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We study the dynamics of a single amphiphilic random copolymer chain. The dynamical treatment
shows that in addition to the collapse temperatdig, there exists a scale dependent glass transition
temperaturdl;(1). Distinct scenarios for the glassy behavior emerges depending on the relative values
of Te andTs(1). The possible implications of our results for protein folding, including an estimate of
the dependence of the ratio of the folding transition temperatuig; (9 on the length of the chain, are
sketched. [S0031-9007(96)01832-7]

PACS numbers: 61.41.+e, 64.70.Pf

Inspired at least partly by the protein folding problem, of this class of models emerge (see below). We provide
a class of disordered heteropolymer models have been i@ self-consistent one loop solution of the dynamical equa-
troduced over the past several years [1,2]. The objectivBons and establish the following results which appear to
of these studies is to provide a global understanding obe valid for a certain class of heteropolymer models.
the physics of the folding transition in proteins [3]. Since (a) As in most models, the heteropolymer chain col-
the underlying energy landscape in proteins is believed ttapses from a high temperature random coil structure at a
be rugged [4], it seems reasonable to suggest that sontemperaturdg to a compact conformationTg is essen-
of the ideas developed for polymer models in which thetially determined by the effective strength of hydrophobic
monomers interact via quenched random variables may, imteractions.
fact, be useful in understanding “phase transitions” in pro- (b) For the same set of parameters (i.e., when the
teins. Itis in this spirit that an assortment of models (to behydrophobic interactions dominate) theraitength scale
collectively referred to as random heteropolymer modelsylependent freezing temperatufg(/). Depending on the
have been studied [1-4]. So far, the only approach useihtio of the effective hydrophobic interaction strength to
in the study of the random heteropolymer models and othethe disorder strengthl'c(/) can be greater or less than
disordered polymer problems has been the replica methdly. When T(I) is less thanTg the scale dependent
combined with a variational treatment [1,2,5]. These ap{freezing temperature offers a natural connection with
proximations, although widely used, have been shown tglobal features of protein folding scenarios.
be exact only in the limit of large dimensionality for the  The GLO model [7] consists of a polymer chain with
problem of random manifolds [5(f)]. More importantly, monomers and is described by the set of position vectors
the utility of the replica variational method has been quesat its nodes. It is convenient to work with continuum
tioned for random heteropolymer models in general [6].models with the positions in the chain parametrized by
Although the replica variational calculations have yieldedthe contour lengths such thatO = s = N. We adopt
a number of interesting results, their general validity haghe usual Edwards model. Since the heteropolymer is in
not yet been fully established. solution, interactions induced by solvents have to be taken

In order to shed light on this difficult and important into account. This corresponds to the fact that a polymer
class of disordered Hamiltonian systems, we introduce anade up of hydrophobic (hydrophilic) residues tend to
dynamical treatment. In this Letter, we study the dynam-collapse (swell) in solutions, and hence, when the chain is
ics of the random hydrophobic-hydrophilic model sug-in solution, an effective attractive (repulsive) interaction
gested recently by Garel, Leibler, and Orland (GLO) [7]is generated. The solvent induced interaction at each
which turns out to be simpler than the original randomsite is assumed to be random. The random interaction
bond heteropolymer model. The random site model iss assumed to depend only on the gitand its strength is
perhaps a better caricature of proteins than the randomenoted byA(s). In accordance with the aforementioned
bond models [1,2] because of the clear distinction bediscussions the GLO Hamiltonian is
tween hydrophobic and hydrophilic residues. In addition,

. ) . . 3 N de 2 1 N N
from a technical point of view, GLO have shown using g3 = _f ds(d_) + 3] ds] ds’
0 s 0 0

replica methods that there is no replica symmetry break- 2
ing in the equilibrium treatment. The dynamical theory, X {vo + BLA(s) + A(s")]FS[c(s) — c(s)]
which we treat using the same type of approximation as + BH, (1a)

the static calculation, is meant to complement the equilib-
rium treatment of GLO [7]. In the process, new aspectavhere
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w3 N N / N " " " /
BH, = E ds[ ds f ds"8[c(s) — c(s")]6[c(s") — c(s")]

+ —4 dsf ds’ ] ds”f ds""8[c(s) — c(s")]8[c(s") — c(s")]8[c(s) — c(s")], (1b)

| R
andc(s) is the position vector of residue at point The 1 ac(s,t) _ A(BIH) + £(s.1) (3a)
random site variables are assume to have the Gaussian I'y ot 5¢(s, t) ’
distribution wherely is a kinetic coefficient, and (s, ¢) is a Gaussian

random force with zero mean and correlation given by
(Eals, DEG(S', 1) = T Busdls — 53t — ). (3b)
0

