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Straightening of Thermal Fluctuations in Semiflexible Polymers by Applied Tension
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We investigate the propagation of a suddenly applied tension along a thermally excited semiflexibl
polymer using analytical approximations, scaling arguments, and numerical simulation. This problem
is inherently nonlinear. We find subdiffusive propagation with a dynamical exponent of 1y4. By
generalizing the internal elasticity, we show that tense strings exhibit qualitatively different tension
profiles and propagation with an exponent of 1y2. [S0031-9007(96)01998-9]

PACS numbers: 61.41.+e, 83.10.Nn, 83.50.By, 87.15.He
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Characteristic for soft matter systems such as polym
or membranes is the often subtle interplay between en
and entropy [1,2]. Thermal motion determines the c
formations of these systems crucially. For instance,
typical end-to-end distance even of a semiflexible po
mer (let alone a Gaussian polymer) is much smaller t
its contour length. Likewise for vesicles, thermal fluctu
tions can store a significant part of the “true” surface ar
From the perspective of the projected length or area,
part is hidden. For vesicles or membranes, the hid
area can be pulled out without stretching the true area
application of a localized force such as the suction p
sure in a micropipet [3] or the action of optical tweeze
[4]. For polymers, recent advances in experimental te
niques using magnetic beads, optical tweezers, or
fields made feasible detailed experimental studies of
conformations of single long molecules [5–10]. Wi
these techniques it has become possible to measur
force-extension curve for these soft systems and to c
pare them with theoretical predictions [11–15]. The
studies focus on the equilibrium conformations under
action of astationaryforce.

The purpose of this Letter is to investigate thedynam-
ics of the straightening of initial thermal fluctuations. Th
approach to the stationary state takes time because
objects are immersed in a viscous medium (usually wa
[16]. Since we are interested in the principle mechani
we will simplify the system as much as possible still reta
ing what we believe to be the salient features. Thus
will study the straightening for a one-dimensional sem
flexible chain confined to a two dimensional world [17
The unwinding of a Gaussian polymer in a homogene
flow is the only other system so far for which the dynam
cal approach to the new equilibrium has been studied u
scaling arguments [12]. In contrast to this work, the c
formation of our chains are dominated by bending mod
Also, we will consider the case of pulling one end ho
ing the other end fixed, unlike the free-end situation i
homogeneous flow considered in [11,12]. Our main
servations are that tension spreads slowly in a long ch
with a scaling law depending on the elastic character.
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give numerical results along with simple scaling argume
to explain them.

Model.—To make the calculation tractable we wi
neglect the thermal fluctuations in our dynamics: Th
only role is to prepare a rough initial state at timet ­ 0,
in which the total contour length per unit of projected rea
space length is greater than one. We also assume th
t . 0 the bending stiffnessk is negligible compared to
the applied forcef; the only role ofk is then to set the
initial roughness of the contour (see below).

Let us write the shape of a “polymer” confined to 2D a
rssd ­ sssxssd, yssdddd along its arc length0 # s # L. We
fix the right end torsLd ­ 0. At the left end, a force
f ­ 2fx̂ pulls in the2x direction.

The total energy is then given by

F ; 2frsLd 1
1
2

Z L

0
ds gssdÙrssd2, (1)

where dots denote derivatives with respect to arc leng
The Lagrange multipliergssd, which can be interpreted a
the local tension, is necessary to preserve the arc len
constraintÙrssd2 ­ 1 which arises from the inextensibility
of the polymer [18]. We assume local isotropic diss
pation and ignore long range hydrodynamic interactio
The equation of motion is then

G21≠tr ­ 2dFydr ­ ≠ssg Ùrd 1 sf 1 g Ùrddssd, (2)

whereG is an inverse friction coefficient.
There is no explicit equation of motion for the Lagrang

multiplier g. This quantity has to be determined from

s1y2Gd≠t Ùr2 ­ Ùr≠2
ssg Ùrd ­ g̈ 2 gr̈2 ­ 0 . (3)

At any time t, this relation forg is a second order
differential equation which requires for its solution tw
boundary conditions. The first, ats ­ 0, is

gs0d ­ f . (4)

The fixed boundary condition ats ­ L requires
s1yGd≠trsLd ­ ÙgsLdÙrsLd 1 gsLdr̈sLd ­ 0. This rela-
tion implies both

ÙgsLd ­ 0 (5)
© 1996 The American Physical Society 5389
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and r̈sLd ­ 0 becauseÙrr̈ ­ 0. The tension profilegssd
can thus be calculated for any instantaneous conforma
This profile can then be put into the equation of motion
r which can then be integrated one time step.

Linear theory.—Even for our simplified model, the
coupled nonlinear equations (2) and (3) cannot be sol
analytically. Let us consider first the linearized proble
which will fail in an instructive way. Choose a singl
mode initial conformation of the formyss, t ­ 0d ­
a0

q sinqs. Note thatxssd follows once we specifyyssd
because of the arclength constraint.

