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Voltage-Biased Quantum Wire with Impurities
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The bosonization technique to describe correlated electrons in a one-dimensional quantum wire
containing impurities is extended to include an applied voltage source. The external reservoirs are
shown to lead to a boundary condition for the boson phase fields. We use the formalism to investigate
the channel conductance, electroneutrality, and charging effects. [S0031-9007(96)00664-3]

PACS numbers: 72.10.—d, 73.40.Gk

The puzzling physical properties of one-dimensionalcommutation relations
(1D) correlated fermions at low temperatures can most N — (s o
conveniently be described within the bosonization tech- [4(x),0(] (i/2) sgnlx = x7),
nique. This method [1-3] allows for an exact treatmentsuch that the canonical momentum for thefield is
of Coulomb interactions that hamper most other theoretill = d.¢. The boson representation for the electron
cal approaches. In this Letter, we describe how a voltagdensity operator is then given by

bias can properly be incorporated in terms of a boundary kp 1

condition for the bosonized phase fields. The formalism plx) = P + \/—F 9:0(x)

is similar in spirit to Landauer’s approach developed for L

noninteracting electrons [4]. The capacity of our concept + 5F cod2krx + 270 1
is demonstrated for a single impurity embedded into the T 2k Vo). @

correlated 1D electron liquid, a problem that has attractedhe first term is the background charge, the second term
considerable theoretical interest [5,6], and is beglnnlng t%tands for the sum of r|ght_ and |eft_moving densi@s
find experimental realizations [7]. and the last term describes interference between right and

In order to describe Coulomb interactions adequatelyjeft movers [2]. The clean Luttinger liquid is described
one has to specify the setup under consideration. If ongy the Euclidean action [3]

deals with a 1D channel in heterostructures, a “quantum

wire” [8], the interactions are usually screened due to the g, = vr f dxdr[iz (9,0)* + 1 (axg)ﬂ, 2)
presence of metallic gates near the channel. This leads to 2 UF g’

a Luttingel’ I|qU|d [3] characterized by an interaction Con'WherevF is the Fermi Ve|0city an@ < 1 the interaction

stantg (we only discuss the spinless single-channel casgonstant. A short-ranged impurity at= 0 results in the
in the following). The noninteracting case corresponds t@yeneric contribution [5]

g = 1, and the presence of (repulsive) Coulomb interac-

tions impliesg < 1. Quantities of principal interest are S; = Vf dr cod2/76(0, )], (3)

the channel conductance in the presence of interactions

and the capacitano€ = Q/U of a junction or impurity  where the dimensionless impurity strength= 7V /w.

(U is the two-terminal voltage, an@ denotes the charge tunes the junction resistance.

on the junction). We present an approach that allows one Now let us consider a 1D quantum wire coupled

to address these problems for finite voltage at arbitrary into external reservoirs, see Fig. 1. The coupling of the

teraction strength and junction transmittance. 1D channel to the 2D or 3D reservoirs is assumed
Our treatment is based on the standard bosonizatio occur by adiabatic widening of the channel. This

approach [1-3], which is applicable in the low-energymodels ideal reservoirs in the sense of Landauer [4]. The
regime where only excitations near the Fermi surface are
relevant. The electron creation operator can be expressed

in terms of boson phase field$x) and ¢ (x), ﬁ x=0 ﬁ

Moo % Hoo
wC .
ylx) = */zm > explipkx s A
p==* o ) '
+iyT[pox) + ¢, FIG. 1. General setup studied in this work: A 1D quantum

wire is coupled to 3D reservoirs, which are held at chemical

. . . potentialsu—.. and .. The left reservoir injects right movers
wherew. = vrky is the proper bandwidth cutoff for the at the stationary excess density- ), and the right one injects

linearized dispersion relation employed in the bosonizateft movers with density p_). The striped area stands for a
tion (we putz = 1). The phase fields obey the equal-time scatterer at = 0.
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reservoirs are macroscopic, totally incoherent devices kepive action

at fixed chemical potential, and there are no reflections v | 1

of particles entering the reservoirs. The left (right)S.[0, A, q] = £ fabcdq-[—z(arbl)2 + —2(8)(6)2}
reservoir atx — —o (x — o) has chemical potential 2 UF 8

Mm-» (uw), and the difference in chemical potentials
is the two-terminal voltaged/ = (uw—« — u«)/e. The
mean chemical potentidlu_. + ws)/2 corresponds to
the background charge-/#. Applying a voltage means + i[ dr A(7)[2J/7 6(0,7) — q(7)]. (6)
that one has a nonequilibrium influx of currents from

the reservoirs: The reservoir at— —o injects right The @ part of this effective action is Gaussian and can
movers at some stationary excess density, and, similarlyherefore be treated exactly by solving the classical Euler-

