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Bose-Einstein Condensates in Time Dependent Traps
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We present analytical results for the macroscopic wave function of a Bose-Einstein condensate in a
time dependent harmonic potential. The evolution of the spatial density is a dilatation, characterized
by three scaling factors which allow a classical interpretation of the dynamics. This approach is an
efficient tool for the analysis of recent experimental results on the expansion and collective excitation
of a condensate. [S0031-9007(96)01919-9]
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Recently the combination of laser cooling and evap- UF, 1) = 1
orative cooling led to the observation of Bose-Einstein 2,555
condensation in dilute atomic vapors [1-3]. The favoreqN
observation technique has been a time of flight measure,

ment: the trapping potential is rapidly switched off and [1,2]. The state of the condensate for a static trap can

the spatial distribution of thg expanding cloud is moni- < be described using a Hartree-Fock ansatz:
tored. In more recent experiments the condensates were

collectively excited by a time modulation of the trap- V) =[DP)® --- ® |D). 2

ping potentiql [4.5]. In t'hese experiments t'he'state O-f therhe minimization of mean ener ives the time indepen-
condensate is strongly influenced by atomic interactions, 9y g P

which must therefore be included in a theoretical treat-dent Gross-Pitaevskii equation fgb):

ment. Work up to now consisted in the numerical solution o h? - 12 | 4=
of the time dependent nonlinear Schrédinger equation for®(7) = [_%A + U(7,0) + Ng|@(7)] }q)(r)’ (3)
the macroscopic wave function of the condensate [6]. We . 1

: . .With N — 1 =N.
prese_nt_here analytical results Wh'Ch. allow a more qu In the regime where the atomic interactions are domi-
description of the condensate dynamics and an |mmed|atr(]aant v DO = > hiw, forj = 1.2 3] we can use
comparison with experiment. To this end we introducethe Th c()gmas-Fer;ﬁi’L; ro;i)rjn atian to s’ol’ve (3) [9]; that is
a quantum scaling transform [7] which is inspired by a pp ’ '

model of a classical gas. Applying our results to timeVe can neglect the kinetic energy term as compared to the

of flight measurements of expanding condensates [3] Wénteractlon energy term. The resultis
obtain the scattering length of sodium. For condensates n U(r,0)>1/2 )
collectively excited by a time modulation of the trapping Ng ’

potential we present amb initio calculation of the ob- wheny = U(7.0), and®(7) = 0 otherwise. The chemi-

served signal. L i L )
For dilute gases at low temperatures the atomic in-CaI potential. is determined by the normalization js):

ma)]z(t)rj2 . @

e restrict the discussion to the case of zero temperature,
hich is a realistic assumption for the experiments in

@) = @) = (

teractions can be modeled by a pseudopoteti#lr), 1 ma 23

where g > 0 is related to thes-wave scattering length H= jﬁ‘” 15N"\/T ’ (5)
a by g = 4mh*a/m [8]. We describe the trap by an

anisotropic time dependent harmonic potential where® = [w(0)w1(0)w3(0)]'/3.
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One can generalize the Hartree-Fock ansatz (2) to th€he initial conditions are\;(0) = 1 and since the gas is
time dependent case, in which is a function ofz. A initially at rest,A;(0) = 0. Taking the time derivative of
time dependent variational calculus leads to an (explicitlyEq. (8) and eliminating the initial position by Eq. (8) we
time dependent Gross-Pitaevskii equation [10,11]: obtain for the local velocity of the expanding cloud

A0
r; )lj (t) .

2
iha, D@ 1) — [ - f—mA + UG 1) (12)

vi(F, 1) =

> 2 ->
+ Ngl® (1)l }D(r’ ). 6) Equations (11) and (12) do not depend on the interaction

strengthg. Theg dependence is entirely contained in the
In the solution of (6) a Thomas-Fermi type approximation: e 8 CEP y

. . / ; o gnitial spatial density of the gas [12].
is not directly applicable, because the time variation of ' rhis " classical solution motivates the ansatz for the

the trapping potential would convert potential energygq tion of the quantum equation (6):
into kinetic energy, which therefore could no longer be

neglected. In this paper we identify a unitary transform . g im S A 0/28,0)
which eliminates the extra kinetic energy. D(F 1) = e PV &Y '
We first introduce a model of a classical gas in which B[{re/Ac(0)} ]
each particle experiences a force x Tk A ik=123, 11
VAL 223

