR2 roton with q̄ ­ 1.86 Å21. The half
width at half maximum is0.25 Å21. The density profiles
as a function ofz for some values ofr' are shown in
Fig. 3. The vectorial representation ofk $pl is displayed
in Fig. 4. It is clear from the figures that somethin
special happens at the roton minimum: atqR the wave
packet does not disturb the local density and within
noisekrs$rdl ­ req. This happens only when the optim
backflow is used. When we move out of the minimu
krs$rdl has a modulation in the direction of$q. This happens
for a R2 as well as for aR1 roton, the modulation being
somewhat larger for aR2 roton. The roton excitation
has a well defined signature also in terms of the lo
momentum. The wave packet with̄q . qR displays in a
nice way a backflow pattern: along thez axisk $pl points in
the direction of$q but as we move out of the axisk $pl gets
a very significant transverse component. The backfl
pattern is strong up to about6 Å. At a larger distance

FIG. 3. Local densitykrsz, r'dl in s units (s ­ 2.556 Å)
for an R2 (a), roton (b),R1 (c), and distinguished particle (d
wave packet atreq, plotted forr' . 0.7, 2.1, 3.15, 4.3, 5.95,
and 8.15 Å. The density fluctuations decrease monotonic
with r' in (a) and (c).
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from the axisk $pl becomes rather small and has a tenden
to point in the opposite direction to$q: we clearly see a
dipolar flow. An R1 and anR2 roton have a different
pattern ofk $pl: one still recognizes a backflow pattern but
in addition, there is a strong modulation in the directio
of $q. Again anR2 roton has a stronger modulation than
an R1 roton. This modulation of the momentum density
is not explained by the modulation ofkrs$rdl, but it is a
much larger effect. By performing some computation
for the same wave packets, although with a larger numb
of particles, we have verified that the size dependence
these results is small. The absence of a density modulat
and the simple dipolar flow pattern beautifully confirm
Feynman’s intuitive idea of a roton. We find that the cur
of the velocity field is nonzero in a ring-shaped regio
around the center of the roton and its maximum is on
circle of radiusr' . 3.4 Å . 2pyqR. This behavior is
what could be expected for a vortex ring scaled down
atomic size and with a core of radius of order1 2 Å. This
analogy, however, is true only atq ­ qR, and the behavior
is much more complex forq fi qR .

krs$rdl and k $ps$rdl at qR are similar to what could
be expected for a single particle excitation in a dens
medium. In order to verify this we have considere
one of the4He atoms, say atom 1, as a distinguishab
particle. This is similar to an impurity of3He in 4He,
but we keep the same mass. The trial excited sta
has the same form (1) but now̃s $q contains just one
term, expfi $q ? $̃s1g. The backflow parameterA has been
determined by minimization of the excitation energ
Edistsqd. It turns out that atq ­ qR the values ofA for
the distinguished particle and for the collective excitatio
are the same within the statistical uncertainty. This

FIG. 4. The vectors represent the local momentumk $psz, r'dl
whenr' ­ 0 andk $psz, r'dl 3 r' whenr' fi 0, computed for
the same wave packets of Fig. 3.
5403
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only true at q ­ qR, for other values ofq the two
excitations have different backflow amplitudes.Edistsqd
of the distinguished particle excitation is almost quadra
in q, and it can be described by a slightlyq-dependent
effective massmsqd: Edistsqd ­ h̄2q2y2m4msqd. At small
q we find m . 1.8 and atq ­ qR , m . 2.1. At q ­ qR

the energies of the two excitations are similar,EdistsqRd ­
9.9 6 0.8 K which is close to the roton energy. The sam
happens atr ­ 1.2req where EdistsqRd ­ 8.2 6 0.6 K
fmsqRd . 3.1g. We have constructed wave packets a
starting from these excited states for a distinguish
particle and computedkrs$rdldist and k $ps$rdldist. For all
values ofq̄, krs$rdldist is essentially a constant equal to th
average density [in Fig. 3(d) the caseq̄ ­ qR is shown].
k $ps$rdldist for the wave packet with̄q ­ qR [Fig. 4(d)]
is essentially the same of the roton excitation [Fig. 4(
and on the scale of Fig. 4 one cannot distinguish betw
the two flow patterns. The pattern ofk $pldist for the
distinguished particle does not change shape whenq̄
is moved away fromqR. Therefore the equivalence o
these local quantities for an excitation of a distinguish
particle and of a collective excitation is true only in th
immediate neighborhood ofqR . As we move out from
the roton minimum the collective excitation gets a typic
spatial modulation which is absent for the excitation
the distinguished particle. The computation at the hig
density confirms all the findings atreq.

The interpretation of these results is that atq ­ qR

the interference effects between neighboring atoms c
cel out due to the close matching between the wavelen
of the excitation and the average distance between th
particles. Therefore a roton is essentially the same
a single particle excitation. However, there is a fund
mental difference between these two excitations: a ro
has zero group velocity but this is nonzero for the d
tinguished particle. This arises because whenq differs
from qR an interference pattern sets in the case of the c
lective excitation, whereas this pattern is absent for
distinguished particle. In a certain way our findings vi
dicate the view [3,4] of a roton as a single particle ex
tation. What was absent in these earlier works is a cl
identification of the role of interference between diffe
ent particles which immediately modifies the properties
the collective excitation asq moves away fromqR. The
strength of the roton peak inSsq, vd derives from the ex-
citation of particles out of the condensate as well as
particles above the condensate [3]. In our computat
we cannot separate out the two contributions but our re
of the almost identical behavior of a rotonsq ­ qRd and
of a distinguished particle gives evidence that the sec
contribution is the dominant one. This is supported by
earlier computation [16] which showed that, depending
density, one needs to excite five to ten rotons in orde
deplete the condensate by one particle.

We have presented a truly accurate description
the excitation spectrum of superfluid4He with the law
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of interatomic interaction as the only input. We hav
performed the first microscopic study of wave packe
built with such wave functions. Such computations ha
thrown light on the nature of the roton excitations.
roton is in many respects similar to a single particle e
citation as one would build for a distinguishable particl
but as one moves away from the roton minimum the e
citation is quite distinct from a single particle excitatio
due to interference effects between atoms. Therefore
picture of the full roton minimum as quasiparticle exc
tations does not agree with our results. Our computat
vindicates many arguments of Feynman and gives th
a quantitative basis. Exactly atq ­ qR a simple dipolar
flow due to backflow is present like in a small vortex rin

An open problem is to reach a similar understanding
a local level of the maxon excitations and of how hig
frequency phonons join with the rest of the excitatio
spectrum. This seems feasible but it will require the stu
of substantially larger systems. Another open problem
the evolution with temperature up toTl of the excitations.

We thank S. Moroni for the optimized pseudopotentia
and I. M. de Schepper for the experimental data forZsqd.
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