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Low Energy Excitations of a Bose-Einstein Condensate:
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We solve the time-dependent Gross-Pitaevskii equation by a variational ansatz to calculate the
excitation spectrum of a Bose-Einstein condensate in a trap. The trial wave function is a Gaussian which
allows an essentially analytical treatment of the problem. Our results reproduce numerical calculations
over the whole range from small to large particle numbers, and agree exactly with the Stringari results
in the strong interaction limit. Excellent agreement is obtained with the recent JILA experiment and
predictions for the negative scattering length case are also made.  [S0031-9007(96)01917-5]

PACS numbers: 03.75.Fi, 03.65.Ge

Very recently, the prediction [1] that a system of weaklytation spectrum in a harmonic trapping potential has been
interacting bosons would undergo a phase transition to derived by Stringari in the TF approximation, valid in
state having a macroscopic population of the ground levethe limit when the interatomic interaction energy is much
at very low temperatures (Bose-Einstein condensatiorlarger than the excitation energies of the bare trap, i.e.,
BEC) has been experimentally tested [2—4]. The requirein the large particle limit [12]. Theoretical predictions
ments for BEC (low temperatures and high densities) havéor the excitation spectrum based on numerical solution
been successfully achieved by combining laser coolingnd the Stringari formulas are in remarkable agreement
[5] with evaporative cooling [6] techniques in samples ofwith the recent JILA experiment [8], and confirm the quan-
rubidium [2], lithium [3], and sodium [4,7] atoms. These titative validity of the NLSE (1) to describe the evolution
experiments open up both experimental and theoreticalf the condensate wave function.
challenges to understand and study the properties of this The purpose of this Letter is to develop a variational
new state of matter. In particular, the collective excitationgechnique [14], based on Ritz’s optimization procedure, to
of a Bose condensed dilute gas in a trap have been meanalyze thdime-dependemiLSE (1) [15]. In particular,
sured for the first time in a recent experiment at JILA [8].we will derive the low energy collective excitations of a

From the theoretical point of view a Bose-Einstein con-Bose gas both for positive and negative scattering lengths
densate at zero temperature is described by the nonlinebased on Gaussian trial wave functions. The essential fea-
Schradinger equation (NLSE) (in this context, also knowntures of our treatment in comparison with the previous
as the Gross-Pitaevskii equation) [9] theoretical work are as follows: We derive analytical ex-

o A2 pressions for the frequencies of the dominant collective
ih— = ——VY* + V(r)¢ + Uoly|>y, (1) modes in a 3D anisotropic trap, valid for the arbitrary ratio
J 2m of the atom-atom interactions to trap excitation energies,
wherem is the atomic massy (7) is the trapping poten- and positive and negative scattering lengths. In the large
tial, andU, = 4xhi*a/m, wherea is the scattering length. particle number case our expressions contain as a limit the
This nonlinear equation, which is well known in other ar- spectrum derived by Stringari [12]. We typically repro-
eas of physics [10], describes the evolution of the macroduce results from numerical calculations on the few percent
scopic wave function of the condensate In the context level [16], and our results are in good agreement with the
of BEC solutions of this equation have essentially beemrecent JILA experiment [8]. In the case of the negative
studied with numerical methods [11]. This includes cal-scattering length, our predictions could be tested in current
culations of the ground state, expansion of the condensater planned experiments.
and collective (Bogoliubov) excitations in the trap which  The basic idea behind the variational method is to take a
can be excited adding a (weak) time-dependent drivingrial function with a fixed shape, but with some free (time-
termto Eq. (1). Analytical work has been based mainly ordependent) parameters. Using a variational principle, we
the Thomas-Fermi (TF) approximation where the kineticfind a set of Newton-like second order ordinary differential
energy term is neglected in comparison to the interatomiequations for these parameters which characterize the
and trap interactions. Very recently, the Bogoliubov exci-solution. This technique has been widely used in nonlinear
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problems [17,18], and it is specially suited for three-evolution equations. The first equation concerns the par-
dimensional problems, whereby numerical simulations ar¢icle number conservationr3/2|A(t)|2wx(t)wy(t)wz(t) =
very expensive or impossible. Furthermore, it allows oneV. It is also possible to find the equations of the motion
to derive analytical approximations that provide a deemf the center of the condensate

physical insight into the problem. Although not exact, this

technique is a good qualitative guide to study the propa- o + Ao =0 (p=ux.2). (6)

gation of wave functions having a simple shape, aIIowing_I_ ] ] o
some analytical results. his equation shows explicitly that the center of the

