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Straightening of Thermal Fluctuations in Semiflexible Polymers by Applied Tension
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We investigate the propagation of a suddenly applied tension along a thermally excited semiflexible
polymer using analytical approximations, scaling arguments, and numerical simulation. This problem
is inherently nonlinear. We find subdiffusive propagation with a dynamical exponenf4f By
generalizing the internal elasticity, we show that tense strings exhibit qualitatively different tension
profiles and propagation with an exponent g1 [S0031-9007(96)01998-9]

PACS numbers: 61.41.+e, 83.10.Nn, 83.50.By, 87.15.He

Characteristic for soft matter systems such as polymergive numerical results along with simple scaling arguments
or membranes is the often subtle interplay between energp explain them.
and entropy [1,2]. Thermal motion determines the con- Model—To make the calculation tractable we will
formations of these systems crucially. For instance, tha@eglect the thermal fluctuations in our dynamics: Their
typical end-to-end distance even of a semiflexible poly-only role is to prepare a rough initial state at time= 0,
mer (let alone a Gaussian polymer) is much smaller tham which the total contour length per unit of projected real-
its contour length. Likewise for vesicles, thermal fluctua-space length is greater than one. We also assume that at
tions can store a significant part of the “true” surface arear > 0 the bending stiffness is negligible compared to
From the perspective of the projected length or area, thithe applied force’; the only role ofk is then to set the
part is hidden. For vesicles or membranes, the hiddemitial roughness of the contour (see below).
area can be pulled out without stretching the true area by Let us write the shape of a “polymer” confined to 2D as
application of a localized force such as the suction prese(s) = (x(s), y(s)) along its arc lengtl) = s = L. We
sure in a micropipet [3] or the action of optical tweezersfix the right end tor(L) = 0. At the left end, a force
[4]. For polymers, recent advances in experimental techf = — & pulls in the—x direction.
niques using magnetic beads, optical tweezers, or flow The total energy is then given by
fields made feasible detailed experimental studies of the L
conformations of single long molecules [5-10]. With F=—fr(L) + %f ds y(s)r(s)?, @
these techniques it has become possible to measure the 0
force-extension curve for these soft systems and to conyvhere dots denote_dferlvatlves .Wlth respect to arc length.
pare them with theoretical predictions [11-15]. These! e Lagrange multipliey (s), which can be interpreted as
studies focus on the equilibrium conformations under thdhe local tension, is necessary to preserve the arc length
action of astationaryforce. constraintr(s)> = 1 which arises from the !nexter1_3|bll_|ty_
The purpose of this Letter is to investigate thgnam-  Of the polymer [18]. We assume local isotropic dissi-
ics of the straightening of initial thermal fluctuations. The Pation and ignore long range hydrodynamic interactions.
approach to the stationary state takes time because the5Be equation of motion is then
objects.are immerse;d in avisc_ous medium (usually wz?lter) T lo,r = —8F/6r = a,(yF) + (£ + yr)8(s), (2)
[16]. Since we are interested in the principle mechanism, . . . .
we will simplify the system as much as possible still retain-Wherel' is an inverse friction coefficient.
ing what we believe to be the salient features. Thus we 1here isno explicit equation of motion for the Lagrange
will study the straightening for a one-dimensional semj-multiplier y. This quantity has to be determined from
flexible chain confined to a two dimensional world [17]. (1/2T)a,r* = 1‘—3?(71'—) =5 — yi? = 0. (3)

The unwinding of a Gaussian polymer in a homogeneous . . . .
d POy g At any time ¢, this relation fory is a second order

flow is the only other system so far for which the dynami- . ) . i ) . .
cal approach to the new equilibrium has been studied usin@'ﬁerem'al equation which requires fo'r its solution two
oundary conditions. The first, at= 0, is

scaling arguments [12]. In contrast to this work, the con-
formation of our chains are dominated by bending modes. y(0) = f. 4)
Also, we will consider the case of pulling one end hoId—.I_he fixed boundary condition ats — L requires
ing the other end fixed, unlike the free-end situation in DY r(L) = (L) Z + V(L) = 0. Thi q la
homogeneous flow considered in [11,12]. Our main ob1/Dax(L) = y(L)r(L) + y(L)F(L) = 0. IS refa
servations are that tension spreads slowly in a long (:hairy,On implies both

with a scaling law depending on the elastic character. We v(L)=10 (5)
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andi(L) = 0 becausa'¥ = 0. The tension profiley(s) X -200 -150 -100 -50 0
can thus be calculated for any instantaneous conformation. < ' ' ' '
This profile can then be put into the equation of motion for
r which can then be integrated one time step.

