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Bose-Einstein Condensates in Time Dependent Traps
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We present analytical results for the macroscopic wave function of a Bose-Einstein condensate
time dependent harmonic potential. The evolution of the spatial density is a dilatation, characteri
by three scaling factors which allow a classical interpretation of the dynamics. This approach is
efficient tool for the analysis of recent experimental results on the expansion and collective excitat
of a condensate. [S0031-9007(96)01919-9]
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Recently the combination of laser cooling and eva
orative cooling led to the observation of Bose-Einste
condensation in dilute atomic vapors [1–3]. The favor
observation technique has been a time of flight meas
ment: the trapping potential is rapidly switched off a
the spatial distribution of the expanding cloud is mo
tored. In more recent experiments the condensates w
collectively excited by a time modulation of the tra
ping potential [4,5]. In these experiments the state of
condensate is strongly influenced by atomic interactio
which must therefore be included in a theoretical tre
ment. Work up to now consisted in the numerical soluti
of the time dependent nonlinear Schrödinger equation
the macroscopic wave function of the condensate [6].
present here analytical results which allow a more lu
description of the condensate dynamics and an immed
comparison with experiment. To this end we introdu
a quantum scaling transform [7] which is inspired by
model of a classical gas. Applying our results to tim
of flight measurements of expanding condensates [3]
obtain the scattering length of sodium. For condensa
collectively excited by a time modulation of the trappin
potential we present anab initio calculation of the ob-
served signal.

For dilute gases at low temperatures the atomic
teractions can be modeled by a pseudopotentialgds$rd,
where g . 0 is related to thes-wave scattering length
a by g ­ 4p h̄2aym [8]. We describe the trap by a
anisotropic time dependent harmonic potential
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Us$r , td ­
1
2

X
j­1,2,3

mv2
j stdr2

j . (1)

We restrict the discussion to the case of zero temperat
which is a realistic assumption for the experiments
[1,2]. The state of the condensate for a static trap
thus be described using a Hartree-Fock ansatz:

jCl ­ jFl ≠ · · · ≠ jFl . (2)

The minimization of mean energy gives the time indep
dent Gross-Pitaevskii equation forjFl:

mFs$rd ­

∑
2

h̄2

2m
D 1 Us$r , 0d 1 NgjFs$rdj2

∏
Fs $rd , (3)

with N 2 1 . N .
In the regime where the atomic interactions are do

nant [NgjFs$0dj2 . m ¿ h̄vj for j ­ 1, 2, 3] we can use
the Thomas-Fermi approximation to solve (3) [9]; that
we can neglect the kinetic energy term as compared to
interaction energy term. The result is

Fs $rd . FTFs$rd ­

µ
m 2 Us$r , 0d

Ng

∂1y2

, (4)

whenm $ Us$r, 0d, andFs$rd ­ 0 otherwise. The chemi-
cal potentialm is determined by the normalization ofjFl:

m ­
1
2

h̄v̄

√
15Na

r
mv̄

h̄

!2y5

, (5)

wherev̄ ­ fv1s0dv2s0dv3s0dg1y3.
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One can generalize the Hartree-Fock ansatz (2) to
time dependent case, in whichF is a function oft. A
time dependent variational calculus leads to an (explici
time dependent Gross-Pitaevskii equation [10,11]:

ih̄≠tFs$r, td ­

∑
2

h̄2

2m
D 1 Us$r , td

1 NgjFs $r , tdj2
∏

Fs$r, td . (6)

In the solution of (6) a Thomas-Fermi type approximati
is not directly applicable, because the time variation
the trapping potential would convert potential ener
into kinetic energy, which therefore could no longer
neglected. In this paper we identify a unitary transfo
which eliminates the extra kinetic energy.

We first introduce a model of a classical gas in whi
each particle experiences a force

$Fs$r , td ­ 2=sssUs$r , td 1 grcls$r , tdddd , (7)

wherercls$r, td is the spatial density in the gas normaliz
to N. At t ­ 0 the equilibrium condition$F ­ 0 gives
rcls$r, 0d ­ NjFTFs$r, 0dj2, that is, the classical solutio
for the steady state density coincides with the quant
solution in the Thomas-Fermi limit. Fort . 0 the exact
solution for the classical model can be obtained
the class of potentials (1); in this case, the gas me
experiences a dilatation, any infinitesimally small fracti
of the expanding cloud moving along a trajectory

Rjstd ­ ljstdRjs0d s j ­ 1, 2, 3d . (8)

From this ansatz we obtain for the evolution of the spa
density

rcls$r , td ­
1

l1stdl2stdl3std

3 rclfhrjyljstdjj­1,2,3, 0g . (9)

Newton’s lawmR̈jstd ­ Fjf $Rstd, tg applied for the trajec-
tory (8) implies

ml̈jstdRjs0d ­ 2 s≠rj Ud f $Rstd, tg

1
1

ljl1l2l3
s≠rj

Ud f $Rs0d, 0g

s j ­ 1, 2, 3d . (10)