We consider a sample of bosons at zero temperatur€ondensate will oscillate harmonically with the bare
confined in a harmonic potential frequenciesi,v. It is interesting, and intuitively clear
that, in the case of a harmonic potential, this motion does
V) = lmyz()\zxz + A2 + A22). (2) hotdepend on the number of particles and therefore it
2 * Y < is not affected by the nonlinear effects. This fact implies
Here ther’s account for anisotropies of the trap. For that the “center of mass” of the condensate responds like

example, for a cylindrically symmetric trap we have = & classical particle to the external potential (note that this
A, =1, and A, = »./v the quotient between the trap IS NOt necessarily true for other potentials). _
(angular) frequency along thedirectionv, and the radial ~ The widths of the condensate satisfy the following

onev, = v. Thus, the behavior of the condensate waveeduations:

function is determined by Eqg. (1), with'(#) given in 5 5
(2). The normalization condition fap is [ d*7|y|* = N, o + A202w, = ]2 “E—N, @)
whereN is the mean number of atoms. ! m*w} T MAWIwyw,

The problem of solving Eqg. (1) can be restated as a o . i
variational problem corresponding to the minimization of@nd two similar equations foi, andw. obtained by a

the action related to the Lagrangian density cyclic permutation of the indices,y,z in Eqg. (7). The
. . 5 rest of the variational parameters can be obtained from the
r ==L ﬁ(c// W _ v %) _ V|2 widths and the center coordinates through the equations
2 ot at 2m )
2mah? __Imwy __mug
+ V(l")lgﬁlz + T |lﬂ|4, (3) 187] - 2h2wn’ Ay = 52 2r3n770~ (8)

where the asterisk denotes a complex conjugate. In ordefnce we know the behavior of both the center of the con-
to obtain the evolution of the condensate wave function wgjensate and the widths, we can calculate the evolution of
will minimize £ within a set of trial functions. Obviously, - the rest of the parameters, and then completely character-
the selection of the proper form of the trial functions isjze the evolution of the Gaussian-like atomic cloud. Given
crucial. In our case, a natural choice is a Gaussian, sinG@at the solutions to Eq. (6) are readily derived, the whole
inthe linear limit (no interactions) it is precisely the ground proplem reduces to solving the system of ordinary differ-
state of the linear Schrodinger equation, i.e., we take  entjal equations (7).

We find it convenient to define new dimensionless
(4) variables and constants accordingrte= v, w, = agvy

N=x,y,2 (n =x,y,2), and P = ./2/7 Na/ay, where ay =
. . : : : o 127 i i

At a given timer, this function defines a Gaussian dis- [/ (m?)] /> is the size of the ground state for a harmonic
tribution centered at the positiofxo, vo,z0). The other Potential of frequencyr (except for a factor ofv2).

variational parameters are (amplitude),w, (width), «,, Note '[hf’:ltP basically gives the strength F)f the at(_)m—ato_m
(slope), and3 [(curvature)‘l/z] wheren = x,y,z. Al interactions related to the bare harmonic potential. With
! n 1 ’ PO

these parameters are real numbers. As it has been shoffse definitions, Eg. (7) becomes

— R iy, (1) i By (1)
Yy.z.t) =A@ [] e ’ L

in [19], the imaginary terms appearing in the exponent of 5 ! p
(4) are essential if one wants to obtain reliable results. Our — v+ A= — + , (9a)
goal is to find the equations giving the evolution of all these dr? v} ViU,
variational parameters. To this aim, we insert (4) into (3) 42 5 1 P
and calculate an effective Lagrangiarby integrating the T2V P Ay = 5t (9b)
Lagrangian density over the space coordinates ) Y yorTE
o , 1 P
L=y= [ rat. (5) gt T st s (89

Once we have this function, using Lagrange equationg&quations (9a)—(9c) give us a simple picture of the evo-
for each variational parameter, after a tedious althougkution of the width of the condensate when we associate
straightforward algebra one can derive the correspondingith them the classical motion of a ficticious particle with
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coordinateqv,, vy, v;) in an effective three-dimensional equilibrium points) a collapse of the condensate would

potential occur, whereas in the second one (two equilibrium points)
1 5, 5 ) 1 a stable condensate can exist. The condition under which
Vet (vx, vy, v;) = E(Axvx + Auy + ADvD) + 02 collapse occurs derived from these equations [20] is similar
o to the one given in Ref. [13].
+ S + o r _ (10) Expanding Egs. (9a)—(9c) around the equilibrium points
0 20 vy defined by (11), we find the following expressions for the
The interpretation of Egs. (9a)—(9c) is straightforward./OW excitation frequencies:
(i) The left-hand side of these equations corresponds to v, = 21}\/1_—21)4’1’ (12a)

three harmonic oscillators; (i) the first term on the right-
hand side, which is proportional to,;3 (m = x,y,2),
tends to spread the wave packet, and corresponds to the
dispersion provided by the kinetic energy; (iii) finally, the

