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Element 118: The First Rare Gas with an Electron Affinity
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The electron affinity of the rare gas element 118 is calculated by the relativistic coupled clu
method based on the Dirac-Coulomb-Breit Hamiltonian. A large basis set (34s26p20d14f9g6h4i) of
Gaussian-type orbitals is used. The external 40 electrons are correlated. Inclusion of both relativity
correlation yields an electron affinity of 0.056 eV, with an estimated error of 0.01 eV. Nonrelativis
or uncorrelated calculations give no electron affinity for the atom. [S0031-9007(96)02040-6]

PACS numbers: 31.30.Jv, 27.90.+b, 31.25.Eb
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Studies of superheavy elements have been parti
motivated by the hope of finding exotic, unexpect
electronic properties, due to the relativistic effects, such
the stabilization ofs shells or the destabilization of high-l
(d andf) shells. We have earlier shown that the groun
stated10s1 electron configuration of the lighter coinag
metals (Cu, Ag, Au) is replaced byd9s2 for ekagold,
element 111 [1], and that analogous changes occur
ekamercury, element 112 [2]. Even the next element,
main-group ekathallium E113, has a chance of behav
as a transition metal [3].

Not only the occupied but also the initially emptys
levels are stabilized by relativity. As an example, t
yellow color of PbCl22

6 was attributed to the relativistic
stabilization of the low-lying, emptya1 molecular orbital
[4]. We now consider the possibility that the stabilizatio
of the 8s shell would be large enough to give an electr
affinity to ekaradon, element 118. The first known ca
of a closed-shell atom with an electron affinity wa
that of Ca [5–7]. The added electron there had
same principal quantum number as the valence electr
with the configurationns2np. Here we consider adding
an electron with a higher principal quantum numb
yielding a ns2np6sn 1 1ds configuration. Long-lived
Xe2 has been reported [8], but no state assignme
were made, and it was not determined whether
observation corresponded to a bound state or a resona
Calculations by Nicolaides and Aspromallis [9] found n
bound state of Xe2.

The method we employ is relativistic coupled clust
(RCC) with single and double excitations. This meth
has been applied to a series of heavy elements, includ
Au [10], Pr31 and U41 [11], Yb and Lu [12], Hg [2],
Tl [3], and Ra [13], as well as the superheavy eleme
Lr [12], 104 [14], 111 [1], 112 [2], and 113 [3]. The
properties calculated are primarily transition energi
0031-9007y96y77(27)y5350(3)$10.00
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including ionization potentials, excitation energies, a
electron affinities. Good agreement with experimen
values is obtained when the latter are known; in oth
cases predictions may be made regarding order
separation of electronic states.

The RCC method with single and double excitations
cludes relativistic and correlation effects simultaneou
to high order. A detailed description of the metho
may be found in earlier papers [10,11], and only a br
account is given here. We start from the projected Dira
Coulomb (DC) or Dirac-Coulomb-Breit (DCB) Hamilton
ian [15–18]

H1 ­ L1

∑ X
i

fcai ? pi 1 c2sbi 2 1d

1 Vnucsidg 1
X
i,j

V si, jd
∏

L1. (1)

The nuclear potentialVnuc includes the effect of finite
nuclear size.L1 is a product of projection operators ont
the positive energy states of the Dirac Hamiltonian. T
HamiltonianH1 has normalizable, bound-state solution
Equation (1) is the no-virtual-pair approximation, wit
virtual electron-positron pairs not allowed in intermedia
states. The two-electron potential in Coulomb gaug
correct to second order in the fine-structure constanta,
is the Coulomb-Breit potential [16,17,19]

V ­
1

r12
2

1
2r12

fa1 ? a2 1 sa1 ? r12d sa2 ? r12dyr2
12g ,

(2)

where the second term is the frequency-independent B
interaction.

Using the second quantization formalism, the DC
HamiltonianH1 is rewritten in terms of normal-ordered
products of the spinor operators,hr1sj and hr1s1utj
© 1996 The American Physical Society
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H ­ H1 2 k0jH1j0l

­
X
rs

frshr1sj 1
1
4

X
rstu

krsjjtul hr1s1utj , (3)

wherefrs andkrsjjtul are, respectively, elements of on
electron Dirac-Fock and antisymmetrized two-electr
Coulomb-Breit interaction matrices over Dirac fou
component spinors. The effect of the projection opera
L1 is now taken over by normal ordering, denoted
the curly braces in the equation above, which requ
annihilation operators to be moved to the right of creat
operators as if all anticommutation relations vanish. T
Fermi level is set at the top of the highest occup
positive energy state, and the negative energy states
ignored.

