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Voltage-Biased Quantum Wire with Impurities
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The bosonization technique to describe correlated electrons in a one-dimensional quantum
containing impurities is extended to include an applied voltage source. The external reservoir
shown to lead to a boundary condition for the boson phase fields. We use the formalism to inves
the channel conductance, electroneutrality, and charging effects. [S0031-9007(96)00664-3]

PACS numbers: 72.10.–d, 73.40.Gk
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The puzzling physical properties of one-dimensio
(1D) correlated fermions at low temperatures can m
conveniently be described within the bosonization te
nique. This method [1–3] allows for an exact treatm
of Coulomb interactions that hamper most other theor
cal approaches. In this Letter, we describe how a volt
bias can properly be incorporated in terms of a bound
condition for the bosonized phase fields. The formali
is similar in spirit to Landauer’s approach developed
noninteracting electrons [4]. The capacity of our conc
is demonstrated for a single impurity embedded into
correlated 1D electron liquid, a problem that has attrac
considerable theoretical interest [5,6], and is beginning
find experimental realizations [7].

In order to describe Coulomb interactions adequat
one has to specify the setup under consideration. If
deals with a 1D channel in heterostructures, a “quan
wire” [8], the interactions are usually screened due to
presence of metallic gates near the channel. This lead
a Luttinger liquid [3] characterized by an interaction co
stantg (we only discuss the spinless single-channel c
in the following). The noninteracting case corresponds
g ­ 1, and the presence of (repulsive) Coulomb inter
tions impliesg , 1. Quantities of principal interest ar
the channel conductance in the presence of interact
and the capacitanceC ­ QyU of a junction or impurity
(U is the two-terminal voltage, andQ denotes the charg
on the junction). We present an approach that allows
to address these problems for finite voltage at arbitrary
teraction strength and junction transmittance.

Our treatment is based on the standard bosoniza
approach [1–3], which is applicable in the low-ener
regime where only excitations near the Fermi surface
relevant. The electron creation operator can be expre
in terms of boson phase fieldsusxd andfsxd,

cysxd ­
r

vc

2pyF

X
p­6

exphipkFx

1 i
p

p fpusxd 1 fsxdgj ,

wherevc ­ yFkF is the proper bandwidth cutoff for th
linearized dispersion relation employed in the boson
tion (we puth̄ ­ 1). The phase fields obey the equal-tim
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commutation relations

ffsxd, usx0dg ­ 2siy2d sgnsx 2 x0d ,

such that the canonical momentum for theu field is
P ­ ≠xf. The boson representation for the electro
density operator is then given by

rsxd ­
kF

p
1

1
p

p
≠xusxd

1
kF

p
cosf2kFx 1 2

p
pusxdg . (1)

The first term is the background charge, the second te
stands for the sum of right- and left-moving densitiesr6,
and the last term describes interference between right a
left movers [2]. The clean Luttinger liquid is described
by the Euclidean action [3]

S0 ­
yF

2

Z
dxdt

∑
1

y
2
F

s≠tud2 1
1
g2

s≠xud2

∏
, (2)

whereyF is the Fermi velocity andg # 1 the interaction
constant. A short-ranged impurity atx ­ 0 results in the
generic contribution [5]

SI ­ V
Z

dt cosf2
p

pus0, tdg , (3)

where the dimensionless impurity strengthl ­ pVyvc

tunes the junction resistance.
Now let us consider a 1D quantum wire coupled

to external reservoirs, see Fig. 1. The coupling of th
1D channel to the 2D or 3D reservoirs is assume
to occur by adiabatic widening of the channel. Thi
models ideal reservoirs in the sense of Landauer [4]. Th