Ignoring the nonlinear term, the equation for the tens
becomes̈g ­ 0 which leads with the boundary condition
to the flat profilegssd ­ f. Thus the tension spread
instantaneously in this approximation. In the lineariz
equation of motion fory, the modes decouple and on
obtains the usual relaxation form,aqstd ­ a0

qe2Gfq2t.
The failure of the linear theory can be seen clea

by looking at the first correction term. Writinggssd ­
f 1 g1ssd, we haveg̈1ssd ­ f r̈2, which implies for the
single mode configurationg1sLd , 2L2fja0

qj2q4. This is
less than the lowest order termf only if L ø 1yq2ja0

qj.
Thus depending on the wavelength and the amplitude
the initial conformation, there is a maximal chain leng
over which the linearized theory can be applied. For a
longer chain, the problem becomes inherently nonlinea

Simulations.—To gain insight into the nonlinear prob
lem, we simulated a discretized version of the equation
motion. The initial conformation is written asyss, 0d ­P

q a0
q sinqs with q ­ npyL, n $ 1. This choice guar-

antees thatys0, 0d ­ ysL, 0d ­ 0. For simplicity, we also
restrictys0, td ­ 0 for all times so that the left end poin
moves only horizontally.

The small initial amplitudes are chosen from a Gauss
distribution with width

kja0
qj2l ­ TykLq4, (6)

where T is temperature in units of energy andk is the
bending stiffness.

In Fig. 1, we show ten snapshots of the configurat
and the corresponding tension profiles. The tens
spreads inward, decreasing the amplitudes in this ra
For a quantitative analysis, we define a penetration len
jstd over which the tension has already spread.
concreteness we will definej as the point wheregsjd ­
fy2. The initial value and the time evolution of thi
penetration length depends on the initial conformati
Averaging 50 runs, we find the power law

kjstdl , tz , (7)

where the dynamic exponentz ­ 0.24 6 0.01. We will
now show how this empirical scaling law follows from
simple physical picture.

Scaling argument I.—An exact solution of the non
linear equations of motions looks impossible. Go
insight, however, can be gained from the structure
the equation for the tension profile (3). Sinceg̈ has the
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FIG. 1. (top) 10 subsequent snapshots of conformatio
sssxssd, yssdddd of a semiflexible chainsb ­ 2d with total chain
length 250. The snapshots are taken at equidistant times.
inset shows how two adjacent bends are straightened. (bott
Corresponding tension profiles as a function of the arc lengt

same sign asg, the two boundary conditions (4) an
(5) imply thatgssd is positive, monotonically decreasing
and convex. We will now seek an approximate effecti
equation for the time development ofg. For uniform
tension the modes decay asaqstd ­ exps2Ggq2tda0

q.
Since this says that the short-wavelength modes decay
fastest, we will make the “adiabatic” ansatz thatg varies
slowly in space compared to the wavelengths2pyq of the
relevant modes; thus we writeyss, td ­

P
q aqss, td sinqs

and regardaq as slowly varying functions of arclength
s and of time: aqss, td ­ expf2Ggss, tdq2tga0

q. Using
Eq. (6), the average time-dependent local curvature t
can be approximated as

kÿss, td2l ­
X
q

T
kLq4

q4 expf22Ggss, tdq2tg. (8)

Written in this form, the curvaturekÿss, td2l depends only
implicitly on the arc lengths via the functiongss, td.
With this simplification, Eq. (3) for the unknown time
dependent tension acquires the simple form

g̈ssd ­ g
X
q

T
kLq4

q4 expf22Ggssdq2tg ; 2
≠V sgd

≠g
.

(9)

The equation for the tension profile has thus beco
a simple mechanical equation for the one-dimensio
motion of a particle with unit mass in a potentialV sgd
whereg plays the role of position and the original spati
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variable s plays the role of time. The original timet
becomes a mere parameter. The potential exhibits
regimes,

V sgd ø

(
2g2, g ø gc ,
2

T
ksGtd1y2 g3y2, g ¿ gc , (10)

separated by a crossover tensiongc ; 1yGq2
mt. Here,qm

is a high momentum cutoff for theq modes.
The particle starts with “initial” conditiongs0d ­

f and has to reach zero velocity at “time”s ­ L
because ofg̈sLd ­ 0. In the limit L ! `, it then
follows that the particle has zero total energy from whi
we obtain the initial conditionÙgs0d ­ 22fV sfdg1y2 ,

0. Identifying Ùgs0d with 2fyjstd, we obtain jstd ,
skyT d1y2sGftd1y4 in good agreement with our numeric
simulation. Even though atransversalperturbation also
propagates a distance,t1y4 as it follows easily from
linear response theory [19], our case of the nonlin
response to alongitudinal force is fundamentally differen
as it is also obvious from the nonlinear dependence oj

from the applied forcef.
For a rough estimate of the relevant scales, let us ign

all factors of order unity. For the friction coefficien
G we can take the inverse of the bulk viscosityh, so
G ­ 1yh ­ 100 cm3yerg sec. A typical weak force is
f ­ 0.1 pN [6]. For DNA, kyT . 100 nm [6] and thus
jstd . 1 mmstysecd1y4. For actin,kyT . 10 mm [20],
so jstd . 10 mmstysecd1y4. Neglecting the contribution
of the bending elasticity to the straightening is admissi
if the characteristic timetb , hj4yk it takes for a
bending mode on scalej to relax is larger than the time
it takes to straighten the lengthj. This criterion holds
if f . T2yk which is fulfilled for the numbers given
above for actin. Thus, the dynamics of straightening
biopolymers should be accessible to video microsco
techniques.

