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A mechanism for intermittency in spatial distribution of small inertial particles advected by a
turbulent incompressible fluid flow is discussed. The mechanism is related to self-excitation (i.e.,
exponential growth without an external source) of fluctuations of concentration of small particles in
a turbulent fluid flow. The effect is caused by the inertia of particles which results in a divergent
velocity field of particles. An equation for the high-order correlation functions of concentration of
small inertial particles is derived. It is shown that the growth rates of the higher moments of
particle concentration are higher than those of the lower moments, i.e., particle spatial distribution
is intermittent. Similar phenomena occur for noninertial admixtures advected by divergent turbulent
velocity field. [S0031-9007(96)02006-6]

PACS numbers: 47.27.Qb, 05.40.+j, 47.40.—x

Study of passive scalar fluctuations in a turbulent fluidthe case of large Reynolds and Peclet numbers. The
flow is important in view of numerous applications [1]. velocity of particlesv, depends on the velocity of the
The nature of the intermittency of scalar field passivelyfluid, and it can be determined from the equation of motion
convected by a fluid in the presence of an external sourcr a particle:dv,/dt = [v — v,]/7,, wherer, is the
of passive scalar fluctuations was elucidated recently (se&tokes time. In this study we consider incompressible
e.g., [2-4)). turbulent flowV - v = 0. However, the velocity field

Without an external source the second moment of thef particles is compressible, i.€V, - v, # 0. Indeed, a
passive scalar distribution in incompressible turbulent fluicsolution of the equation of motion for particles can be
flow can only decay due to turbulent diffusion [5]. Re- written in the formv, = v + 7,f(v,7,). The second
cently, it was found [6] that compressibility (i.elivv ««  term in this solution describes the difference between the
dp/ot # 0) of aturbulent fluid flow results in a strong in- local fluid velocity and particle velocity arising due to
hibition of the diffusion of the second moment of mass con-the small but finite inertia of the particle. We calculate
centrationC = m,n,/p for large Peclet numbers. Heve the divergence of the equation of motion for particles, and,
andp are the velocity and density of the fluiak,, andn,  after simple manipulation, we obtain
are the mass and number density of particles. However,

a feasibility of self-excitation (i.e., exponential growth) of vy . v, = -7,V [(v-V)v] — 72V - [a_f %}
passive scalar fluctuations without an external source re- b vy dt
mained unexplored. )

The main purpose of this Letter is to discuss an effec
that causes a self-excitation (i.e., exponential growth
of fluctuations of inertial particle concentration in a
turbulent fluid flow without an external source. This
effect is responsible for the intermittency in particle

spatial distribution. In particular, we have shown that"'". e L . ; .
Divergent velocity field of inertial particles is the main

the growth rates of the higher moments of particle : p . i L ial
concentration are higher than those of the lower moment§€ason for a new effect, i.e., self-excitation (exponentia

Evolution of the number density, (7, r) of small parti- growth) of fluctuations of concentration of small particles
P £

cles in a turbulent flow is determined by the equation in a turbulent incompressible fluid flow. Indeed, multipli-
' cation of Eq. (1) byz, and simple manipulations yield

henr, is very small Eq. (2) coincides with the results
obtained in [7]. The Navier-Stokes equation for the fluid
yieldsV - [(v - V)v] = —AP/p, whereP is the pressure
of a fluid. From the latter equation and Eq. (2) it is seen
thatV - v, # 0 although for the fluidv - v = 0.

anp ‘ _ )

Y +V (anp) DA”p > (1) 86& +(V-S) = —nf,(V . Vp) _ ZD(VI’lp)z, (3)
wherev, is a random velocity field of the particles which !
they acquire in a turbulent fluid velocity field anb  whereS = nf,v,, - DVn,Z,. The latter equation implies
is the coefficient of molecular diffusion. We consider that, if V- v, <0, a perturbation of the equilibrium
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homogeneous distribution of inertial particles can growdn,/dt > 0) in regions with the minimum pressure of a
in time, i.e., (9/a1) [ nf, d*r > 0. However, the total turbulent fluid since8 < 0.
number of particles is conserved. Averaging Eq. (3) over To study the fluctuations of inertial particle concentra-

a volumeV.., we obtain tion we derive an equation for the high-order correlation
a(nf) 5 5 function of particle concentration. For this purpose we
Py —(n,(V - vp)) = 2D{(Vn,)). (4)  use a method of path integrals (Feynman-Kac formula)

