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Certain dynamical systems exhibit a phenomenon called bubbling, whereby small perturbations
intermittent bursting. In this Letter we show that, as a parameter is varied through a critical valu
transition to bubbling can be “hard” (the bursts appear abruptly with large amplitude) or “soft”
maximum burst amplitude increases continuously from zero), and that the presence or abse
symmetry in the unperturbed system has a fundamental effect on these transitions. These res
confirmed by numerical and physical experiments. [S0031-9007(96)01852-2]
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Dynamical systems that possess an invariant sur
embedded in their phase space [1] display unusual dyna
cal properties and are of interest because of their pote
frequent occurrence in applications. Examples inclu
extended systems with spatial symmetries (e.g., Rayle
Bérnard convection in a symmetric cell [2], reactio
diffusion systems [2,3], etc.), as well as synchroniz
chaotic oscillators [4]. The latter are of interest, f
example, in various problems of communications [5] a
optics [6]. Among the dynamical behaviors characteris
of systems with invariant phase space surfaces are on
intermittency [7], riddled basins of attraction [8], an
bubbling [9–12]. In bubbling there is a chaotic set on t
invariant surface which is stable (i.e., an attractor) in
sense that it attractstypical orbits near the surface, but,
also unstable in the sense that there are unstable per
orbits embedded in the chaotic set which are transver
repelling (i.e., they have a positive Lyapunov expon
for perturbations transverse to the invariant surface). T
situation leads to a surprising effect: Small changes in
dynamical system that destroy its invariant surface (“m
match”) [13] or noise result in a continual sequence
intermittent bursts from the invariant manifold,no matter
how smallthe mismatch or noise. The mean frequency
the bursts, however, approaches zero as the amplitud
the noise and system mismatch approach zero.

In this Letter we investigate the transition to bubblin
as a system parameter is varied. Our considerat
are limited to the effect of mismatch in the absence
noise. The critical value of the system parameter at wh
bubbling first occurs typically corresponds to the value
which one of the periodic orbits embedded in the chao
set first becomes repelling in a direction transverse to
invariant surface [14]. Our principal result is that th
bifurcation comes in four basic varieties, each of wh
yields distinct behaviors that we describe and demonst
numerically and experimentally.
0031-9007y96y77(27)y5361(4)$10.00
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For specificity, consider the case of two coupled osc
lators,

Ùu  F1sud 1 k1fsu 2 vd , (1a)

Ùv  F2svd 1 k2fsv 2 ud , (1b)

wheref and F1,2 are smooth functions,fs0d  0, andk1
andk2 are “coupling constants.” For the “matched” cas
F1swd  F2swd, the synchronized stateu  v represents
an invariant surface embedded in the fullsu, vd phase
space. Note that Eqs. (1a) and (1b) have a symmetry w
k1  k2: They are unchanged whenu and v are inter-
changed. Thus, we say that there is “symmetric couplin
whenk1  k2, while whenk1 fi k2 we say that the cou-
pling is asymmetric. We will show below that the prope
ties of the transition to bubbling differ for the symmetri
and asymmetric coupling cases. Note that extended s
tems with a spatial symmetry have the same generic pr
erties as coupled oscillators with symmetric coupling [2

The universality of the transition to bubbling implie
that very simple models that incorporate the essen
features responsible for these phenomena can be use
extract general results. In this spirit we introduce t
following model system:

xn11  2xn mod1 , (2a)

yn11  flsxn, pdyn 1 eys
n 1 q coss2pxndgp , (2b)

wheree  61 andlsx, pd  1 1 p 2 f1 2 coss2pxdg.
The functionf.gp is defined byfjgp  j if jjj # 1 and
fjgp  j 2 1.5 sgnsjd if jjj . 1 and provides a simple
confining nonlinearity that prevents orbits from runnin
off toward jyj  `. As our subsequent analysis show
our derived scalings are dictated by behavior neary  0,
and are therefore unaffected by the form of the confi
ing nonlinearity. [In terms of Eqs. (1), we can think ofx
andy in (2) as modeling the dynamics ofx  su 1 vdy2
along the invariant surface andy  su 2 vdy2 transverse
© 1996 The American Physical Society 5361
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to this surface, respectively.] The termq coss2pxd rep-
resents a small mismatch [e.g., it models the differe
F1 2 F2 in Eqs. (1)].