1
Vpe = 2;/[3(1 + A2 = Py3)

1/2
last term comes from the nonlinear interaction between + i\/(1 — A2 + Py3)? — 8P3,2} ,
the particles. Depending on the sign of the scattering 2
lengtha (i.e., the sign ofP) this term can be either re- (12b)

pulsive (positive scattering length) or attractive (negativgm1ere we have define®: . = P /(41,(!')1,({ ). The corre-
. . ) i )
scattering length). We wish to emphasize that Egs. (ga)§ponding modes are graphically represented in Fig. 1. Be-

_(9fc) fortt'he sct?le? mdtzsﬂ (n = x’fyt’;) contgln aIItthe cause of the cylindrical symmetry of the trap, the angular
Information about the dynamics ot the condensaté, prog,,m,anym along the axis is conserved, and we can thus

Y'ded its shape does not depart oo much from a_Gaus§étbe| the modes by azimuthal angular quantum numbers
ian one, and therefore can be regarded as the starting poin

to study the dynamics of the condensate under differerﬁo[;éélé];r\:\éecﬂ[gi]lml = 2 for mode a, andn = 0 for
COC\?'t'OnSt[?O]' ttenti the f . f1h In Fig. 2 we have plotted the three excitation frequen-
€ next focus our attention on he irequéencies ol Nqyqq a5 functions of for parameters corresponding to the
low energy excitations of the condensate. They CorreSponﬁlarameters in the JILA [8] [Fig. 2(a)], MIT [7] [Fig. 2(b)]
to the small oscillations around the equilibrium points.and Rice experiments [3] [Fig 2(c)]'for which, = /8 '
#_Jndef_r (tjhe prhesent st\.r;)a_Iysm, they c?nE be 6calcglateddb}/8/l32, 117/163, respectively. Let us analyzé first the
Irst finding the equilibrium points of Eq. (6), (8), an case ofpositive scattering lengtliFigs. 2(a) and 2(b)].
(92)—(9¢) and then expanding the solutions around thesIEligure 2(a) shows the results for the Rb experiment at

points. In yiew of the fact that the’s and,B’s can b? JILA. We have included the experimental data reported
expressed in terms of the center coordinates, the widthg, [8], taking a = 6 nm andN = 4400. The agreement

and their derivatives [cf., Egs. (8)], these frequencies W'"betwéen theory and experiment is remarkably good, de-
.be Comple:etlr)]/ (tjfrt]errfnlned by. Eq. (6). an(fj (9a)E—(9c6). Itspite the fact that for these parameters the wave function
is apparent that the frequencies coming from Eq. (6) ar%f the condensate is closer to the Thomas-Fermi solution

the bare frequencied,»,,»,A,», and the respective 4, parabolic dependence [11,12] than to a Gaussian.
modes correspond to the harmonic mOtIOD of the Centefe reason for that is that if one performs the Thomas-
.Of the cond_ensate n the bare potentlalr ). Thus,_ Fermi approximation in the NLSE (after an appropriate
in the following we will concentrate on the frequenCIesunitary transformation), the Gaussian approximation to de-

coming from Egs. (9a)—(3c). I.:urther.more, we will r_estr_ict cribe the frequency spectrum is exact [11]. On the other
ourselves to the case of an anisotropic trap with cylindrica and they agree with the numerical calculations [16] to

symmetry, Which is the_ most interestjng one from thethe percent level. The frequency close &9, has not
experimental point of view [8]. In this case we have been measured in the experiment. The results of Fig. 2(b)

Ay =A, =1Lv=vy,. .
x . correspond to the latest Na experiment at MIT (the
The equilibrium points of Egs. (9a)—(9c¢) correspond toexperimental value of? = 1500 lies out of the plot;

the Stabl? (or unstable) stationary states of the Condensa}ﬁe corresponding frequencies almost coincide with the
They satisfy the equations asymptotes). The dashed lines give the asymptotic

vo — i} n 31’ ’ g, = LS n 21’ . behavior P > 1, for which the energy of interaction
Vo Vo Vo, Vo, Voz Vo Y 1

wherevy = vg, = vg,. Forthe positive scattering length R

(P > 0) there is only one stable equilibrium point. On - .1 - ." > .

the other hand, for the negative scattering length<( & -~

0) the situation is different: depending on the values of T

the parameters involved in the problem it is possible to

find either no equilibrium points or two equilibrium points, mode a mode b e

one stable and the other unstable. In the first case (no FIG. 1. Oscillation modes of the condensate.
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6 In summary, we have shown that the variational for-
malism can explain in a very simple and elegant way
some features observed in present experiments dealing
with Bose-Einstein condensation. In particular, it predicts
quite accurately the low energy excitation spectrum of
the condensate for both positive and negative scattering
lengths. We believe that this method can be used to treat
analytically many problems related to the evolution of a
Bose-Einstein condensate. A more detailed analysis will
be presented elsewhere.
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