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We study the dynamics of a single amphiphilic random copolymer chain. The dynamical trea
shows that in addition to the collapse temperature,TQ , there exists a scale dependent glass transit
temperatureTGsld. Distinct scenarios for the glassy behavior emerges depending on the relative v
of TQ andTGsld. The possible implications of our results for protein folding, including an estimate
the dependence of the ratio of the folding transition temperature toTGsld on the length of the chain, are
sketched. [S0031-9007(96)01832-7]

PACS numbers: 61.41.+e, 64.70.Pf
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Inspired at least partly by the protein folding problem
a class of disordered heteropolymer models have been
troduced over the past several years [1,2]. The objec
of these studies is to provide a global understanding
the physics of the folding transition in proteins [3]. Sinc
the underlying energy landscape in proteins is believed
be rugged [4], it seems reasonable to suggest that s
of the ideas developed for polymer models in which t
monomers interact via quenched random variables may
fact, be useful in understanding “phase transitions” in p
teins. It is in this spirit that an assortment of models (to
collectively referred to as random heteropolymer mode
have been studied [1–4]. So far, the only approach u
in the study of the random heteropolymer models and ot
disordered polymer problems has been the replica met
combined with a variational treatment [1,2,5]. These a
proximations, although widely used, have been shown
be exact only in the limit of large dimensionality for th
problem of random manifolds [5(f )]. More importantly
the utility of the replica variational method has been qu
tioned for random heteropolymer models in general [
Although the replica variational calculations have yield
a number of interesting results, their general validity h
not yet been fully established.

In order to shed light on this difficult and importan
class of disordered Hamiltonian systems, we introduc
dynamical treatment. In this Letter, we study the dyna
ics of the random hydrophobic-hydrophilic model su
gested recently by Garel, Leibler, and Orland (GLO) [
which turns out to be simpler than the original rando
bond heteropolymer model. The random site model
perhaps a better caricature of proteins than the rand
bond models [1,2] because of the clear distinction b
tween hydrophobic and hydrophilic residues. In additio
from a technical point of view, GLO have shown usin
replica methods that there is no replica symmetry bre
ing in the equilibrium treatment. The dynamical theor
which we treat using the same type of approximation
the static calculation, is meant to complement the equi
rium treatment of GLO [7]. In the process, new aspe
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of this class of models emerge (see below). We prov
a self-consistent one loop solution of the dynamical eq
tions and establish the following results which appear
be valid for a certain class of heteropolymer models.

(a) As in most models, the heteropolymer chain co
lapses from a high temperature random coil structure a
temperatureTQ to a compact conformation.TQ is essen-
tially determined by the effective strength of hydrophob
interactions.

(b) For the same set of parameters (i.e., when
hydrophobic interactions dominate) there isa length scale
dependent freezing temperatureTGsld. Depending on the
ratio of the effective hydrophobic interaction strength
the disorder strength,TGsld can be greater or less tha
TQ . When TGsld is less thanTQ the scale dependen
freezing temperature offers a natural connection w
global features of protein folding scenarios.

The GLO model [7] consists of a polymer chain withN
monomers and is described by the set of position vect
at its nodes. It is convenient to work with continuum
models with the positions in the chain parametrized
the contour lengths such thatO # s # N . We adopt
the usual Edwards model. Since the heteropolymer is
solution, interactions induced by solvents have to be tak
into account. This corresponds to the fact that a polym
made up of hydrophobic (hydrophilic) residues tend
collapse (swell) in solutions, and hence, when the chain
in solution, an effective attractive (repulsive) interactio
is generated. The solvent induced interaction at ea
site is assumed to be random. The random interact
is assumed to depend only on the sites, and its strength is
denoted bylssd. In accordance with the aforementione
discussions the GLO Hamiltonian is

bH 
3
2

Z N

0
ds

√
dc
ds

!2

1
1
2

Z N

0
ds

Z N

0
ds0

3 hy0 1 bflssd 1 lss0 dgjdfcssd 2 css0dg
1 bH1 , (1a)

where
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bH1 
v3

3!