) VWG + gpalr.0), " Equation (13) is a unitary transform combining a scaling
wherep.(7, t) is the spatial density in the gas normalizedin 7 and a gauge transform. The gauge transform sub-
to N. At r = 0 the equilibrium conditionF = 0 gives tracts from the momentum operatgrthe local momen-
pa(F,0) = N|®7x(7,0)[2, that is, the classical solution tum of the expanding classical gas (12):
for the steady state density coincides with the quantum .
solution in the Thomas-Fermi limit. Far> 0 the exact pi— p; + m/\j_(t);‘- (14)
solution for the classical model can be obtained for ! / Aj(0)

the class of potentials (1); in this case, the gas merelx_ ] o ) ) )
experiences a dilatation, any infinitesimally small fraction I he scaling transform mimics the dilatation (9) obtained

(13)

Of the expanding Cloud moving along a trajectory n the C|aSSica| case. We insert the ansatz (13) in Eq (6)
For the convenient choice of the global phase factor
R;(t) = X;(t)R;(0) (j=1,23). (8) e P B = w/A(1)A2(r)A3(t), we obtain after some

_ _ ' _ algebra the following time evolution fab (7, ¢):
From this ansatz we obtain for the evolution of the spatial

density . h* L o lg o
G.1) 1 Lwﬁdm;ﬁm%km”
Cc 9t = T Ay Ty
Pelll M (D) A2(1) A5(t) ;[—M + U(#,0) + Ng|®(F, 0)*1® (7, 1),
A1) A2(6) A3(1)
X peal{ri/Aj(t)}j=123.0]. 9) (15)

Newton's lawmR;(t) = Fj[fe(t),t] applied for the trajec-

tory (8) implies with the initial condition ®(7,0) = ®(7,0). In the

Thomas-Fermi regime the right hand side of Eq. (15) is
mA(OR;(0) = — (3, U) [ﬁ(t),t] initially very small; the kinetic energy terms on the left

e ! hand side are also small initially, and are expected to
remain small in time, since the extra kinetic energy due
to a change in the trapping potential has been absorbed
in the unitary transform (13). We therefore expect that
® (7, 1) evolves weakly in time. N

To show this point more rigorously we spiit(7, 7) into
®(7,0) + 6P (r,1). From Egs. (15) and (3) we find that
d® (7, ) obeys a nonlinear inhomogeneous equation with
a source term given by

I
XA A3

(j =1273). (10)

(9,,U) [R(0),0]

From Eg. (9) we have expressed the gradieng pf;(¢)
in terms ofVgp.(t = 0) = —VU(¢ = 0). For the har-
monic potentialsU of Eq. (1) both sides of Eq. (10) are
proportional toR;(0). Equation (10) therefore holds for

anyfe(O) and the ansatz (8) is self-consistent provided that e 1
the scaling factora(r) satisfy S(r,1) = ™ Z(AZ—(t)
=1 Aj
©}(0) : I

- wi() (j=1,23). (@11 )affb(?,O).(16)
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In the Thomas-Fermi approximation the spatial deriva- I e s s s s e
tives of ®(#,0) are neglected and the source term vani-
shes; in this cased®(#, 1) being initially zero remains
zero, andd (7, ) remains constant [13]:

O(F, 1) = ®(7,0). (X T
This result provides a generalization of the Thomas- o
Fermi approximation to time dependent problems. All the )
dynamlcs of the macroscopic wave function are contalne(,c:
in the evolution of three scaling parameters. In partlcular
the condensate density is a time dependent mvertelo
paraboloid:

N|®F, )3, =

ickr

opti

po— i gmw;(0)r7 /A (1)
gA1(t)Aa(1)A3(1) '

when the right hand side is positive and®|3r =0
otherwise.

We now apply the above results to experimental date
obtained in the loffe-Pritchard trap of [3]. The trap is
axially symmetric with respect t@ and cigar shaped x [mm]
(0] = wy = w, > w3 = w,).