In the absence of mismatch (i.e., forq  0), Eqs. (2a)
and (2b) have an invariant liney  0 on which there is
a chaotic invariant set generated by the2x mod1 map,
Eq. (2a). The stability of this line is governed by th
factor lsx, pd, wherep is the bifurcation parameter (e.g
p might characterize the strength of the coupling
(1a) and (1b) where increasing coupling corresponds
decreasingp). Sincelsx, pd is maximum atx  0, and
sincex  0, y  0 is a period one orbit of the map (2
for q  0, we see that this period one orbit is the fir
periodic orbit to become transversely unstable, and it d
so asp increases through zero. Thusp  0 is the critical
parameter value at the transition to bubbling.

The termeys in Eq. (2b) represents the lowest ord
y nonlinearity of the system. The difference between
symmetric coupling casesk1  k2d and the asymmetric
coupling casesk1 fi k2d is reflected in the model (2a
and (2b) by the value of the exponents. In particular,
Eqs. (2a) and (2b) must be invariant under the symme
transformationy ! 2y for symmetric coupling. Thus
for the symmetric case ay2 nonlinearity is ruled out, and
in the absence of any further symmetries or restrictions
the original system, we generically have thats  3 in the
symmetric case, whiles  2 in the asymmetric case. In
general, one might also add small stochastic perturbat
to the right hand sides of Eqs. (2a) and (2b) to model
effect of noise. In this Letter we concentrate on the eff
of small mismatchs1 ¿ jqj . 0d in the absence of noise
5362
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(In a real system with small noise our predicted scalin
would apply whenjqj exceeds the noise level.)

Figures 1(a)–1(d) show time series generated
Eqs. (2a) and (2b) for the symmetric cases  3. Com-
paring Figs. 1a and 1b, which are fore  1, we see that
the maximum burst amplitude remains about the sa
as the parameterp . 0 is increased. This contrasts wit
the casee  21 [Figs. 1c and 1d] for which we se
that the maximum burst amplitude increases asp . 0
is increased. In both cases the time between bu
increases as the transition is approached. We call
transition where, asp increases throughp  0, the bursts
appear abruptly with large amplitudese  11d, a hard
bubbling transition; and we call the transition whe
the burst amplitude increases continuously from z
as p increases through zerose  21d a soft bubbling
transition. Hard and soft transitions, qualitatively simil
to Fig. 1, also occur for the case of asymmetric coupli
where qe . 0 corresponds to the hard transition, a
qe , 0 corresponds to the soft transition.

There are basic differences between the symmetric
asymmetric cases in terms of how the maximum bu
amplitudeD and the average timet between bursts scal
with the parametersp andq. The differences in scaling
for the four basic varieties of bubbling transitions a
summarized in Table I (see [15]).

We now give a brief derivation of the results liste
in Table I (for more detail see Ref. [15]). Consider fir
an orbit starting atsx0, y0d  s0, 0d. Subsequent iterate
remain atx  0 and obeyyn11 2 yn  pyn 1 eys

n 1 q.
FIG. 1. Examples of the hard (a), (b) and soft (c), (d) transitions using the map model Eqs. (2) withq  0.02 ands  3.
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TABLE I. Scaling summary applying for1 ¿ p ¿ qs12s21d.

Symmetric coupling Asymmetric coupling
ss  3d ss  2d

Soft transition D , p1y2 D , p
ln t , hkp21 ln pyq2y3 ln t , hkp21 ln pyq1y2

Hard transition D , 0s1d D , 0s1d
ln t , hkp21 ln pyq2y3 ln t , hkp21 ln pyq1y2
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For smallp, q, andy, we can approximate this equation
a differential equation,dysndydn  pysnd 1 eyssnd 1

q, with ys0d  0. It can be shown [15] that most o
the time spent in initiating a burst is spent in the reg
jyj u pss21d21

in which the nonlinear termys is small
compared to the linear termpy.