Z N

0
ds

Z N

0
ds0

Z N

0
ds00dfcssd 2 css00dgdfcss00d 2 css0 dg

1
v4

4!

Z N

0
ds

Z N

0
ds0

Z N

0
ds00

Z N

0
ds000dfcssd 2 css00dgdfcss00d 2 css0dgdfcss0d 2 css000dg , (1b)
s

he
ch
id

on
th

na

he
andcssd is the position vector of residue at points. The
random site variables are assume to have the Gaus
distribution

Pflssdg  V exp

"
2

1
2l2

Z N

0
ds flssd 2 l0g2

#
. (2)

In the work of GLO the replica calculations leading to t
mean field equations were studied using variational te
niques. Here, using relaxational dynamics (thus avo
ing replicas), we arrive at a picture of freezing transiti
which does not appear to have been noticed within
equilibrium statistical mechanical calculation [7].

We assume a Langevin equation for the relaxatio
dynamics
o

c
g

o

io
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1
G0

≠$css, td
≠t

 2
≠sbH d
d $css, td

1 jss, td , (3a)

whereG0 is a kinetic coefficient, andjss, td is a Gaussian
random force with zero mean and correlation given by

kjass, tdjbss0, t0dl 
2

G0
dabdss 2 s0ddst 2 t0d . (3b)

By use of standard field-theory techniques [8,9], t
generating functional averaged overlssd can be written
as

fZg 
Z

Dc
Z

Dĉ expfL0 1 V2 1 W3 1 W4 1 Dg ,

(4a)

whereL0 is the free part of the action
L0sc, ĉd 
Z

ds
Z

dt

(
iĉss, td

"
2

1
G0

≠css, td
≠t

2
3
2

≠2c
≠s2

1
i

G0
ĉss, td

#
1 iĉss, tdl̂ss, td 1 css, tdlss, td

)
, (4b)

and theW3 andW4 terms arise from three and four body interactions inbH1, andV2 is

V2  2
sV0 1 2bl0d

2

Z N

0
ds

Z N

0
ds0

Z
dt ifĉss, td 2 ĉss0, tdg ? ,dfcss, td 2 css0, tdg . (5)

The relevant disorder average term that leads to the scale dependent freezing isD, which can be written as

Dfĉ, cg 
Z d3p

s2pd3

Z d3q
s2pd3

Z
dt1

Z
dt2 Dsp, t1, q, t2d , (6a)

with

Dsp, t1, q, t2d  m
Z

ds
Z

ds1

Z
ds2fip ? dĉss, s1, t1dg fiq ? dĉss, s2, t2dg exphifp ? dcss, s2, t2d 2 q ? dcss, s2, t1dgj ,

(6b)
he
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wherem  b2l2y2 and

dcss, s1, t1d  css, t1d 2 css1, t1d ,

dĉss, s1, td  ĉss, t1d 2 ĉss1, t1d . (6c)

From Eq. (5) it follows immediately that when the tw
body term vanishes the heteropolymer chain undergoe
collapse transition to compact structure at

TQ  22l0yy0kB . (7)

Note that l0 is negative for an effective hydrophobi
interaction. To investigate the possibility of freezin
transitions we study whether correlations between vari
segments of the chain persist over time. In order
investigate this possibility a suitable order parameter
required, and we introduce this by defining the correlat
function,

Qss1s2 st1 2 t2d  kdcss, s1, t1d ? dcss, s2, t2dl , (8)
s a

us
to
is
n

where the averagek· · ·l is over the action given in
Eq. (5a). An order parameter, reminiscent of t
Edwards-Anderson order parameter [10], can be defi
as

qss1s2  lim
jt12t2j2`

Qss1s2 st1 2 t2d . (9)

This definition of the order parameter (as opposed
one in terms of monomer density variables) is extrem
useful once we identifydc as the natural variable in th
disorder averaged action. In order to make this or
parameter similar to the ones that are encountered
the usual spin glass theories, we introduce the restric
s1 ø s2, i.e., js1 2 s2jyN ø 1. With this restriction,
one can interpret the order parameter in Eq. (9) as
relative displacement of two points on the chain (s ands1)
projected approximately onto itself (s ands2) after a long
time. A nonzero value is clearly indicative of orderin
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on a certain scale. The proximity ofs1 and s2 leads
to the following approximate relation for the equal tim
correlation function, namely,

kjdcss, s1tdj2l  l2ss, s1d ø l2ss, s2d , (10a)