From Eq. (9) we have expressed the gradient ofgrclstd
in terms of=grclst ­ 0d ­ 2=Ust ­ 0d. For the har-
monic potentialsU of Eq. (1) both sides of Eq. (10) ar
proportional toRjs0d. Equation (10) therefore holds fo
any $Rs0d and the ansatz (8) is self-consistent provided t
the scaling factorsljstd satisfy

l̈j ­
v

2
j s0d

ljl1l2l3
2 v2

j stdlj s j ­ 1, 2, 3d . (11)
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The initial conditions areljs0d ­ 1 and since the gas i
initially at rest, Ùljs0d ­ 0. Taking the time derivative o
Eq. (8) and eliminating the initial position by Eq. (8) w
obtain for the local velocity of the expanding cloud

yjs$r , td ­ rj

Ùljstd
ljstd

. (12)

Equations (11) and (12) do not depend on the interac
strengthg. Theg dependence is entirely contained in t
initial spatial density of the gas [12].

This classical solution motivates the ansatz for
solution of the quantum equation (6):

Fs$r , td ­ e2ibstde
im

P
j

r2
j

Ùlj stdy2 h̄ljstd

3
F̃fhrkylkstdjk­1,2,3, tg

p
l1l2l3

. (13)

Equation (13) is a unitary transform combining a scal
in $r and a gauge transform. The gauge transform s
tracts from the momentum operator$̂p the local momen-
tum of the expanding classical gas (12):

p̂j ! p̂j 1 m
Ùljstd

ljstd
r̂j . (14)

The scaling transform mimics the dilatation (9) obtain
in the classical case. We insert the ansatz (13) in Eq.
For the convenient choice of the global phase fac
e2ibstd, h̄ Ùb ­ myl1stdl2stdl3std, we obtain after some
algebra the following time evolution for̃Fs$r, td:∑
ih̄≠t 1

h̄2

2m

X
j

1

l
2
j std

≠2
rj

∏
F̃s$r, td ­

1
l1stdl2stdl3std

f2m 1 Us$r, 0d 1 NgjF̃s$r, tdj2gF̃s $r, td ,

(15)

with the initial condition F̃s$r , 0d ­ Fs$r , 0d. In the
Thomas-Fermi regime the right hand side of Eq. (15
initially very small; the kinetic energy terms on the le
hand side are also small initially, and are expected
remain small in time, since the extra kinetic energy d
to a change in the trapping potential has been abso
in the unitary transform (13). We therefore expect t
F̃s$r , td evolves weakly in time.

To show this point more rigorously we splitF̃s$r , td into
Fs$r , 0d 1 dF̃s$r, td. From Eqs. (15) and (3) we find tha
dF̃s$r, td obeys a nonlinear inhomogeneous equation w
a source term given by

Ss$r , td ­ 2
h̄2

2m

3X
j­1

µ
1

l
2
j std

2
1

l1stdl2stdl3std

∂
≠2

rj
Fs$r , 0d . (16)
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In the Thomas-Fermi approximation the spatial deriv
tives of Fs$r , 0d are neglected and the source term va
shes; in this case,dF̃s$r, td being initially zero remains
zero, andFs$r, td remains constant [13]:

F̃s$r, td . Fs $r , 0d . (17)

This result provides a generalization of the Thoma
Fermi approximation to time dependent problems. All t
dynamics of the macroscopic wave function are contain
in the evolution of three scaling parameters. In particu
the condensate density is a time dependent inve
paraboloid:

NjFs$r, tdj2TF ­
m 2

P3
j­1

1
2 mv

2
j s0dr2

j yl
2
j std

gl1stdl2stdl3std
, (18)

when the right hand side is positive andjFj
2
TF ­ 0

otherwise.
We now apply the above results to experimental d

obtained in the Ioffe-Pritchard trap of [3]. The trap
axially symmetric with respect toz and cigar shaped
(v1 ­ v2 ; v' ¿ v3 ; vz).

We consider first the simplest case of a sudden a
total opening of the trap att ­ 0. The equations for the
evolution of the scaling parameters (11) simplify to

d2

dt2
l' ­

1

l
3
'lz

,

d2

dt2 lz ­
e2

l
2
'l2

z

, (19)

where l' stands forl1 ­ l2 and lz stands forl3.
We have introduced a dimensionless time variablet ­
v's0dt and a parametere ­ vzs0dyv's0d ø 1. We
solve (19) by an expansion in powers ofe. To zeroth
order ine, lz ­ 1 and the radial expansion scales as

l'std ­
p

1 1 t2 . (20)

To second order ine the axial expansion of the cloud i
given by

lzstd ­ 1 1 e2ft arctant

2 ln
p

1 1 t2g 1 Ose4d . (21)

For the experiments considered the term ine2 is not
negligible.

