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Coherent Thomson scattering of a picosecond probe laser was used to measure the time evolution
of plasma wakefields produced by a high intensity laser p(is& 10'® W/cn?) in an underdense
plasma (n, = 10" cm™3) in the self-modulated laser wakefield accelerator configuration. Large
amplitude plasma wakefields which lasted less than 5 ps were observed to decay into ion acoustic
waves. The time scales associated with these measurements were consistent with the effects of
the modulational instability and the enhancement of scattered signal from plasma channel formation.
[S0031-9007(96)02018-2]
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Significant progress has been made in recent years [f these waves is consistent with growth rates of the
in the use of laser-produced plasma as a medium for accatrodulational instability for our experimental conditions.
erating electrons to high energies. In the laser wakefieldhe formation of a plasma density channel behind the
accelerator (LWFA) [2], a high intensity laser pulse is fo- pump laser pulse, which can guide the probe laser pulse,
cused into an underdense plasma with a pulse duratjon, could also enhance the Thomson scattered signal.
similar to the electron plasma period (i.e;, ~ 27/ wpe, The tabletop terawatt laser at the Naval Research Labo-
wherew,, is the electron plasma frequency). Large ampli-ratory is a Tisapphir¢gNd:glass systenid = 1.054 um)
tude plasma waves (wakefields) are generated with stronghich uses chirped pulse amplification [8] to achieve
longitudinal electric fields and relativistic phase velocitiesthe high powers necessary for experiments in the self-
which are capable of accelerating injected electrons. Famodulated regime. In these experiments, the pump laser
laser powerspP, approaching or exceeding the relativis- pulse had a typical duration of 400 fs and an energy of
tic self-focusing threshold [i.eP,. = 17(w0/wpe)2 GW, 800 mJ(P = 2 TW). The contrast (i.e., the ratio of the
where w( is the laser frequency], it is not necessaryprepulse intensity to that at the peak of the laser pulse)
to match the pulse duration to the plasma period. Atvas measured to b~ °. When the beam was focused at
laser powers for whictP = P. and 7, > 27 /w,., the 1 TW by an off-axis parabolic mirrarf/3), the measured
laser envelope undergoes an instability and becomes “selfecal spot diameter in vacuum was5 um. This im-
modulated” at the plasma frequency [3]. This effect resoplies a peak focused intensity in our experimentsd of
nantly enhances the creation of wakefields and allows th&0'®* W/cn?. For a plasma density of, ~ 10 cm™3,
use of higher electron densities and generates strong#re critical power isP, = 1.8 TW, and the plasma wave-
accelerating fields [4]. Recent experiments in this selflength is Ape = 27r¢/wpe ~ 10 um. Hence, P = P,
modulated laser wakefield accelerator (SM-LWFA) regimeand c7;, ~ 12A,., which are necessary for operation in
have measured the production of high energy electronshe SM-LWFA regime.
where the source of accelerated particles was either back-In CTS, waves in a plasma will enhance Thomson
ground electrons from the target plasma [5] or electronscattered light at particular wavelengths and directions
injected into the interaction region from an adjacent laserdue to interference effects. Coherently scattered light
produced plasma [6]. Direct observations of wakefielddhas a wave vectok,. and a frequencyw,. that satisfy
in the conventional LWFA configuration were recently re-the Bragg scattering conditions of frequency and wave
ported using interferometric techniques, in which the spanumber matching. For electron plasma waves with
tial and temporal wave forms of the wakefield behind theand k., the conditions requiraw,, = w; * wp. and
pump laser pulse were measured [7]. ks = ki * kje, Wherew is the frequency anhl; is the