Qss00s0s0d ø l2ss, s00d , (10b)

wherelss, s00d is the physical distance betweens ands00.
In order to obtain a dynamical equation for the co

relation function we follow the technique of Kirkpatric
and Thirumalai (KT) [11] of introducing the half-Fourie
transform

Q̂ss00s0svd 
Z `

0
Qss00s0stdeivt dt (11)

which leads, in the ergodic phase, to the relation

Q̂ss00s0svd 
Qss00s0s0d

2iv 1 Gss00s0svdyQss00s0s0d
, (12)

where Gss00s0svd is a renormalized kinetic coefficien
The calculation of Gss00s0svd is done in the Hartree
approximation which is similar in spirit to the recent wo
of Cugliandolo, Kurchan, and P. Le Doussal [12]. Fro
Eqs. (4) and (6) we note that there is a contribution
this order toD which has the structuredĉdĉ, and this
coefficient renormalizes theG0 occurring in L0. This
approximation, together with the methods described
KT [11], allows us to obtain the renormalizedGsvd
which, in a self-consistent one loop calculation, can
written as (details to be published elsewhere)

G21
ss1s2

svd  G21
0 1

m

6

Z d3p
s2pd3

Z d3q
s2pd3

√
sp ? qd2

3

!
3 e2f p2l2ss,s1dy61q2l2ss,s2dy6g ? Q̂ss1s2 svd .

(13)

The above equation, which is obtained by expand
Eq. (9) in powers ofdc, is valid to orderQ2

ss1s2
. If we

definefstd  Qss1s2 stdyQss1s2s0d, it follows thatfstd sat-
isfies in the time domain the following integrodifferenti
equation:

1
G0

≠tfstd 1 fstd 1 m
Z t

0
dt1fst 2 t1d≠t1 fst1d  0 ,

(14a)

where

m  Qss1s2 s0d
m

6

Z d3p
s2pd3

Z d3q
s2pd3

sp ? qd2

3

3 exp

∑
2

1
6

sp2l2 1 q2l02d
∏

. (14b)

If we assume thatQss1s2 s0d is continuous at the freezin
temperature, then Eqs. (14) predict that a nonergo
transition to a frozen phase takes place at a character
temperature. This transition is identified by lettingt ! `

and seeking a physical solution forqEA where qEA ;
-

o

y

e

g

l

ic
tic

lim
t!`

Qss1s2 std. We find thatqEA satisfies

qEA

Qs0d
 mqEAf1 2 qEAyQs0dg . (15)

From Eq. (14b),m can be calculated as

m 
m

fQs0dg4

µ
324

512p3

∂


l2

2skBT d2

µ
324

512p3

∂
1

fQs0dg4
.

(16)

It follows from Eq. (15) that a nonzeroqEA corresponding
to a freezing transition is possible if

l2ykBT2 .

√
256p3

81

!
Q3s0d 

√
256p3

81

!
1
l6

or

kBT , alyl3 ; kBTgsld , (17)

wherea  s81y256p3d1y2. In obtaining Eq. (17), which
introduces the scalel, we have usedQs0d  l2 [see
Eq. (10b)]. The above equation predicts the existence
a scale dependent freezing as the temperature is lowe
This implies that the short length scale fluctuations fre
first, while the longer length fluctuations freeze at mu
lower temperatures. This is the principal result of o
work.

The nonzero freezing temperature is a conseque
of the randomness of the hydrophobic-hydrophilic int
action whose strength is given byl. If l  0, then
Tgsld ; 0 [see Eq. (17)]. Consequently, the scale dep
dent glass transition temperature does not arise in
mopolymers whose globular conformation atT , Tu is
determined by a balance between two body and three b
interactions [see Eq. (1)].

There are a few implications of this work that w
briefly outline here.