Linear theory—Even for our simplified model, the
coupled nonlinear equations (2) and (3) cannot be solved

[§8]

analytically. Let us consider first the linearized problem, A 4

which will fail in an instructive way. Choose a single o

mode initial conformation of the formy(s,r = 0) = L0 {16

a’sings. Note thatx(s) follows once we specifyy(s) N\

because of the arclength constraint. 0.8 NN\ {13
Ignoring the nonlinear term, the equation for the tension y

becomegy = 0 which leads with the boundary conditions 06 L \

to the flat profiley(s) = f. Thus the tension spreads
instantaneously in this approximation. In the linearized 04
equation of motion fory, the modes decouple and one

obtains the usual relaxation form, (1) = ade /4", 02r
The failure of the linear theory can be seen clearly -
by looking at the first correction term. Writing(s) = 0.0
f + y1(s), we havey,(s) = f#2, which implies for the 0 50 ™ 0 500 >
single mode configuratiop; (L) ~ —L*fla)|*¢*. Thisis ) ’

21,0 FIG. 1. (top) 10 subsequent snapshots of conformations
less than the lowest order terfnonly if L < l/q Ia k (s),y(s)) of a semiflexible chainb = 2) with total chain

Thus depending on the wavelength and the amplltude QEngth 250. The snapshots are taken at equidistant times. The
the initial conformation, there is a maximal chain lengthinset shows how two adjacent bends are straightened. (bottom)
over which the linearized theory can be applied. For anyCorresponding tension profiles as a function of the arc length.
longer chain, the problem becomes inherently nonlinear.

Simulations—To gain insight into the nonlinear prob-

lem, we simulated a discretized version of the equations of the two bound diti 4 q
motion. The initial conformation is written ag(s,0) = same sign asy, the two boundary conditions (4) an

S a%sings with ¢ = n@/L,n = 1. This choice guar- (5) imply thaty(s) is_ positive, monotonically decreasing,
antees that(0,0) = y(L,0) — 0. For simplicity, we also and convex. We will now seek an approximate effective
restricty (0, 1) — 0 for all times so that the left end point €duation for the time development of. For uniform
moves only horizontally. tension the modes decay ag(r) = exp(—I'yg*t)a,,.

The small initial amplitudes are chosen from a Gaussiar?ince this Says that the shortjan(.eIength modes d(_ecay the
distribution with width astest, we will make the “adiabatic” ansatz thatvaries

slowly in space compared to the wavelengths/ g of the

012y — 4
_ (lagl™) - T/’qu ) _ (6)  relevant modes; thus we writes, 1) = X, a (s, 1) sings

WhereT IS temperature In units of energy amrdis the  and regarda, as slowly varying functions of arclength

bending stiffness. s and of time:a,(s,1) = exd =Ty (s, t)qg* t]a Using

In Fig. 1, we show ten snapshots of the configuratiorgq. (6), the average time-dependent local curvature then
and the corresponding tension profiles. The tensiogan be approximated as
spreads inward, decreasing the amplitudes in this range.
For a quantitative analysis, we define a penetration length  (3(s, 1)?) = Z 7
&(r) over which the tension has already spread. For 7 KLq
concreteness we will defing as the point where/(¢) =
f/2. The initial value and the time evolution of this
penetration length depends on the initial conformation
Averaging 50 runs, we find the power law

g*exd —2T'y(s,1)¢%*t]. (8)

Written in this form, the curvaturé(s, r)?) depends only
implicitly on the arc lengths via the functiony(s, 7).
With this simplification, Eq. (3) for the unknown time-
dependent tension acquires the simple form

(€@) ~ 15, (7 T 3V (y)
where the dynamic exponent= 0.24 + 0.01. We will y(s) =y T gtexd—2Ty(s5)g*] = - L2
now show how this empirical scaling law follows from a g kb4 Iy ©)

simple physical picture.
Scaling argument +~An exact solution of the non- The equation for the tension profile has thus become

linear equations of motions looks impossible. Gooda simple mechanical equation for the one-dimensional

insight, however, can be gained from the structure ofmotion of a particle with unit mass in a potentigly)

the equation for the tension profile (3). Singehas the wherey plays the role of position and the original spatial
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variable s plays the role of time. The original time tense stringh = 1 and the semiflexibleb = 2 cases.