Generalization.—In the analysis above we took th
initial chain configuration to be governed by bendi
modes. Another case of interest is when a floppy ch
is initially under tension, and the tension is sudden
increased at time zero. To cover both cases let
replace the sample for the initial amplitudes in Eq. (
by kja0

qj2l ­ A322byLq2b, whereA has the dimension
of a length. Then the caseb ­ 2, where A ­ kyT ,
was discussed above, whileb ­ 1 (where A ­ TyS)
corresponds to a string with tensionS.

Our scaling argument can be repeated for gen
b . 1y2. One finds the effective potentialV sgd ,
2A322bsGftds2b25dy2gb21y2 for g ¿ gc. This potential
leads to a penetration lengthjstd . ts522bdy4.

We have studied the caseb ­ 1 numerically. Here
we find a dynamical exponentz ­ 0.50 6 0.01 clearly
different from the predictionz ­ 3y4 which would follow
from the above scaling argument.

What went wrong? Closer inspection of the tensi
profiles indicates a qualitative difference between
wo
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tense stringb ­ 1 and the semiflexibleb ­ 2 cases.
For the string, the 10 snapshots shown in Fig. 2 a
the corresponding tension profiles reveal that the tens
profile is not exponential but rather decays quite linea
over a long region, and the moving boundary of th
region remains sharply defined. Intuitively the differen
stems from the fact that more of the initial excess leng
is in short-wavelength modes in the tense string ca
Since these modes are damped the fastest, the s
straightens immediately when it feels the tension, and
most of the resistance to straightening comes from pull
a straight string through a viscous medium, which giv
a linear tension profile. The straight region ends at
point controlled by the total length pulled so far. In th
semirigid case, most of the excess length is initially
long-wavelength modes, which decay slowly. The tens
propagates forward before the string has a chance
straighten, and so its front is not so well defined.

Scaling argument II.—We can turn these words
into another simple scaling argument. We separ
the string into two parts. In the left, straightene
part of length jstd, we assume that all fluctuation
have already been pulled out. Then the tension pro
becomes gssd ­ f 2 ÙgsLds. In the right, unper-
turbed, part, pulling has not yet had a significant effe
Thus the tension profile fors . jstd is exponential,
gssd ­ gsssjstdddd expf2ss 2 jstdgyjinitd, with a time-
independent penetration length jinit ; s1yr̈2d1y2 as
given by the initial configuration. Matching the two
profiles so thatÙg is continuous ats ­ jstd, we obtain
gsssjstdddd ­ fyf1 1 jstdyjinitg . fjinityjstd. The rate

FIG. 2. Same as Fig. 1 for a string (b ­ 1).
5391



VOLUME 77, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 30 DECEMBER1996

s

t

i

o
l

l
y
t

i

–

r

r-
.

ce

i-

,

s.
t.

ev.

en
nes,

L.

ot

rce
er.
ve

ro-
djstdydt with which the straightened regime grows i
proportional to the forcegsssjstdddd with which this regime
“pulls” at the left end of the unperturbed regime. We thu
obtain the relationdjstdydt , gsssjstdddd , fjinityjstd.
This equation is readily solved to givejstd , sftd1y2.
This “diffusive” behavior indeed corresponds to ou
simulation results forb ­ 1. We can easily understand
it in terms of the intuitive picture sketched above: th
total friction on the straight segment is proportional
its length jstd, and so the string velocity isy , j21.
Letting a be the initial excess contour length divided b
L, conservation of string says that the front velocity
Ùj ­ yya , j21. Solving this equation then reproduce
j ,

p
t.

In Fig. 3, we show the numerically determined exp
nents for various values ofb. We have strong numerica
evidence thatz ­ 1y2 for b # 1 andz , 1y2 for b . 1.
This plot shows that the two scaling theories yield upp
limits to this exponent.

In conclusion, we have seen how thermal fluctuation
together with a viscous surrounding medium, impede t
transmission of a suddenly imposed tension in a polym
As we pointed out, this phenomenon is inherently no
linear. In a model neglecting stochastic noise, simulatio
show that the tension propagation in a stiff chain
subdiffusive with an exponent1y4. We showed how
this law also follows from a simple self-consistent scalin
theory. We also generalized both the model and the sca
theory to the case of chains with arbitrary initial elasticit
For tense strings, the spreading becomes diffusive, in
sense that the tension is non-negligible in a region
size ,

p
t. The application of these ideas to the case

suddenly pulled membranes [4] will be addressed in f
ture work.
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FIG. 3. Dynamical exponentz as a function ofb. Error bars
have the size of the symbols. The lines refer to the two scal
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