+ Vf dr cosy(r) — 2/miub(y,0)

the density of left movers at — « is diminished, Lagrange equations. One can always decompose the
U solutiond into an homogeneous paii for the equilibrium
(p=(x)) = == as x — Foo. (4)  system(U = 0), and a particular solutiof, subject to the
4mvp boundary condition (5). At the same time, we decompose
While in a clean system the densities of right and leftthe fieldA = A, + A, such that
movers imposed by the reservoirs spread homogeneously 1 9%0, 1 020, 2Jmi
along the wire, in the presence of scatterers one does not Zor T e e S(X)A,(1). (7)

know beforehand what the densities of right (left) movers
atx — o (x — —x) are. These densities follow from our The most general solution permitted by Eqg. (7) which
theory. fulfills Eq. (5) requires ar independent\, and takes the

The boundary condition (4), formulated in terms of form
the average densities of right- or left-moving fermions in

40 LN l.Te(U - )

the quantum wire as the reservoirs are approached, canf,(x,7) = - x (8)
equivalently be expressed in terms of théeld by noting 2w 2mvr 2w
that The quantityp is related to the zero mode of the Lagrange
{ ; multiplier field, A, = iep /2w g%
p+ + p- NG 0.0, p+ — p— or 7 9.0 . With the boson propagators
T8
The boundary condition for the boson phase field is F(x,w) = ol exp(—lgwx/vrl),
therefore

the homogeneous part can be written in terms of the

0 i 0 U ;
<i— + 2 _><0(x — Foo, 7 = () = ¢ ’ Fourier componentd ; (w),
ox  vp 0T 27 vp

(5) On(x,7) = — ﬁf g—:e’m
where the timer = 0 has been picked by convention.

To study the inhomogeneous quantum wire in the pres- X [An(@)F(x, @) — pF(x =y, )].
ence of an external voltage, we consider the generatinmsertingé, + 6, into Eq. (6), the action becomes Gauss-
functional Z(y, u) = (exd2+/7 in6(y)]). We formally ian in A,, which can therefore easily be integrated out.
solve for Z by introducing an auxiliary fieldg(7) =  Adding the particular solution (8) also ontdr) in view
27 6(x = 0,7), with the constraint enforced by a of ¢(r) = 2,/ 6(0, 7), one obtains for the generating
Lagrange multiplier fieldA(7). Then one has the effec|— functional

exi2mino ) = Wy (e et exd in(go + [ 5 g B [), ©
2 F(0, w)
where the average over the zero modgsand ¢ of | The function W(x) = (1 + |x|/a)™% with the micro-
the auxiliary fields and over the fluctuationsq(7) =  scopic length scaler = vr/2gw. does not depend on
Qm) ! [dog(w)explioT) has to be taken using the impurity properties.
action The effect of the external voltage can now be read off
from Eqgs. (9) and (10). First, the average density [the first
g = f do q(w)q(—w) G de (1) two terms in Eq. (1)] is, in general, discontinuous at the
2 4F(0, w) 2mg? impurity location due to particle reflection,
. __ kr ep
+ V/ dr codqo — ie(U — o)1 + g(7)]. (10) p= Ymor sgn(x). (11)
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For the noninteracting casg,= 1, one can show from valuese = 0 andU corresponding to a very small and a

the exact solution of the equivalent Schrodinger equationery high barrier, respectively. Near these limiting cases,

that ¢ is the usualfour-terminal voltagemeasured near further analytic progress can be made.

the barrier [9]. Inthat cases = RU, whereR = 1/(1 + We start by calculating the nonequilibrium electron

A~2) is the reflection coefficient of the barrier. density. Equivalent to an explicit real-time calculation,
Second, in the absence of a scattergr= 0, one we first analytically continue to imaginary values &f

always findse = 0 (see below), and the right- and left- and¢, and, after performing the average, we rotate back

moving densities are spatially homogeneous along the real values oV and ¢. Let us first study the case of

wire. Since they are determined by Eq. (4), the current very weak scatterersuch that we can pup = 0 and

is then use perturbation theory in the impurity strength. The

i /00 antisymmetric charge distribution

2
e
1=—<—>=ev( —(p-))=-—U.
U7 \ar ) T evrtle =) = 4 = —el(p) — (p(—N2 (x> 0)