FIG. 1. General setup studied in this work: A 1D quantum
wire is coupled to 3D reservoirs, which are held at chemica
potentialsm2` andm`. The left reservoir injects right movers
at the stationary excess densityk r1l, and the right one injects
left movers with densityk r2l. The striped area stands for a
scatterer atx ­ 0.
© 1996 The American Physical Society
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reservoirs are macroscopic, totally incoherent devices
at fixed chemical potential, and there are no reflecti
of particles entering the reservoirs. The left (righ
reservoir at x ! 2` sx ! `d has chemical potentia
m2` sm`d, and the difference in chemical potentia
is the two-terminal voltageU ­ sm2` 2 m`dye. The
mean chemical potentialsm2` 1 m`dy2 corresponds to
the background chargekFyp. Applying a voltage mean
that one has a nonequilibrium influx of currents fro
the reservoirs: The reservoir atx ! 2` injects right
movers at some stationary excess density, and, simil
the density of left movers atx ! ` is diminished,

kr6sxdl ­ 6
eU

4pyF
as x ! 7` . (4)

While in a clean system the densities of right and
movers imposed by the reservoirs spread homogeneo
along the wire, in the presence of scatterers one does
know beforehand what the densities of right (left) mov
at x ! ` sx ! 2`d are. These densities follow from ou
theory.

The boundary condition (4), formulated in terms
the average densities of right- or left-moving fermions
the quantum wire as the reservoirs are approached,
equivalently be expressed in terms of theu field by noting
that

r1 1 r2 ­
1

p
p

≠xu, r1 2 r2 ­
i

yF
p

p
≠tu .

The boundary condition for the boson phase field
thereforeµ

6
≠

≠x
1

i
yF

≠

≠t

∂
kusx ! 7`, t ­ 0dl ­

eU
2
p

p yF
,

(5)
where the timet ­ 0 has been picked by convention.

To study the inhomogeneous quantum wire in the p
ence of an external voltage, we consider the genera
functional Zsy, md ­ kexpf2

p
p imusydgl. We formally

solve for Z by introducing an auxiliary fieldqstd ­
2
p

p usx ­ 0, td, with the constraint enforced by
Lagrange multiplier fieldLstd. Then one has the effec
e

ept
ns
t)

s

rly,

ft
usly
not
rs
r

f
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can

is
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ing

tive action

Sefu, L, qg ­
yF

2

Z
dxdt

∑
1

y
2
F

s≠tud2 1
1
g2

s≠xud2

∏
1 V

Z
dt cosqstd 2 2

p
p imus y, 0d

1 i
Z

dt Lstd f2
p

p us0, td 2 qstdg . (6)

The u part of this effective action is Gaussian and c
therefore be treated exactly by solving the classical Eu
Lagrange equations. One can always decompose
solutionu into an homogeneous partuh for the equilibrium
systemsU ­ 0d, and a particular solutionup subject to the
boundary condition (5). At the same time, we decompo
the fieldL ­ Lh 1 Lp, such that

1

y
2
F

≠2up

≠t2
1

1
g2

≠2up

≠x2
­

2
p

p i

yF
dsxdLpstd . (7)

The most general solution permitted by Eq. (7) whi
fulfills Eq. (5) requires at independentLp and takes the
form

upsx, td ­
q0

2
p

p
2

ew

2
p

p yF
jxj 2 it

esU 2 wd
2
p

p
. (8)

The quantityw is related to the zero mode of the Lagran
multiplier field, Lp ­ iewy2pg2.

With the boson propagators

Fsx, vd ­
pg
jvj

exps2jgvxyyF jd ,

the homogeneous part can be written in terms of
Fourier componentsLhsvd,

uhsx, td ­ 2
i

p
p

Z dv

2p
eivt

3 fLhsvdFsx, vd 2 mFsx 2 y, vdg .

Insertinguh 1 up into Eq. (6), the action becomes Gaus
ian in Lh, which can therefore easily be integrated o
Adding the particular solution (8) also ontoqstd in view
of qstd ­ 2

p
p us0, td, one obtains for the generatin

functional
kexpf2
p

pimusxdgl ­ W sxdm2

ø
e2imewjxjyyF exp

∑
im

µ
q0 1

Z dv

2p
qsvd

Fsx, vd
Fs0, vd

∂∏¿
, (9)
ff
rst
e

where the average over the zero modesq0 and w of
the auxiliary fields and over theq fluctuationsqstd ­
s2pd21

R
dvqsvd expsivtd has to be taken using th

action

S ­
Z dv

2p

qsvdqs2vd
4Fs0, vd

1
ew

2pg2

Z
dt qstd

1 V
Z

dt cosfq0 2 iesU 2 wdt 1 qstdg . (10)
The function Wsxd ­ s1 1 jxjyad2g with the micro-
scopic length scalea ­ yFy2gvc does not depend on
impurity properties.