This Letter will discuss the first experiments to usewave vector of the probe laser. Plasma waves capable
coherent Thomson scattering (CTS) of a picosecond probef accelerating electrons to high energy (as produced
laser pulse to measure the temporal behavior of selfey a LWFA) propagate collinearly with the laser pulse
modulated wakefields in the SM-LWFA. We confirmed and have relativistic phase velocitiag, ~ c. CTS has
the generation of wakefields with phase velocities clos@lso been used to measure similar relativigiig ~ c)
to the speed of light. We observed the turbulent decay gblasma waves in the laser beat-wave accelerator [9,10].
the wakefields and the transfer of energy to ion acousti€or correct matching ok vectors, both the probe and
waves, possibly through a parametric process such abe Thomson scattered light must propagate in the same
the modulational instability. The measured decay timedirection as the relativistic plasma wave (i.e., along the
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pump axis of propagation). For coherent scattering t@head of the pump, it ionizes the gas and generates a blue
be observable, the conditidhAp) < 1 must be satisfied, shift in the spectrum [12]. Otherwise, the frequency is
where Ap is the plasma Debye length aidis the wave unshifted. This effect is easily observed and provides a
number of the plasma waves to be measured [11]—measurement of the temporal overlap to within 1 ps.
otherwise the waves undergo severe Landau damping. These experiments used two different CTS configura-
In these experiments, we estimatg ~ 0.01 um and tions. The first configuration had the pump, probe, and
k ~ wpe/c ~ 0.6 um™L. scattered light propagating collinearly, and unscattered
The setup for our experiments is shown in Fig. 1. Ap-light from the pump beam was attenuated by an infrared
proximately 10% of the main beam was split off by aabsorption filter after the interaction region. The ma-
pellicle for use as a probe pulse and was subsequently frgarity of the 527 nm probe light was not scattered and
quency doubled (to 527 nm) by a 1 cm thick KB crys-  was blocked before the slit of the spectrometer (0.25 m
tal. For 800 mJ pump pulses the probe pulse energy waSzerny-Turner) by a notch filter in the beam path. How-
typically 10 mJ. The maximum broadening of the probeever, the Thomson scattered electron plasma satellites of
pulse length from passage through the doubling crystahe probe light, which are shifted by,. (AAsiokes =
will result in a pulse durations; , < 1 ps. This pro- 23 nm, AAuni-siokes = 21 NM for a plasma density of
vides the intrinsic temporal resolution for our experiment.7 X 10'® W/cm™3 as in Fig. 2), are positioned beyond the
Sincecrr, > Ape in these experiments, the probe pulseedges of the absorption band of the notch filter and hence
efficiently sampled the plasma waves it measured. This iwill be detected by the spectrometer. The principal result
in contrast to optical interferometric techniques [7] whichin this configuration was the observation of these plasma
require much shorter probe pulses such that, < A.. satellites for about 5 ps after passage of the pump laser (see
The probe pulse traverses a delay line and then ifig. 2, which shows a FWHM of-2 ps). As shown in the
recombined with the main beam before being focused intinset in Fig. 2, the anti-Stokes line was typically more in-
the plasma created by the pump pulse. This delay linéense than the Stokes line, indicating that electron plasma
can be adjusted to vary the timing between the two pulsesvaves in the wakefield preferentially propagate in the for-
The paths of the two beams were overlapped by alignmenwvard direction [13]. These measurements confirmed the
to a series of apertures prior to the focusing optifg¥  generation of wakefields withy, ~ ¢ [14].
off-axis parabolic mirror) as well as by observation of The ratio of the total scattered signal intensity
scattered light in the focal region. The target was ao the probe intensity is given by [15]//I, =
gas jet of either helium or hydrogen, and we measured.5(8nL./n. A;)?, where n., is the critical density for
the electron density by recording the wavelength shift othe probe wavelengtkd X 10> cm™3), A, is the probe
stimulated Raman backscattered light from interactionsvavelength, is the probe-plasma interaction length (the
at lower intensitieg10'® W/cn?). The electron density confocal parameter of the probe laser200 wm), and
used in these experiments was in the rang8.pf1.2 X én is the density perturbation of the wave. We estimate
10! cm™3 with ~25% of accuracy. The laser breakdown the ratio (I,/1;) to be 1073*! for scattering into the
is monitored with a CCD camera at 9@ the propagation electron plasma satellites. This implies that the amplitude
axis of the pump laser. of plasma waves encountered by the probe puise/4,
Coarse temporal synchronization of pump and probavheren, is the ambient density) was up t®~'. This
pulses was achieved using a streak camera with better
than 4 ps resolution. Fine temporal synchronization was
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FIG. 1. Schematic of Thomson scattering experimental setup(anti-Stokes at 506 nm, Stokes at 550 nm).
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is probably an underestimate of the actual amplitude of E A _
the wakefields produced in these experiments since slight 120 F E
misalignments in our setup can result in a substantial Lok e § el = l2psee
reduction of signal. ; E