(1) Consider the freezing temperature (or the glass tr
sition temperature) at a scale on the order of the en
chain R. This temperature is given bykBTGsRd  aly
R3. We have two temperature scales,TQ [cf. Eq. (7)]
and TGsRd, in the problem and we can anticipate pote
tially three possible scenarios: (i)TQ , TGsRd; in this
case disorder effects dominate to such a great ex
that the glassy behavior manifests itself in the regi
when the chain is still in the coil state. Here there
no possible ordering on at least the scale of the en
chain. (ii) TQ $ TGsRd; here the chain collapses firs
(i.e., at T , TQ , R scales asN1yd), and, as the strengt
of disorder is changed,TGsRd satisfying the condition
TQ $ TGsRd becomes possible. General arguments ba
on caricatures of proteins suggest that this is the scen
most appropriate for the folding of random sequences
proteins. (iii) TQ ¿ TGsRd; this would correspond to a
small disorder limit. Here there is a whole range of te
peratures over which glassy effects are not predomin
even though the chain is in a collapsed phase. We sp
late that this could, in the case of proteins, correspond
“equilibrium” molten globule phase [13], where, in spi
5387
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of the compact structure, there can be large conform
tional entropy.

(2) It is interesting to use the temperature scalesTQ and
TGsRd to compute their ratios as a function of the numb
of monomers,N . At T , TG the chain is stabilized by
the three body term [see Eq. (16)], and the size of
polymer is given by

R3 
v3NTTu

jl0jsTu 2 T d
. (18)

If we combine Eqs. (7), (18), and (19) we get

TGsRd
TQ

 1 1

µ
4l0

l

∂
v3N

ay
2
0

√
TGsRd

TQ

!2

. (19)

In the strong disorder limit (i.e.,jl0j ø l) the constant
4l0yal ø 10. Letting b  v3yy

2
0 , the equation for

TQyTGsRd becomes

TQ

TGsRd


20bN
p

1 1 40bN 2 1
. (20)

One of the characteristics of proteins is that at a tempe
ture TF (typically less thanTQ) the polypeptide chain
makes a transition to a unique ground state with a w
defined topology. It has been argued elsewhere
generically maxsTFd  TQ [14]. This implies that the
maximum value ofTFyTG is given by the right hand
side of Eq. (20). If the three body interaction is wea
i.e., b ø 1, then it follows that maxsTFyTGd  1. For
b ¿ 1 (not achievable in practice) the ratioTFyTG can
be made arbitrarily large. Realistic values ofb are in the
range0 , b ø 1. The typical values ofb (which are
proportional to the strength of the three body interactio
lie in the range1024 1023. In this range ofb values,
TFyTGsRd ranges from 1.1 to 2 asN varies from 27 to
200 which are the typical numbers of aminoacid residu
in naturally occurring proteins. It has been postulated t
foldable proteins should have large values ofTFyTG [15].
For this model at least an upper bound for this ratio
typical values ofN found in proteins is in accordanc
with this expectation.

(3) The connection between the dynamical theory p
sented here and the static calculation of GLO [7] for th
class of models is not entirely clear. However, the
is some similarity between the nature of the transiti
discussed here and inp-spin glass models [11] and th
associated spherical version [16]. It is clear that the t
function used in the static treatment by GLO [7] ignores t
possibility of the scale dependence ofTgsld. Another rea-
son for the emergence ofTgsld, that is apparently absent i
the static treatment, is the following: The relaxation of t
chain to equilibrium occurs on a time scale that diverg
as the dimensionality and the length of the chain increa
This would naturally give rise to a difference inTgsld and
a static glass transition temperature. This possibility h
been recognized in other disordered systems [17].
5388
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In summary, we have provided a dynamical treatme
of the random hydrophobic-hydrophilic copolymer mod
and have shown that there is a freezing transition tempe
ture (not to be confused with the folding temperature
proteins) that depends on the scale. Larger scale str
tures freeze at lower temperatures than shorter scale st
tures. Calculations similar to that done here for rando
bond models seem to suggest that this phenomenon co
be generally applicable for random heteropolymers [1
The scale dependent freezing temperature is a manife
tion of topological frustration.
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