[6,8—10]. The use of the technique described in [6,8] al-

. = . 20y -
Here ‘we use_dj(V S)dv. =[S - dA < f”P(V .__lows one to derive an equation for the high-order correla-
V,)dVs, fan_dA is a cIo_sed surface. Equatlop (2) |mpl_|es tion function®, = ([T°_, [2,(x7) — N(x)]):
that variation of particle concentration during the time * J=1mp

interval 7y = l(]O/MO around the valugzﬁzo) is of the order AT - PO, = i Y_Zl b, + 1. (5)
of én, ~ —np 70(V - v,), whereu, is the characteristic at = ==

velocity in the energy containing scalg. Substitu- o _ _ o
tion n, = ny + &n, into Eq. (4) yieldsa(n2)/or ~ where i #j, LU®, = VU - {U) = D) x
279{n3(V - v,)?). Therefore, the growth rate of fluctua- V1o,

tions of particle concentratiog ~ 27o((V - v,)?). This 2

estimate is in good agreement with the analytical resultsM’)/2 = (Tu, (X)u, (y)) + (7b(x)b(y))

obtained below [see Eg. (6) fer= 0]. X Y
Now we discuss the physics of self-excitation (ex- n b 9 b J
ponential growth) of fluctuations of particle concentra- (run(x)b(y)) X, (run (y)b(x)) Oy

tion. The inertia causes particles inside the turbulent , .

eddy to drift out to the boundary regions between ed2!s0 Ux') =V — (rbu), D(x')) = Dy = D&,y +
dies (the regions with decreased velocity of the turbulenfT#pm), X = X(_’)»y = x, N = (np) is the mean par-
fluid flow and maximum pressure of the fluid). Indeed,ticle concentration/ is a source which depends av
Eqg. (2) shows that particle inertia results W- v, o and the structure functions of the_ Iower ordevs, =
7,AP/p. On the other hand, for large Peclet numbersV + u,V =(v,) is the mean velocityu is the random

V - v, < —dn,/dt [see Eq. (1)]. Thereforedn,/dt o component of the velocity of particles,= V - u, andr
—7,AP/p. Thus there is accumulation of inertial par- is the momentum relaxation time of the turbulent velocity

ticles (i.e.,dn,/d: > 0) in regions with the maximum U, which depends on the scale of turbulent motions. We

pressure of a turbulent fluid (i.e., whete® < 0). Simi-  use here for simplicity theéd-correlated in time random
larly, there is an outflow of inertial particles from the re- Process to describe a turbulent velocity field. However,
gions with the minimum pressure of fluid. the results also remain valid for the velocity field with a

This mechanism acts in a wide range of scales ofinite correlation time, if the high-order correlation func-
a turbulent fluid flow. Turbulent diffusion results in tions @, vary slowly in comparison with the correlation
the relaxation of fluctuations of particle concentration intime of the turbulent flow (see, e.g., [8]). We seek a so-
large scales. However, in small scales where turbulertltion to Eq. (5) without the sourcg in the form &, =
diffusion is of the order of molecular diffusion, the [1}; P2(x" — x'V)) exply,1), wherei # j. Substitution
relaxation of fluctuations of particle concentration is veryof this solution into Eq. (5) yieldsy; = s(s — 1)y2/2.
weak. Therefore the fluctuations of particle concentrationf his €quation implies that, if the second moment of the
are localized in the small scales. particle concentration growg, > 0), then all high-order

This phenomenon is considered for the case when theorrelation functions grow. It is shown below that under
density of fluid is much less than the material density ofcertain conditionsy, > 0. Note that the higher moments
particles(p < p,). However, the results of this study 9rowW faster than the lower moments of particle concen-
can be easily generalized to include the case p,  tration (i.e.,ys; > sy»/2). Therefore spatial distribution
using the equation of motion of particles in fluid flow of fluctuations of particle concentration is intermittent.
presented in [1]. This equation of motion takes intoSiNCeys > -« (Where0 < k <'s), a contribution of
account contributions due to the pressure gradient in thé1€ sourcel into the obtained general solution is not es-
fluid surrounding the particle (caused by acceleration ofential. .
the fluid) and the virtual (“added”) mass of the particles NOw we study the evolution of the second-order
relative to the ambient fluid. The results far= p,  correlation function of particle concentratioh = .
coincide with those obtained for the cage < p,) Equation (5) implies an equation for the second moment
except for the transformatior, — B7,, where @

p 3p aP ER)
,3=<1+ )(1— > — = — 2T,y —— + A7b(x)b(y))®
Py 20, + p ot oxmay, T ATPEBY)
For p = p, the valuedn,/dt « —B7,AP/p. Thus

d
there is an accumulation of inertial particles (i.e., _4<T”'"(X)b(y»a t L. (6)
5374



