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Certain dynamical systems exhibit a phenomenon called bubbling, whereby small perturbations induce
intermittent bursting. In this Letter we show that, as a parameter is varied through a critical value, the
transition to bubbling can be “hard” (the bursts appear abruptly with large amplitude) or “soft” (the
maximum burst amplitude increases continuously from zero), and that the presence or absence of
symmetry in the unperturbed system has a fundamental effect on these transitions. These results are
confirmed by numerical and physical experiments. [S0031-9007(96)01852-2]

PACS numbers: 05.45.+b, 47.20.Ky, 84.30.—r

Dynamical systems that possess an invariant surface For specificity, consider the case of two coupled oscil-
embedded in their phase space [1] display unusual dynamlators,
fcaI properties and are of mter_est_because of their p_otennal 8= Fi(u) + kifu — v), (1a)
requent occurrence in applications. Examples include
extended systems with spatial symmetries (e.g., Rayleigh- v = Fy(v) + kf(v — u), (1b)
Bérnard convection in a symmetric cell [2], reaction-

diffusion systems [2,3], etc.), as well as synchronizetheref a”f?‘ Fia are smooth qu]ct|onsﬁ(0)“= 0, and”kl
. . . andk, are “coupling constants.” For the “matched” case
chaotic oscillators [4]. The latter are of interest, for

example, in various problems of communications [5] andFl(w) = Fa(w), the synchronized state = v represents
PI€, P an invariant surface embedded in the f(ll,v) phase

optics [6]. Among the dynamical behaviors characteristic ace. Note that Egs. (1a) and (1b) have a symmetry when
of systems with invariant phase space surfaces are on—oip _ k . They are uﬁchanged whan and v are inter-
intermittency [7], riddled basins of attraction [8], and C;langéd Thus, we say that there is “symmetric coupling”
bubbling [9—-12]. In bubbling there is a chaotic set on the ' '

invariant surface which is stable (i.e., an attractor) in thevhenki = k, while whenk, # k, we say that the cou-

sense that it attractypical orbits near the surface, but, is pling is asymmetric. We will show below that the proper-

also unstable in the sense that there are unstable periocﬂgS of the transition to bubbling differ for the symmetric

; i ; . nd asymmetric coupling cases. Note that extended sys-
orblts_emb_edded in the chaotic set which are transverse ms with a spatial symmetry have the same generic prop-
repelling (i.e., they have a positive Lyapunov exponent

for perturbations transverse to the invariant surface). Thi§ rues as goupleq oscillators Wlth.symmetnc c.oup!mg .[2]'
The universality of the transition to bubbling implies

situation leads to a surprising effect: Small changes in th(tan . . .

. L , «:_that very simple models that incorporate the essential
dynamical system that destroy its invariant surface (“mis, .

, X ; . eatures responsible for these phenomena can be used to
match”) [13] or noise result in a continual sequence off . S .
. . X . . extract general results. In this spirit we introduce the
intermittent bursts from the invariant manifoldp matter . )

: . ollowing model system:

how smallthe mismatch or noise. The mean frequency off
the bursts, however, approaches zero as the amplitude of  x,+; = 2x, modl, (2a)
the noise and system mismatch approach zero. _ -

In this Letter we investigate the transition to bubbling ynt1 = [AQn, plyn + €y, + g COL27x,)]. . (2D)
as a system parameter is varied. Our considerationsheree = *1 andA(x,p) =1 + p — [1 — cod27x)].
are limited to the effect of mismatch in the absence ofThe function[.]. is defined by[¢]. = £ if |£] = 1 and
noise. The critical value of the system parameter at whiché]. = & — 1.5sgr(é) if |£] > 1 and provides a simple
bubbling first occurs typically corresponds to the value atonfining nonlinearity that prevents orbits from running
which one of the periodic orbits embedded in the chaotioff toward |y| = «. As our subsequent analysis shows,
set first becomes repelling in a direction transverse to theur derived scalings are dictated by behavior near 0,
invariant surface [14]. Our principal result is that this and are therefore unaffected by the form of the confin-
bifurcation comes in four basic varieties, each of whiching nonlinearity. [In terms of Egs. (1), we can think.of
yields distinct behaviors that we describe and demonstratendy in (2) as modeling the dynamics &f= (u + v)/2
numerically and experimentally. along the invariant surface aiyd= (u — v)/2 transverse
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to this surface, respectively.] The tergcog27x) rep- (In a real system with small noise our predicted scalings

resents a small mismatch [e.g., it models the differencevould apply wherlg| exceeds the noise level.)