For the soft transition, the nonlinearity counteracts
linear growth and limitsjyj to jyj u pss21d21

. Thus when
jqj is sufficiently small, the maximum burst amplitude i

D , pss21d21

(3)

for the soft transition. This result applies forpD ¿ jqj
(i.e., psyss21dyjqj ¿ 1). When this condition is no
satisfied the approach ofD to zero asp ! 0 implied by
(3) is cut off, and a more precise maximum burst amplitu
for our model (2a) and (2b) is given by the positive root

pD 2 Ds 1 q  0 s30d

(assuminge  21, q . 0).
For the hard transition, the nonlinearity accelerates

growth in jyj, and whenjyj becomes of orderpss21d21
,

the orbit rapidly moves off tojyj , 0s1d. In either case
the time n for the initial point sx0, y0d  s0, 0d to reach
jyj , pss21d21

can be estimated from the differenti
equation approximation as

n >
Z pss21d21

0
dyys py 1 jqjd > p21 lnfpsyss21dyjqjg ,

(4)

for psyss21dyjqj ¿ 1.
To estimate the average interburst timet we note that

for p ø 1, the factorlsx, pd is less than one (contracting
unlessx is very close to 0. Thus in order to initiate
burst, an orbit must land sufficiently nearx  0 that it
follows thex  0 orbit closely for approximatelyn iter-
ates. Such orbits must land in a regionjxj u Dx where
Dx can be estimated in terms ofn, as follows. Since
the measure generated by (2a) is uniform inx, we have
that t21 , Dx. For small initial x0 the subsequentx
values grow exponentially likex0 expshknd, wherehk is
the Lyapunov exponent for the critical period orbit
the direction along the invariant surface [hk  ln 2 for
Eqs. (2a) and (2b)]. Thus we obtainDx expshknd , 1
which with (4) yields the estimate [16]

ln t , hkn , shkypd lnfpsyss21dyjqjg . (5)

Eqs. (3) and (5) give the results listed in Table I.
Figure 2 is an example of the scaling oft with p,

for the case of asymmetric couplingss  2d and a hard
s
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transition sqe . 0d. The data plotted as diamonds a
obtained from numerical experiments on Eqs. (2). T
plotted straight line has the slope2hk predicted by Eqs. (4)
and (5) and agrees with the data. The scaling of the
transition maximum burst amplitude showing the effe
of small finite q is illustrated by data from results o
numerical experiments on Eqs. (2) plotted as diamo
and triangles in Figs. 3(a) and 3(b). Figure 3(a) is f
the asymmetric casess  2d, and Fig. 3(b) is for the
symmetric casess  3d. In Figs. 3(a) and 3(b) the solid
lines are the asymptotic results [Eq. (3)], while the dash
curves include the effect of small finiteq [Eq. (3′)]. For
numerical tests of the scaling oft with jqj predicted by (5)
see [15].

To test our predictions in an experimental settin
we have measured the maximum burst amplitude
two proportional, one-way coupled [k2  0 in Eqs. (1)]
chaotic electronic circuits as a function of the couplin
strength [11] [k1 in Eqs. (1a) and (1b)]. The layout o
an individual circuit is shown schematically in the ins
of Fig. 3(c), and the components of the two circuits a
matched to within 1%. The dynamics of an individu
circuit in the absence of coupling can be describ
in three-dimensional phase space byzT

j  sV1j , V2j , Ijd,
wherej  m or s for the master or slave circuit and
displays a chaotic attractor with one positive Lyapun
exponent.

We observe a transition to bubbling when a curre
equal tocsV1m 2 V1sd is injected into the “V1 node” of the
slave circuit, wherec is the coupling strength. Figure 3(c
shows the dependence of the maximum burst amplit
D  kzm 2 zskmax on the coupling strength where it i
seen thatD decreases smoothly, indicating a soft transiti

FIG. 2. p ln t versus lnp.
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al
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FIG. 3. Maximum burst amplitudeD versus the bifurcation parameterp for a soft bubbling transition obtained from numeric
experiments on Eqs. (2a) and (2b) (a) asymmetric couplingss  2d (b) asymmetric couplingss  3d. (c) Experimentally
measuredD as a function of coupling strengthc. An individual circuit, shown schematically in the inset, consists of a nega
resistorR1  2814 V, capacitorsC  10 nF, an inductorL  55 mH (dc resistance353 V), a resistorR3  100 V, and a passive
nonlinear element (resistorR2  8,067 V, diodes type1N914, dashed box).
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to bubbling. Based on Eq. (3) withs  2, we expectD ,
scb 2 cd wherec  cb is the critical bubbling transition
value. It is seen that there is good agreement with
observed points (solid circles) and the straight line
cb  0.56. Finite noise and mismatch smooth out th
transition to bubbling as in the simple model [see Fig. 3
and 3(b)].
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