VOLUME 77, NUMBER 27 PHYSICAL REVIEW LETTERS 30 BceEMBER 1996

where T,,, = D,;,,(0) — D,,,(r),r =y — x, and I, = 7, < 79, and the particle radius. < [,, wherer, is
2rb(x)b(y))N>. the correlation time in the viscous dissipation scale
Equation (6) forb = 0 was first derived by Kraichnan of a fluid flow. The viscous scale i§ ~ Re '/G3~7),
(see [5]). In this particular caseé, = 0, this equation whereRe = lyug/v > 1 is the Reynolds numbew; is
describes a relaxation of the second moment of particléhe kinematic viscosity of the fluid angl is the exponent
concentration. On the other hand, whén# 0, i.e., in the spectrum of the turbulent kinetic energy of fluid.
when the velocity of particle is divergent, Eq. (6) implies This model is valid when the material densigy, of
a new effect of self-excitation (exponential growth) of particles is much larger than the densityof fluid. We
fluctuations of particle concentration caused by the seconghitroduce a scale, in which r, = 7(r = r,), where
termin (6). In particular, when — 0, the second moment [/, < r, < 1, and 7(r) is the correlation time of the
can grow (i.e.,0®/dr > 0) due to the second term in turbulent fluid velocity field in the scale. In the range
Eq. (6) which is proportional t&V - v,)?). r, < r < 1the effect of inertia of particles is very small,
We consider a homogeneous and isotropic incompresand particle velocity is close to the fluid velocity. In this
sible turbulent velocity field of fluid. In this case, the case,F = 1 — r¢~! + 0(r2/75) and F. = O(r2/73),
particle velocity field is also homogeneous and isotropicwhere ¢ = 2p — 1. The exponentp in the spectrum
however, it is compressible, i.8/,- v, # 0. The correla- of kinetic turbulent energy is different from that of the
tion function of a compressible homogeneous and isotropitunction {(7u,,u,) due to the scale dependence of the
random velocity field was derived in [6]. The second mo-momentum relaxation time of the turbulent velocity of
ment for the particle velocity can be chosen in the samduid [11]. Thus, in the scaleg, < r < 1, the effects of

form (see below): compressibility of the particle velocity field is negligible.
On the other hand, in scalés < r < r, the effect of
(T (X)uy(x + 1)) = DT|:[F(7”) + Fe(r)]0mn inertia is important so tha¥ - v, # 0. In these scales
, incompressibleF (r) and compressiblé.(r) components
L <5mn _ rmrn> t M} (7)  of the turbulent velocity field of particles can be chosen as
2 r? o F(r)=(1—g)(1 — r77"), and F.(r) = e(1 — ri7 ).
(for details see [6]), whereF' = dF/dr,F(0) = We take into account that in the equation of motion for

1 — F.(0), and Dr = uplp/3. The function F.(r) particlesdv,/dt = (v —v,)/7, the lastterniv,/7,| <
describes the potential component, wheréds) corre-  |dv,/dt| in the scalesl, < r < r,. In this case the
sponds to the vortical part of the turbulent velocity of equation of motion for particles coincides with Navier-

particles. Stokes equation for fluid in the inertial range (where the
We seek a solution to the equation fdr without the  Vviscous term is dropped out) except for the tewWp.
sourcel, in the form, In the latter equation for particles the tewir, can be

. interpreted as a stirring force. Thus in this case it is
DL, r) = i) exr{— [ )((x)dx:|exﬁyt) , (8) Pplausible to suggest that the exponent in the spectrum of
r 0 the second moment for particle velocity coincides with
wherey = v,. The substitution of (8) into Eq. (6) yields that of the turbulent fluid velocity. Howevely - v,| «

an equation for the unknown functiob(r): [V - [(v, - V)v,]| # 0.
1 2w We consider the case of large Schmidt numb8es=
ﬁ e [v + U@R)]¥ =0, (9 v/D > 1. This condition is always satisfied for Brown-
mir)-ar ian particles. The solution of Eq. (9) can be obtained
where using an asymptotic analysis (see, e.g., [6]). This anal-
1 (2x 5 , ysis is based on the separation of scales. In particular, the
Ulr) = <_ Xt X) = «(r), solution of the Schrddinger equation (9) with a variable
m(r)\'r . |
mass has different regions where the poteritiat), mass
1 _ 2 + 20 g ! m(r), and eigenfunctiongV'(r) are different. The solu-
m(r) Pe 3 tions in these different regions can be matched at their
m(r) , , " boundaries. Note that the most important part of the solu-
x(r) = 3 <4Fc - F o+ D) ch>’ tion is localized in small scales (i.e.,<< 1). The results
P obtained by this asymptotic analysis are presented below.
k(r) = 1 <8_C + 7F" + rFé”>, The solution of Eq.(9) for [, =r<r,
3 r yields the function ®(z,r) = ®(r) exp(yt), where