We have performed a fit of the images obtained
two different times of flight in [3]. We used an inverte
paraboloid for the density of the cloud, having as fr
parameters the radial widthW', the axial widthWz , and
the number of condensed atomsN . Figure 1 shows a cu
along thex axis (that is, atz ­ 0) of the spatial density of
the cloud integrated alongy. According to Eq. (18) the
aspect ratio of the cloud is given by

Wzstd
W'std

­
lzstd

p
2mymv2

z s0d

l'std
q

2mymv
2
's0d

­
lzstd
l'std

1
e

. (22)
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FIG. 1. Spatial density of an expanding condensate integra
along the y axis, cut along thex axis (that is, atz ­ 0).
Experimental data obtained at MIT (expansion time of 40 m
and fit from theory.

The fit gives the values of this ratio for two different ex
pansion times, from which we calculate the two unknow
frequenciesv's0d and vzs0d, using Eqs. (20) and (21)
From W' we calculatem; the relation (5) then leads to
a scattering length ofa ­ 42 6 15 Bohr for sodium, in
agreement with earlier measurements [14].

In a second generation of experiments a collect
excitation of the condensate has been induced b
time modulation of the eigenfrequencies of the trappi
potential [4,5]. In [5] the axial frequency is modulate
as v2

z std ­ v2
z s0d f1 2 hs1 2 cosVtdg [V in units of

v's0d]. After the excitation the cloud freely oscillates i
the unperturbed potential for an adjustable time. Fina
the trapping potential is switched off and the expandi
cloud is monitored.

By including this experimental sequence in the evo
tion of the scaling paameters (11), we give anab initio
calculation of the time of flight signals. For a weak mod
lation (h ø 1) the time evolution in the trap is obtaine
from a linearization of Eq. (11) around the steady st
value 1. During the excitation process we obtain for t
deviationsdl' anddlz:

d2

dt2 dl'std ­ 24dl'std 2 dlzstd , (23)

d2

dt2
dlzstd ­ 22e2dl'std 2 3e2dlzstd

1 e2hf1 2 cossVtdg . (24)
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To leading order ine the eigenmodes of this linea
system have frequencies [in units ofv's0d] Vfast ­

2 and Vslow ­
q

5
2 e and are polarized along (1, 1, 0)

and (1, 1, 24), respectively [15,16]. In the experimen
the driving frequencyV was set toVslow to achieve
a resonant excitation of the slow mode. To low
order in e, this allows us to keep only the slow mod
component of the solution, for whichdl' ­ 2dlzy4.
Equation (24) integrated for the time durationte of the
excitation then leads to

dlzsted ­
2h

5
f1 2 cossVslowtedg

2
h

5
Vslowte sinsVslowted . (25)

In [5] the potential was modulated for five cy
cles so that te ­ 5s2pyVslow d and dlzsted ­ 0,
d

dt dlzsted ­ 22phVslow . The subsequent evolutio
in the unperturbed trapping potential is sinusoidal w
the eigenfrequencyVslow ; after the free oscillation time
to it leads to dlzste 1 tod ­ 24dl'ste 1 tod ­
22ph sinVslowto .

Finally the trapping potential is switched off to monit
the excited condensate. The time evolution of the sca
parameters is obtained by linearizing Eq. (19) around
solutions Eqs. (20) and (21) with initial conditions give
by the values ofdlz,' and their derivatives att ­
te 1 to . After a time of flighttf we obtain, neglecting
terms of order 2 ine and terms vanishing in the lim
tf ! `,

dl'ste 1 to 1 tf d ­ 2
1
4

tfdlzste 1 tod

2
1
4

fptf 2 4 ln tf 1 1g
d

dt
dlzste 1 tod ,

(26)

dlzste 1 to 1 tfd ­ dlzste 1 tod

1 tf
d

dt
dlzste 1 tod . (27)

From this we determine the aspect ratio (22) of
expanding cloud. Figure 2 shows that our predictions
in good agreement with the experimental results of
for short free oscillation timesto . For longer timesto

a damping of the oscillations is observed experimenta
which cannot be explained with our mean field treatme

In conclusion, we have been able to extend the Thom
Fermi approximation to the motion of a condensate i
time dependent harmonic potential: the time depende
is entirely contained in three scaling factors which c
be obtained from the evolution of a classical gas. T
provides an easy quantitative tool for the analysis
current experiments on trapped condensed gases.
have applied it to two recent experiments. From time
flight images of the condensate at two different expans
5318
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FIG. 2. Aspect ratio of the excited and expanded condens
as a function of free oscillation timeto. Expansion time
tf ­ 40 ms, v's0d ­ 2p 3 250 Hz, vzs0d ­ 2p 3 19 Hz,
h ­ 0.005. Solid line: theory. Diamonds: experimental da
obtained at MIT.

times we could calculate the scattering lengtha without
relying on measurements of the trapping frequenci
For collective excitations of a condensate in the line
response regime we could predict not only the frequen
but also the phase and amplitude of the measured sig
(see Fig. 2). Our treatment can be applied in the nonlin
response regime as well, for example, for oscillations
the condensate induced by a strong modulation or b
partial opening of the trap.
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