The no-pair approximation leads to a natural a
straightforward extension of the nonrelativistic open-sh
CC theory. The multireference valence-universal Fo
space coupled-cluster approach is employed here, w
defines and calculates an effective Hamiltonian in
low-dimensional model (orP) space, with eigenvalue
approximating some desirable eigenvalues of the phys
Hamiltonian. According to Lindgren’s formulation of th
open-shell CC method [21], the effective Hamiltonian h
the form

Heff ­ PHVP, V ­ hexpsSdj , (4)

where V is the normal-ordered wave operator, and t
excitation operatorS is defined with respect to a closed
shell reference determinant. In addition to the traditio
decomposition into terms with different total (l) number
of excited electrons,S is partitioned according to the
number of valence holes (m) and valence particles (n) to
be excited with respect to the reference determinant,

S ­
X

m$0

X
n$0

√ X
l$m1n

S
sm,nd
l

!
. (5)

In the present application we use thesm, nd ­ s0, 0d
and (0,1) sectors. The lower indexl is truncated
at l ­ 2. The resulting coupled-clusters-singles-an
doubles (CCSD) scheme involves the fully self-consiste
iterative calculation of all one- and two-body virtual e
citation amplitudes, and sums all diagrams with the
excitations to infinite order. Here we start by solvin
the all-electron Dirac-Fock-Coulomb (DFC) or Dira
Fock-Breit (DFB) equations for the closed-shell neut
E118 atom, which defines the (0,0) sector. This stat
correlated by CCSD; an electron is then added in the8s
orbital, recorrelating the whole system. The correla
orbitals include the5f, 6spd, and7sp shells, 40 electrons
in all; the 78 electrons offXeg4f145d10 are treated as
the core. To avoid “variational collapse” [22,23], th
Gaussian spinors in the basis are made to satisfy kin
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balance [24]. They also satisfy relativistic bounda
conditions associated with a finite nucleus, described h
as a sphere of uniform proton charge [20]. We use
atomic mass of 302, and the speed of lightc is set at
137.035 99 atomic units.

The universal basis set of Malliet al. [25] is employed.
It consists of Gaussian-type orbitals, with exponents giv
by the geometric series

zn ­ a 3 bsn21d, a ­ 106 111 395.371 615 ,

b ­ 0.486 752 256 286 . (6)

The largest basis included 34s functions (n ­ 1 34), 26
p (n ­ 9 34), 20 d (n ­ 13 32), 14 f (n ­ 17 30), 9
g (n ­ 21 29), 6 h (n ­ 24 29), and 4i orbitals (n ­
25 28). The orbitals were left uncontracted. Virtua
orbitals with energies higher than 80 hartree were omitt

The RCC calculation gave an electron affinity (EA)
512 cm21, or 0.063 eV. The Breit interaction has a neg
gible effect, changing the EA by3 cm21. Nonrelativistic
CC yields no electron affinity. The orbital energy of th
8s Dirac-Fock orbital is positive, so that the Koopman
EA is also negative. This causes the (unbound) orb
to “escape” to the most diffuse functions available in t
basis and raises the question of its suitability as a star
point for the RCC EA calculation. To study this que
tion a series of tests were carried out, where the unoc
pied orbitals were computed in different electronic field
obtained by assigning partial charges to some of the
ternal shells, thus leading to a bound8s orbital. These
artificial fields were compensated by appropriate corr
tion of the perturbation term. Assigning a charge
0.8e to the 7p3y2 electrons gave an EA of454 cm21; a
charge of 0.75eon the7s electrons yielded449 cm21; and
putting 0.9e on all 7s and7p electrons yielded an electro
affinity of 437 cm21. These results are quite close to ea
other and not too far from the512 cm21 quoted above; we
regard them as more reliable than the latter.

Several other tests were performed, all with a charge
0.8e on the7p3y2 electrons, to estimate the stability an
reliability of the calculated EA. To check the dependen
on the nuclear massA, it was changed from 302 to
283; the effect on the EA was only3 cm21. A larger
difference, with an EA of618 cm21, was obtained with
a point nucleus; this is, however, not a very realis
model for such a heavy atom. Finally, to assess the b
set convergence, thef, g, and h limits of the EA were
calculated; they came out as 427, 447, and452 cm21,
respectively. The convergence is satisfactory. Our va
for the electron affinity of element 118 is 0.056 eV
The estimated error bounds are about 0.01 eV. Sim
calculations gave no2S bound state for Rn2.

The computations reported above were carried ou
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