F, — F,in Egs. (1)]. Figures 1(a)-1(d) show time series generated by
In the absence of mismatch (i.e., for= 0), Egs. (2a) Egs. (2a) and (2b) for the symmetric case= 3. Com-

and (2b) have an invariant line = 0 on which there is  paring Figs. 1a and 1b, which are fer= 1, we see that

a chaotic invariant set generated by themodl map, the maximum burst amplitude remains about the same

Eq. (2a). The stability of this line is governed by the 35 the parameter > 0 is increased. This contrasts with

factor A(x, p), wherep is the bifurcation parameter (€.9., the casee = —1 [Figs. 1c and 1d] for which we see

p might characterize the strength of the coupling iNihai the maximum burst amplitude increasespas 0

(1a) and (1b) where increasing coupling corresponds % increased. In both cases the time between bursts

d_ecreasr%a). _Slg(:_eA(x,p)_ '3 maxmt;)T aftxth= 0, andz increases as the transition is approached. We call the
sihcex =0,y = 0 1S a period oneé orbit of the map (. ) transition where, ap increases througp = 0, the bursts
for ¢ = 0, we see that this period one orbit is the first i ) _

. . : appear abruptly with large amplitude = +1), a hard
periodic orbit to become transversely unstable, and it doets)ubbling transition: and we call the transition where
S0 asp increases through zero. Thps= 0 is the critical o ;
parameter value at the transition to bubbling. the b_urst amplitude mcreases_ c_ontmuously from Zero

as p increases through zer@ = —1) a soft bubbling

The termey” in Eq. (2b) represents the lowest order . . oo e
v nonlinearity of the system. The difference between thdransition. Hard and soft transitions, qualitatively similar

symmetric coupling casé; = k;) and the asymmetric to Fig. 1, also occur for the case of asymmetric .coupllng,
coupling case(k, # k) is reflected in the model (2a) where ge > 0 corresponds to the hgrd transition, and
and (2b) by the value of the exponest In particular, 9€ =9 corresponds to the soft transition. .
Egs. (2a) and (2b) must be invariant under the symmetry There are basic d_lfferences between the sy_mmetrlc and
transformationy — —y for symmetric coupling. Thus asymmetric cases in terms o_f how the maximum burst
for the symmetric case g nonlinearity is ruled out, and @MPlitudeA and the average time between bursts scale
in the absence of any further symmetries or restrictions oMith the parameterp andg. The differences in scalings
the original system, we generically have that= 3 in the for the four basic varieties of bubbling transitions are
symmetric case, while- = 2 in the asymmetric case. In summarized in Table | (see [15]).

general, one might also add small stochastic perturbations We now give a brief derivation of the results listed
to the right hand sides of Egs. (2a) and (2b) to model thén Table | (for more detail see Ref. [15]). Consider first
effect of noise. In this Letter we concentrate on the effec@in orbit starting atxo, yo) = (0,0). Subsequent iterates
of small mismatct{l > |¢| > 0) in the absence of noise. remainatc = 0 andobey,+; — y, = py, + €yJ + q.

4 4

3x10 0 1x10% 2x10%

3x104

0 1><1O4 2%10
n n

FIG. 1. Examples of the hard (a), (b) and soft (c), (d) transitions using the map model Egs. (2) with02 ando = 3.
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TABLE I. Scaling summary applying for > p > g1 .

Symmetric coupling Asymmetric coupling
(o0 =3) (0 =2)
Soft transition A~ pl/? A~p
Int ~ hyp~tinp/q*> Int ~ hyp'inp/q'?
Hard transition A~ 0(1) A~ 0(1)
InT ~ hyp 'Inp/q*? InT ~ hyp 'Inp/q'/?