In the work of GLO the replica calculations leading to the By use of standard field-theory techniques [8,9], the

mean field equations were studied using variational techgenerating functional averaged ovafs) can be written
niques. Here, using relaxational dynamics (thus avoidas

ing replicas), we arrive at a picture of freezing transition
which does not appear to have been noticed within the[Z] = [Dc[ Déeexp[Ly + Vo, + W3 + Wy + D],
equilibrium statistical mechanical calculation [7].

We assume a Langevin equation for the relaxational (4a)
dynamics whereL is the free part of the action

P[A(s)] = Q exp|: e f ds[A(s) — ,\0]2j| 2

Lo(c.2) = f ds[ dt{ié(s,t [—ri % - %% + ; 2, t):| v el 0l(s.0) + c(s.0i(s.0)), (4b)
0

and theW; and W, terms arise from three and four body interaction;t%iﬁﬂ, andV, is

V, = WL;BM)];N ds j;)N ds’] dri[e(s, 1) — ¢(s',1)] - V[e(s, 1) — c(s/,1)]. (5)

The relevant disorder average term that leads to the scale dependent fredzjighieh can be written as

D[¢,c] = (277)3 (2 5 f dtlfdtz A(p,ti,q,1), (6a)
with

A(p’tls q, t2) = Mf dsf dsl ] dSQ[lp : SE(S,Sl,ll)] [lq : 56'(S,S2,l2)] equ[p : 5C(S,S2,[2) - q- 5C(S,S2, tl)]},
(6b)

whereu = B%A2/2 and | where the averagd.--) is over the action given in
Sc(s.si.t) = cls. 1) — clsy. 1) Eq. (5a). An order parameter, reminiscent of the
Y ’ T Edwards-Anderson order parameter [10], can be defined
66‘(5,5‘1,[) = é(s,tl) - E(sl,tl). (6C) as
From Eq. (5) it follows immediately that when the two Gssis, = IM Quss(t1 — 1) Q)
body term vanishes the heteropolymer chain undergoes a li—nl-

collapse transition to compact structure at This definition of the order parameter (as opposed to
Teo = —2o/vokg . (7) one in terms of monomer density variables) is extremely
useful once we identifybc¢ as the natural variable in the
disorder averaged action. In order to make this order
arameter similar to the ones that are encountered in

Note that Ay is negative for an effective hydrophobic
interaction. To investigate the possibility of freezing
transitions we study Whether (_:orrelatlon_s between variou e usual spin glass theories, we introduce the restriction
segments of _the Ch‘?"!‘. persist over time. In order t_osl ~ sy, .., |s; — s3|/N < 1. With this restriction,
investigate this possibility a suitable order parameter i

ne can interpret the order parameter in Eq. (9) as the
;equwed and we introduce this by defining the Correlat'or}elative displacement of two points on the chairafids; )
unction

projected approximately onto itself &nds,) after a long
Oys,5,(t1 — 12) = (8c(s,s1,11) - 6c(s,s2,12)), (8) time. A nonzero value is clearly indicative of ordering
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on a certain scale. The proximity of, and s, leads lim Q,,s,(7). We find thatgg s satisfies
to the following approximate relation for the equal time ™"
correlation function, namely,

(18c(s, sin)*y = (s, 51) = I*(s,52),  (10a)
st”s’(o) i lz(s’ S//)’ (lOb)

M (324)2 A2 <324> 1
wherel(s, s") is the physical distance betweerands”. ® [0(0)*\51273 2kgT)?\51273 ) [Q(0)]*
In order to obtain a dynamical equation for the cor- (16)

relation function we follow the technique of Kirkpatrick

and Thirumalai (KT) [11] of introducing the half-Fourier It follows from Eq. _(_15) 'that a NonZzeig: corresponding
transform to a freezing transition is possible if

25673 25673\ 1

© ) 2 2 3 — _

Q) = [ Qustoerar @y X /ksT >( 81 )Q © ( 81 )16
or

qEA
0(0
From Eq. (14b)x can be calculated as

= Zqeall — qea/Q(0)]. (15)

which leads, in the ergodic phase, to the relation
0 kT < aA/I® = kpT,(l), (17)