In the second CTS configuration, the scattered light was 080 F . K
observed at a convenient forward scattering angB®of+ 060 F o T T
5° from the pump-probe axis by relocating the collection  _ o40F wavelength (nm)
optics shown in Fig. 1. The wakefields generated in these Y %
experiments are highly three dimensional due to the tight £ _&_ 1 ‘ . , ? L2
focusing of the pump laser. This causes a strong radial 3 f;’g-_ e
profile of the wakefield which implies that the scattering & ™~ | B
plasma waves have significakt, components+{2/r, B 1oof ®
ro being the pump laser focal spot radius) and lower § 080 F %’
phase velocities. At 3Qthe phase velocity can vary from F .
0.06¢ to 0.49¢ from consideration of the’ numbers of 060 9 %
the alignment and detection optics. These lower phase 0.402— } % ;
velocity plasma waves couple more readily with the probe 00 b %{) %
laser to scatter in the near forward directions. In fact, a T }
10° tilt between the pump and probe lasers by displacing 0gp —ea—— ) e '
the probe laser on the focusing parabolic mirror (while 0 % 4gday (pf)o 80 100

maintaining the 30 angle to the pump for the scattered
light) gave a better signal to noise ratio without changes td-!G. 3. Evolution of Thomson scattered spectrum &t&@yle
the general behavior of the scattered signal. with respect to pump laser: (a) hydrogen; (b) helium. Open

: : P ircles are normalized values of the central peak in the scattered
As shown in the inset in Fig. 3, when the probe Ia‘Sergpectrum and closed circles are the normalized value of the first

was injecte.d at delay- +1 ps, there is a marked incregse order Stokes satellite. Inset shows examples of typical Thomas
in the emission of the first order electron satellites.scattered spectra for the delay times indicated.

Electron satellite emission lasted for about 5—7 ps in
both hydrogen and helium, similar to that observed in
the directly forward direction, as shown by the closedwave accelerator [11]. In these experiments, the plasma
circles in Fig. 3. A low level of satellite emission was wave is simultaneously driven by the long duration laser
also observed to be generated by the pump laser alorilses(~150 ps) while decaying via MIl. In SM-LWFA
from its interaction with plasma density gradients due toexperiments, on the other hand, the plasma waves are first
filamentation and charge displacement effects [16]. generated very rapidly<1 ps) and then decay into ion
The inset in Fig. 3 also shows a dramatic rise in thewaves in the region behind the laser pulse. Collisional
central peak of the Thomson scattered spectrum whicHamping of the wakefield can be neglected since, for
correlates to the decline of the electron plasma sidebandslectrons oscillating in @&n/ny ~ 0.1 plasma wave, the
We believe this central peak is due to coherent Thomsoglectron-ion collision time is long (typicat300 ps).
scattering from ion acoustic waves since both a strong The linear growth rate [18] of MI depends on the pa-
dependence on the polarization of the probe beam andrameterv, /v, = 23(5n/n0)Te_1/2, whereT, is the elec-
dependence of its intensity om were observed. The tron temperature in ke, is the electron quiver velocity
open circles in Fig. 3 show that the amplitude of thein the Langmuir wave, and,. is the electron thermal ve-
central scattered peak reached a maximumizat= 25 ps  locity. Ml occurs in the strong field limit when; /v, >
after the main pulse for hydrogen and At =~ 40 ps  (wpe/wpi)'/?, Wwherew,. andw,; are the plasma frequen-
for helium. We believe this is due to the turbulentcies for the electrons and ions, respectively. Initially,
decay of the forward going large amplitude plasma wave# the plasma wave amplitude is largén/ny ~ 0.1)
into ion acoustic waves through mechanisms such as thand for T, ~ 10 eV, the strong field condition is satis-
modulational instability. fied such that; /v, ~ 23 and(wpe/wpi)l/3 ~ 3. The
Significant theoretical work has been performed on thenaximum strong field growth rate [18] is given approxi-
decay of large amplitude Langmuir waves via parametrianately by the ion plasma periolys; ~ wpi) and the
coupling to ion acoustic waves [17,18]. In particular, for corresponding-folding time 7y = 1/, is short, about
moderate temperaturég, < 1 keV), a Langmuir wave is 0.3 ps forH, (27 /w,; = 1.8 ps) and about 0.4 ps for He
subject to the modulation instability (MI) [17], in which (27 /wpi = 2.5 p9).
a plasma wave(w,,k,) decays into a low-frequency As the initial wakefield decays, howeves;/no de-
ion wave (w;,k;) and two daughter electron plasma creases and Ml transitions [18] to the slower growth of the
waves (o, * w;,k, = k;), where typically k; > k,. weak field limit, v. /v, < (wpe/wpi)'/3, with a maxi-
lon waves generated by MI have been observed coincidemium weak field growth rate ofys ~ 6‘1/2wpi(vL/vte).
with plasma waves in experiments on the plasma beafNotice that asén/ny (~v./v.) decreases, so does the
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of MIl. The daughter plasma waves may also decay and

hence can lead to a cascade of the wakefield energy into

smaller amplitude daughter waves and drive ion waves
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