becomes a mere parameter. The potential exhibits twbor the string, the 10 snapshots shown in Fig. 2 and
regimes, the corresponding tension profiles reveal that the tension
profile is not exponential but rather decays quite linearly

2
Viy) = Y T 32 Y < ves (10) over a long region, and the moving boundary of this
TRmom Y Y Ve region remains sharply defined. Intuitively the difference
separated by a crossover tensign= 1/I'¢>t. Here,q,  stems from the fact that more of the initial excess length
is a high momentum cutoff for thg modes. is in short-wavelength modes in the tense string case.
The particle starts with “initial” conditiony(0) =  Since these modes are damped the fastest, the string

f and has to reach zero velocity at “time =L  straightens immediately when it feels the tension, and so
because ofy(L) = 0. In the limit L — o, it then most of the resistance to straightening comes from pulling
follows that the particle has zero total energy from whicha straight string through a viscous medium, which gives
we obtain the initial conditiony(0) = —2[V(f)]'/2 < a linear tension profile. The straight region ends at a
0. Identifying y(0) with —f/&(¢), we obtain £(r) ~  point controlled by the total length pulled so far. In the
(k/T)"2(T'f1)'/* in good agreement with our numerical semirigid case, most of the excess length is initially in
simulation. Even though &ransversalperturbation also long-wavelength modes, which decay slowly. The tension
propagates a distancer'/* as it follows easily from propagates forward before the string has a chance to
linear response theory [19], our case of the nonlineastraighten, and so its front is not so well defined.
response to fongitudinalforce is fundamentally different Scaling argument Ik—We can turn these words
as it is also obvious from the nonlinear dependencé of into another simple scaling argument. We separate
from the applied force . the string into two parts. In the left, straightened,

For a rough estimate of the relevant scales, let us ignorpart of length £(z), we assume that all fluctuations
all factors of order unity. For the friction coefficient have already been pulled out. Then the tension profile
I' we can take the inverse of the bulk viscosity so becomes y(s) = f — y(L)s. In the right, unper-

I' =1/ = 100 cm?/ergsec. A typical weak force is turbed, part, pulling has not yet had a significant effect.
f = 0.1 pN[6]. For DNA, k/T = 100 nm [6] and thus Thus the tension profile fos > &(r) is exponential,
£(t) = 1 um(z/sed/*. For actin,x/T = 10 um [20],  y(s) = y(£())exd—(s — £()]/&inir), With a time-

so £(¢) = 10 um(r/sed!/4. Neglecting the contribution independent penetration length &i,ic = (1/82)'/2  as

of the bending elasticity to the straightening is admissiblegiven by the initial configuration. Matching the two

if the characteristic timer, ~ n&*/k it takes for a profiles so thaty is continuous ats = £(¢), we obtain
bending mode on scalé to relax is larger than the time vy(£()) = f/[1 + &(t)/&mic] = fémi/€E(). The rate

it takes to straighten the lengh This criterion holds

if f > T?/k which is fulfilled for the numbers given

above for actin. Thus, the dynamics of straightening in «
biopolymers should be accessible to video microscopy
techniques.

Generalization—In the analysis above we took the
initial chain configuration to be governed by bending
modes. Another case of interest is when a floppy chain
is initially under tension, and the tension is suddenly
increased at time zero. To cover both cases let us 0.0
replace the sample for the initial amplitudes in Eq. (6) {02
by (laJ|*) = A*7*"/Lq*", where A has the dimension v/t 1 o4
of a length. Then the cask = 2, where A = «/T, LON
was discussed above, while= 1 (where A = T/3)
corresponds to a string with tensi@n

Our scaling argument can be repeated for general
b > 1/2. One finds the effective potentia¥(y) ~
— A32(T 1)@ =5/2,b=1/2 for 5 > y.. This potential o4l
leads to a penetration lenggir) = 15—20)/4, '

We have studied the cade= 1 numerically. Here 02t
we find a dynamical exponent = 0.50 = 0.01 clearly
different from the predictioa = 3/4 which would follow 0.0
from the above scaling argument. . . s . -

What went wrong? Closer inspection of the tension 0 30 100 150 200 s
profiles indicates a qualitative difference between the FIG. 2. Same as Fig. 1 for a string & 1).
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d£(t)/dr with which the straightened regime grows is by the U.S/Israeli Binational Foundation Grant No. 94—
proportional to the forcey(£(¢)) with which this regime 00190 and NSF Grant No. DMR95-07366.
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