This yields the perfect two-terminal conductanégh, in  can be computed by expressing the density operator (1)

agreement with recent theoretical work [10] and an exdin terms of the generating functional (9). Lowest-order

perimental study of a quantum wire [7]. The conductanceperturbation theory in yields

ge?/h discussed in Ref. [5] is not the two-terminal con-

ductance but a low-frequency microwave conductance. g(x) = sm(2kpx) 2}/— (x/a)” (g=1/2)
To describe coupling to an external voltage, previous ()

studies have often added a term to the Hamiltonian of the X (eU/wC)g’l/ZJg_1/2(geUx/vF) ,  (13)

form [5,11] where J,(x) is a Bessel function of the first kind [14].
i = ep Near the impurity, forx < (eU/vr)~!, from properties

= e@6(0)/Vm = q, (12) of the Bessel function,

whereg is the “voltage drop” [12]. From Eqg. (10), if one ek _

tentatively identifiesp with &, one observes that Eq. (12) q(x) = 37T (o) (g + 1/2) sin2kpx)

should be modified by a factdr/g>. This factor can be § 2g—1

understood in terms of the interaction energy of density X (eU 2w ).

fluctuations with the nonequilibrium background charg

(11) deviating fromks /7 ®The asymmetric charge modgx) is 2kr periodic but
F b

decays only on the length scale-/eU. There is no

] dxf PR 00U, (x — ') <_€¢ S%“(X’)) localized charge sitting on the impurity. However, the
N ¢ 27up integration over (13) gives a finite total charge, and hence
a finite nonlinear capacitaneg = Q/U,
22 (——1 dx sgn(x)3,6(x)
= 2\/_ X Sgnix X 62/\/wc el 2g—2
cU) = .19
where U.(x — x') is the screened Coulomb interaction, 87 T2l (g + 1/2)\20,

and the last line holds for a Luttinger liquid. Furthermore,This lowest-order perturbational result in the weak-
it should be noted that in Eq. (10) the cosine part due t&cattering regime breaks down for small voltages,
the impurity has acquired a term linear in time, whichey /2w, < A1/2728),

is reminiscent of the Josephson relations. This shows |n the opposite case ofsirong scattererA > 1, we can

that the external voltage cannot be fully incorporated byputy = U. From Eq. (9), th&kr part of the asymmetric
simply adding a term such as Eq. (12) to the Hamiltoniancharge mode takes the form

In general, it is necessary to treat external reservoirs via X

boundary conditions [13]. gar, (x) = — &r coL2kpx) sin(eUx/vp) (x/a) 8,
From the above considerations, we see that the action 77

(10) describes a voltage-biased 1D quantum wire containwhich implies a finite total charg@,,. This charge turns

ing a scatterer for the entire range of parameters. Wheaut to be linear inJ/, and therefore one has a finite= 0

evaluating Eg. (9), we still have to average over the zer@apacitance

mode of the Lagrange multiplier field. Henegeis gen- 2

erally afluctuating quantity. In the two limiting cases Cor, = 1

of transmission zero and one, the fluctuations do vanish. 7 @e

In the latter cased = 0, the g average is Gaussian, and However,g,;, (x) does not include the constant tegm=

one findsy = 0 due to the infrared singularity of the first eU /27 vy coming from the change in background density

term in the action [5]. On the other hand, far— «,  (11). That term leads to a charg®y = Le’U/4mvy,

the cosine term in Eq. (10) strictly enforces= U. In  which diverges with the system lengih The applied

the following, we will only consider the two fixed-point voltage polarizes the capacitance between the wire and

ywa—@aigu—@](m)
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the metallic screening gate. This large shunt capacitance In conclusion, the theoretical description of a voltage-
renders the observation of charging effects, i.e.Cgf.,,  biased 1D quantum wire (Luttinger liquid) containing
impossible for a single scatterer. A similar situation iselastic potential scatterers has been given. Our boundary
encountered for a single tunnel junction coupled to metallicondition method can easily be adopted to the case of
leads, where charging effects are normally absent [15]. more than one channel (e.g., the séim:ase), and it can
For an island formed bywo strong impurities, th@kr  straightforwardly be generalized to a real-time and finite-
capacitance is observable since the capacitance of themperature formalism.
island is not affected by the shunt capacitance between
the remaining wire and the gate. Taking two impurities at
x = =*R/2 and applying our boundary condition (5), we
now have two zero modes from the respective Lagrange
multipliers. One(¢) corresponds to the four-terminal

voltage found in the single-impurity case, and the other [2] V.J. Emery, in Highly Conducting One-Dimensional
(¢g) corresponds to a gate voltage applied to the island™ * ggjigs, edited by J.T. Devreese (Plenum, New York,
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