—— ?SW( 100 (12)  wherea = (81/2567%)!/2. In obtaining Eq. (17), which

tw ss's'(@)/ Rss"s! introduces the scalé, we have usedQ(0) = 2 [see
where @'y (w) is a renormalized kinetic coefficient. Eq. (10b)]. The above equation predicts the existence of
The calculation of I'yug(w) is done in the Hartree a scale dependent freezing as the temperature is lowered.
approximation which is similar in spirit to the recent work This implies that the short length scale fluctuations freeze
of Cugliandolo, Kurchan, and P. Le Doussal [12]. Fromfirst, while the longer length fluctuations freeze at much
Egs. (4) and (6) we note that there is a contribution tdower temperatures. This is the principal result of our
this order toD which has the structuréé¢éé, and this — work.
coefficient renormalizes th&', occurring in Ly. This The nonzero freezing temperature is a consequence
approximation, together with the methods described byf the randomness of the hydrophobic-hydrophilic inter-
KT [11], allows us to obtain the renormalizeH(w)  action whose strength is given hy. If A =0, then
which, in a self-consistent one loop calculation, can beT,(/) = 0 [see Eq. (17)]. Consequently, the scale depen-
written as (details to be published elsewhere) dent glass transition temperature does not arise in ho-
&p &g <(p ) q)2> mopolymers whose globular conformation &t< Ty is

st”x’ (w) =

r;lv (w) = 1“0—1 + ~ determined by a balance between two body and three body
o 6 ) Q2m)}J) Qm) 3 interactions [see Eq. (1)].
X ¢ [P PEs/6+a P ls5)/6) . ) (). There are a few implications of this work that we
(13)  briefly outline here.
_ o _ . (1) Consider the freezing temperature (or the glass tran-
The above equation, which is obtained by expandingition temperature) at a scale on the order of the entire
Eq. (9) in powers ofsc, is valid to orderQ7, .. If we  chaingr. This temperature is given bpTg(R) = a A/
define (1) = Qys,5,(1)/ Qss,5,(0), it follows thath (1) sat-  R3. we have two temperature scalé [cf. Eq. (7)]
isfies in the time domain the following integrodifferential and 7, (R), in the problem and we can anticipate poten-
equation: tially three possible scenarios: (o9 < Tg(R); in this
1 t case disorder effects dominate to such a great extent
T A (1) + ¢(1) + ﬁj dtip(t — 11)d,¢(t1) =0,  that the glassy behavior manifests itself in the regime
0 0 when the chain is still in the coil state. Here there is
(14a) o possible ordering on at least the scale of the entire
where chain. (ii) Te¢ = T¢(R); here the chain collapses first
; ; 5 (i.e.,_atT < _T®,R scales ale/d),. an_d, as the stre_ngth
7= 0, (02 d’p d’q (p-q) of disorder is changedl;(R) satisfying the condition
Rt g Qw3 ) w3} 3 Te = T;(R) becomes possible. General arguments based
1 on caricatures of proteins suggest that this is the scenario
X exr{—g (p*1* + qzllz)] (14b)  most appropriate for the folding of random sequences of
proteins. (iii) Te > Ts(R); this would correspond to a
If we assume tha;,,(0) is continuous at the freezing small disorder limit. Here there is a whole range of tem-
temperature, then Egs. (14) predict that a nonergodiperatures over which glassy effects are not predominant
transition to a frozen phase takes place at a characterist@/en though the chain is in a collapsed phase. We specu-
temperature. This transition is identified by letting» -  late that this could, in the case of proteins, correspond to
and seeking a physical solution faza Where gga =  “equilibrium” molten globule phase [13], where, in spite
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of the compact structure, there can be large conforma- In summary, we have provided a dynamical treatment
tional entropy. of the random hydrophobic-hydrophilic copolymer model
(2) Itis interesting to use the temperature scdlgand  and have shown that there is a freezing transition tempera-
Ts(R) to compute their ratios as a function of the numberture (not to be confused with the folding temperature in
of monomersN. At T < T the chain is stabilized by proteins) that depends on the scale. Larger scale struc-
the three body term [see Eq. (16)], and the size of theures freeze at lower temperatures than shorter scale struc-
polymer is given by tures. Calculations similar to that done here for random
bond models seem to suggest that this phenomenon could

R3 = M_ (18)  be generally applicable for random heteropolymers [18].
|Aol(Tg — T) The scale dependent freezing temperature is a manifesta-
If we combine Egs. (7), (18), and (19) we get tion of topological frustration.
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