The effect of the external voltage can now be read o
from Eqs. (9) and (10). First, the average density [the fi
two terms in Eq. (1)] is, in general, discontinuous at th
impurity location due to particle reflection,

r̄ ­
kF

p
2

ew

2pyF
sgnsxd . (11)
539
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For the noninteracting case,g ­ 1, one can show from
the exact solution of the equivalent Schrödinger equat
that w is the usualfour-terminal voltagemeasured near
the barrier [9]. In that case,w ­ RU, whereR ­ 1ys1 1

l22d is the reflection coefficient of the barrier.
Second, in the absence of a scatterer,l ­ 0, one

always findsw ­ 0 (see below), and the right- and lef
moving densities are spatially homogeneous along
wire. Since they are determined by Eq. (4), the curr
is

I ­
i

p
p

ø
≠u

≠t

¿
­ eyFsk r1l 2 k r2ld ­

e2

h
U .

This yields the perfect two-terminal conductancee2yh, in
agreement with recent theoretical work [10] and an e
perimental study of a quantum wire [7]. The conductan
ge2yh discussed in Ref. [5] is not the two-terminal co
ductance but a low-frequency microwave conductance

To describe coupling to an external voltage, previo
studies have often added a term to the Hamiltonian of
form [5,11]

H̃ ­ ew̃us0dy
p

p ­
ew̃

2p
q , (12)

wherew̃ is the “voltage drop” [12]. From Eq. (10), if one
tentatively identifiesw with w̃, one observes that Eq. (12
should be modified by a factor1yg2. This factor can be
understood in terms of the interaction energy of dens
fluctuations with the nonequilibrium background char
(11) deviating fromkFyp,Z

dx
Z

dx0 1
p

p
≠xusxdUcsx 2 x0d

µ
2

ew sgnsx0d
2pyF

∂
­ 2

ew

2
p

p

µ
1
g2 2 1

∂ Z
dx sgnsxd≠xusxd ,

where Ucsx 2 x0d is the screened Coulomb interactio
and the last line holds for a Luttinger liquid. Furthermor
it should be noted that in Eq. (10) the cosine part due
the impurity has acquired a term linear in time, whic
is reminiscent of the Josephson relations. This sho
that the external voltage cannot be fully incorporated
simply adding a term such as Eq. (12) to the Hamiltonia
In general, it is necessary to treat external reservoirs
boundary conditions [13].

From the above considerations, we see that the ac
(10) describes a voltage-biased 1D quantum wire conta
ing a scatterer for the entire range of parameters. W
evaluating Eq. (9), we still have to average over the z
mode of the Lagrange multiplier field. Hencew is gen-
erally a fluctuating quantity. In the two limiting cases
of transmission zero and one, the fluctuations do van
In the latter case,l ­ 0, the q average is Gaussian, an
one findsw ­ 0 due to the infrared singularity of the firs
term in the action [5]. On the other hand, forl ! `,
the cosine term in Eq. (10) strictly enforcesw ­ U. In
the following, we will only consider the two fixed-poin
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valuesw ­ 0 andU corresponding to a very small and
very high barrier, respectively. Near these limiting cas
further analytic progress can be made.

We start by calculating the nonequilibrium electro
density. Equivalent to an explicit real-time calculatio
we first analytically continue to imaginary values ofU
andw, and, after performing theq average, we rotate back
to real values ofU andw. Let us first study the case o
a very weak scatterer, such that we can putw ­ 0 and
then use perturbation theory in the impurity strength. T
antisymmetric charge distribution

qsxd ­ 2efk rsxdl 2 k rs2xdlgy2 sx . 0d

can be computed by expressing the density operator
in terms of the generating functional (9). Lowest-ord
perturbation theory inl yields

qsxd ­
elkF

p
sins2kFxd

p
p

2Gs gd
sxyad2s g21y2d

3 seUyvcdg21y2Jg21y2sgeUxyyFd , (13)

where Jnsxd is a Bessel function of the first kind [14]
Near the impurity, forx ø seUyyFd21, from properties
of the Bessel function,

qsxd ­
elkF

2
p

p Gs gdGs g 1 1y2d
sins2kFxd

3 seUy2vcd2g21.