For smallp, ¢, andy, we can approximate this equation astransition (ge > 0). The data plotted as diamonds are
a differential equationdy(n)/dn = py(n) + €y“(n) +  obtained from numerical experiments on Egs. (2). The
g, with y(0) = 0. It can be shown [15] that most of plotted straight line has the slopg; predicted by Egs. (4)
the time spent in initiating a burst is spent in the regionand (5) and agrees with the data. The scaling of the soft
Iyl = p“~Y" in which the nonlinear terny? is small  transition maximum burst amplitude showing the effect
compared to the linear termy. of small finite ¢ is illustrated by data from results of
For the soft transition, the nonlinearity counteracts thenumerical experiments on Egs. (2) plotted as diamonds
linear growth and limity| to |y| = p“~D"". Thuswhen and triangles in Figs. 3(a) and 3(b). Figure 3(a) is for
l¢| is sufficiently small, the maximum burst amplitude is the asymmetric caséos = 2), and Fig. 3(b) is for the
A ~ p(”*l)” 3) symmetric caséo = 3). In Figs. 3(a) and 3(b) the solid
lines are the asymptotic results [Eq. (3)], while the dashed
for the soft transition. This result applies fprA > |g|  curves include the effect of small finite[Eq. (3)]. For
(ie., p?/"D/lgl > 1). When this condition is not numerical tests of the scaling efwith |¢| predicted by (5)
satisfied the approach df to zero asp — 0 implied by  see [15].
(3) is cut off, and a more precise maximum burst amplitude To test our predictions in an experimental setting,
for our model (2a) and (2b) is given by the positive root ofwe have measured the maximum burst amplitude for

pPA— AT +4=0 (3) two p_roportional', one-way coupledc2['= 0 in Egs. (l)]'
) chaotic electronic circuits as a function of the coupling
(@ssuminge = —1, ¢ > 0). o strength [11] k; in Egs. (1a) and (1b)]. The layout of
For the hard transition, the nonlinearity aCCf'%fﬁE?S then individual circuit is shown schematically in the inset
growth in |yl, and whenly| becomes of ordep“~"", Fig. 3(c), and the components of the two circuits are

the orbit rapidly moves off tgy| ~ 0(1). In either case, matched to within 1%. The dynamics of an individual
the time7 for the initial point (xo, yo) = (0,0) to reach  ¢jreyit in the absence of coupling can be described
[yl ~_p<‘"1) can be estimated from the differential i three-dimensional phase space £y = (Vi Vo, 1),
equation approximation as where j = m or s for the master or slave circuit and it
_ plo ! 1 o/o—1) displays a chaotic attractor with one positive Lyapunov
= [T /oy +lab = p Tl eponent

(4) We observe a transition to bubbling when a current
equal toc(Vy,, — Vi) isinjected into the V| node” of the
slave circuit, where is the coupling strength. Figure 3(c)
shows the dependence of the maximum burst amplitude
A = ||z,, — z,|lmax ON the coupling strength where it is
seen that\ decreases smoothly, indicating a soft transition

for p?/@=1 /14| > 1.

To estimate the average interburst timeve note that
for p < 1, the factorA(x, p) is less than one (contracting)
unlessx is very close to 0. Thus in order to initiate a
burst, an orbit must land sufficiently near= 0 that it
follows thex = 0 orbit closely for approximately: iter-
ates. Such orbits must land in a regip = Ax where 3.0 ' ' ' ' '
Ax can be estimated in terms @f as follows. Since I
the measure generated by (2a) is uniformejrwe have 256
that 7! ~ Ax. For small initial xo the subsequent [
values grow exponentially likeyexp(hn), whereh is
the Lyapunov exponent for the critical period orbit in
the direction along the invariant surfacg)[= In2 for [
Egs. (2a) and (2b)]. Thus we obtaitx explhn) ~ 1 1.5k
which with (4) yields the estimate [16] i

In7 ~ hyi ~ (hy/p)IN[p?/“ V/lgl].  (5) ] S

Egs. (3) and (5) give the results listed in Table I. ~2.4 22 ‘2'?n( ;"5 -1.6 -1.4
Figure 2 is an example of the scaling ofwith p, P
for the case of asymmetric couplifg = 2) and a hard FIG. 2. pinr versus Irp.
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FIG. 3. Maximum burst amplitud& versus the bifurcation parametgrfor a soft bubbling transition obtained from numerical
experiments on Egs. (2a) and (2b) (a) asymmetric couplimg= 2) (b) asymmetric couplinglc = 3). (c) Experimentally
measuredA as a function of coupling strength An individual circuit, shown schematically in the inset, consists of a negative
resistorR; = 2814 (), capacitorsC = 10 nF, an inducto. = 55 mH (dc resistanca53 (1), a resistoiR; = 100 (), and a passive
nonlinear element (resistaét, = 8,067 (1, diodes typel N914, dashed box).
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