and distancer is measured in units ofy, time r is  ®(r) = A;r“codcinr + @), anda = 2¢ — oq1)/
measured in units ofy, and Pe = loug/D > 1 is the 4(1 + go), o = &/(1 — &), and ¢ =[(¢g — 3a) (g +
Peclet number. a)/31"%,q, = ¢* + 3¢ — 6. Note that ¢ > 3a

Now we discuss the above model of a random velocityand « > 0. This yields the range of values of:
field of inertial particles. Consider a case when <<  2g/q» < o < 2gq/q1, Where ¢, =7¢> + 9g — 18
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and g; > 0. For example, whenp = 5/3 this in- tration can be easily excited in a cylinder of an internal
equality yields 0.11 <o <0.73.  Parameters A;  combustion engine. The excited fluctuations are localized
and ¢; are determined by conditiond(r =1,) =1 in scales~0.6 X 1072 cm.
and d®/dr(r =1,) = 0. In the ranger, < r < 1 The self-excitation of fluctuations of particle concen-
the function ®(r) = A, + A3r 9. In large scales, tration is observed in atmospheric turbulence. Using the
i.e., r > 1, functions F(r) and F.(r) tend to zero parameters of the atmospheric turbulent boundary layer,
and thereforel/m(r) — 2/3 and U — 0. The so- uy ~ 30-100 cm/s, Iy ~ 10°-~10* cm, we find that the
lution of Egs. (8) and (9) in this range is given by excited fluctuations of particle concentration are locali-
®(r) = Asr ' exp(—r+/37v/2), where we consider a case zed in scales~0.3-1 cm. This effect causes formation
v = 0. Parametersi,, A3, A4, and the growth rate of of small-scale inhomogeneities in droplet clouds (“inch
fluctuationsy are determined by matching functiod<r)  clouds”) which were discovered recently [12].
and®’ atr = r, andr = 1. In particular, the growth In summary, it is demonstrated that inertia of particles
rate of fluctuations of particle concentration is given by in a homogeneous and isotropic incompressible turbulent
[+ (g — )P Re fluid flow cqusesaself-excitation of fluctu_ations of particle
= 4 5 n2< ) , (10)  concentration. The growth rates of the higher moments of
6(3 — g)%ra’ Re(©? particle concentration are higher than those of the lower
where r, = (7,/70)/7~D,Re > Re and the critical moments, i.e., particle spatial distribution is intermittent.
Reynolds numbeRe ")

This process can be damped by the nonlinear effects
(e.g., two-way coupling between fluctuations of particle

(er) p—3 3—-p a concentration and turbulent fluid flow). When the particle
Re™ = r; “ex T <7Tk + arctan; velocity field is divergence free, i.€Y, - v, = 0, all the

9 — moments of the concentration field do not grow, and

+ arctan ﬂ (11) there is no intermittency without an external source of

fluctuations of particle concentration. When the inertia

where k = 1,2,3,.... Whenr, = 7y in Egs. (10) and effect is negligible (e.g., for a small size of particle or
(11) r, is set equal tol. This analysis shows that the gaseous admixture) but the fluid velocity field is divergent,
characteristic scales of localization of the fluctuations aré.e., V - v # 0, the moments of the concentration field
of orderly ~ r,exp(mn/c), wheren = k. Thus we have grow, and there is intermittency without an external source
shown that the fluctuations of particle concentration can bef fluctuations of particle concentration. In this case,
excited without an external source. Egs. (10) and (11) witlr, = 1 determine the growth rate

Remarkably, a condition for the exponential growthof fluctuations of particle concentration and the critical
of the mean concentration of inertial particles requiresReynolds number, respectively.
gradients of the external fields (temperature or pressure) We are indebted to S. Childress, G. Falkovich,
and inhomogeneous turbulent fluid flow [10]. Thus inertiaU. Frisch, H. K. Moffatt, and L. van Wijngaarden for illu-
of particles in a turbulent fluid flow results in formation minating discussions. This work was partially supported
of large-scale (mean field) inhomogeneities in the spatiaby The German-Israeli Foundation for Scientific Research
distribution of particle concentration in the vicinity of the (Grant No. [-008-303.085).
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