The asymmetric charge modeqsxd is 2kF periodic but
decays only on the length scaleyFyeU. There is no
localized charge sitting on the impurity. However, thex
integration over (13) gives a finite total charge, and hen
a finite nonlinear capacitanceC ­ QyU,

CsUd ­
e2lyvc

8
p

p Gs gdGs g 1 1y2d

µ
eU
2vc

∂2g22

. (14)

This lowest-order perturbational result in the wea
scattering regime breaks down for small voltage
eUy2vc ø l1ys222gd.

In the opposite case of astrong scatterer, l ¿ 1, we can
put w ­ U. From Eq. (9), the2kF part of the asymmetric
charge mode takes the form

q2kF
sxd ­ 2

ekF

p
coss2kFxd sinseUxyyFd sxyad2g,

which implies a finite total chargeQ2kF
. This charge turns

out to be linear inU, and therefore one has a finiteU ­ 0
capacitance

C2kF ­
e2

4pvc
g2gGs2 2 gd sin

∑
p

2
s1 2 gd

∏
. (15)

However,q2kF
sxd does not include the constant term̄q ­

eUy2pyF coming from the change in background dens
(11). That term leads to a chargeQ0 ­ Le2Uy4pyF ,
which diverges with the system lengthL. The applied
voltage polarizes the capacitance between the wire
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the metallic screening gate. This large shunt capacitan
renders the observation of charging effects, i.e., ofC2kF

,
impossible for a single scatterer. A similar situation is
encountered for a single tunnel junction coupled to metall
leads, where charging effects are normally absent [15].

For an island formed bytwo strong impurities, the2kF

capacitance is observable since the capacitance of
island is not affected by the shunt capacitance betwe
the remaining wire and the gate. Taking two impurities a
x ­ 6Ry2 and applying our boundary condition (5), we
now have two zero modes from the respective Lagrang
multipliers. One swd corresponds to the four-terminal
voltage found in the single-impurity case, and the othe
swGd corresponds to a gate voltage applied to the islan
2Ry2 , x , Ry2. While again analytic results are not
available for the entire range of parameters, it is possib
to calculate the total chargeQI sitting on the island in the
limit of large barriers and forkFR ¿ 1. We obtain

QI ­
eR
p

skF 1 ewGy2yFd 1 2C2kF
wG

2 eGs1 2 gd sinfps1 2 gdy2gypgg, (16)

where C2kF
is given in Eq. (15). The first term,R

arises due to the slow component of the density operat
(1), while the remaining two terms come from the2kF

component. The resonant tunneling condition can then
derived by noting thatQIye is confined to integer values
in the large-barrier limit under consideration here. Henc
the spacing of the resonances as a function ofwG is found
to be

eDwG ­ sRy2pyF 1 2C2kF ye2d21. (17)

Therefore C2kF leads to an experimentally measurable
resonance shift compared to previous results [5] whic
neglected charging effects in interacting 1D metals.

Let us finally comment on the issue ofelectroneu-
trality in a Luttinger liquid. The spatial change in the
background charge density (11) induces an influenc
charge density of opposite sign on the metallic gat
such that overall electroneutrality is maintained. How
ever, the Luttinger liquid interaction is not able to en
force electroneutrality within the 1D quantum wire alone
In the complete absence of a gate, since there is no
ternal screening within the wire, the Coulomb potentia
becomes long ranged,Ucsx 2 x0d , jx 2 x0j21. From
the Euler-Lagrange equation corresponding to Eq. (
and the boundary condition (5), one finds immediatel
that thenw ­ 0. As a consequence, for a long-ranged
Coulomb potential, electroneutrality is maintained auto
matically within the wire.
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In conclusion, the theoretical description of a voltage
biased 1D quantum wire (Luttinger liquid) containing
elastic potential scatterers has been given. Our bounda
condition method can easily be adopted to the case
more than one channel (e.g., the spin-1

2 case), and it can
straightforwardly be generalized to a real-time and finite
temperature formalism.
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