We consider first the simplest case of a sudden an
total opening of the trap at= 0. The equations for the

(18)

EIG 1. Spatial density of an expanding condensate integrated
along they axis, cut along thex axis (that is, atz = 0).
Experimental data obtained at MIT (expansion time of 40 ms)

evolution of the scaling parameters (11) simplify to and fit from theory.
d? 1
dTZ)tl B A
e L The fit gives the values of this ratio for two different ex-
— A = 26 > (19) pansion times, from which we calculate the two unknown
dr ALAZ frequenciesw  (0) and w.(0), using Egs. (20) and (21).

where A, stands forA; = A, and A, stands fora;. From W, we calculateu; the relation (5) then _Ieadg to
We have introduced a dimensionless time variable @ Scattering length of = 42 + 15 Bohr for sodium, in
w . (0)t and a parametee = w.(0)/w,(0) < 1. We agreement with earlier measurements [14].

solve (19) by an expansion in powers of To zeroth In a second generation of experiments a collective
order ine, A, = 1 and the radial expansion scales as ~ €xcitation of the condensate has been induced by a

time modulation of the eigenfrequencies of the trapping
Ap(r) =1 + 72, (20)  potential [4,5]. In [5] the axial frequency is modulated
as w2(r) = w?(0)[1 — n(1 — cosQ7)] [Q in units of
w1 (0)]. After the excitation the cloud freely oscillates in
the unperturbed potential for an adjustable time. Finally,
A1) =1+ €*[rarctanr the trapping potential is switched off and the expanding
cloud is monitored.
_ |nm] + 0(e%). (21) By including this experimental sequence in the evolu-
tion of the scaling paameters (11), we give a&m initio
For the experiments considered the termeh is not  calculation of the time of flight signals. For a weak modu-
negligible. lation (n < 1) the time evolution in the trap is obtained
We have performed a fit of the images obtained forfrom a linearization of Eq. (11) around the steady state
two different times of flight in [3]. We used an inverted value 1. During the excitation process we obtain for the
paraboloid for the density of the cloud, having as freedeviationséA, anddA,:
parameters the radial widtW, , the axial widthw,, and 2
the number of condensed atois Figure 1 shows a cut _ _
along thex axis (that is, at = 0) of the spatial density of dr? a2 Ot (n) = —48AL(1) = 8A(7), (23)
the cloud integrated along. According to Eq. (18) the
aspect ratio of the cloud is given by

To second order ik the axial expansion of the cloud is
given by

d2
W.(1) _ A(0y2p/me20) _ A1) 1 22 72081 = 2’8, (1) — 3€*81:(7)
WO ) (on2u/met) ALD € + En[1 — cog0)]. 24)
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To leading order ine the eigenmodes of this linear
system have frequencies [in units af, (0)] Qg =

2 and Qgow = \Ee and are polarized alongl (1, 0)
and (, 1, —4), respectively [15,16]. In the experiments
the driving frequency() was set to{)y,, to achieve
a resonant excitation of the slow mode.
order in e, this allows us to keep only the slow mode
component of the solution, for whichA, = —8A,/4.
Equation (24) integrated for the time duratiep of the
excitation then leads to

2
8A:(re) = LI = cotQuiou)]

- %QslowTe Sin(QslowTe)~ (25)
In [5] the potential was modulated for five cy-
cles so that 7. = 5Q27/Q0w) and 8A,(7.) =0,
%Mzm) = —271Q40w. The subsequent evolution
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in the unperturbed trapping potential is sinusoidal withFIG. 2. Aspect ratio of the excited and expanded condensate

the eigenfrequencyl,,; after the free oscillation time
7, it leads to A, (7, + 7,) = —48A (7. + 7,) =
=277 SINQg10w To -

Finally the trapping potential is switched off to monitor

as a function of free oscillation time,. Expansion time
T, =40ms, w,(0) =27 X 250 Hz, w.(0) = 27 X 19 Hz,

n = 0.005. Solid line: theory. Diamonds: experimental data
obtained at MIT.

the excited condensate. The time evolution of the scaling
parameters is obtained by linearizing Eq. (19) around théimes we could calculate the scattering lengthvithout
solutions Egs. (20) and (21) with initial conditions given relying on measurements of the trapping frequencies.

by the values oféA,, and their derivatives at =
7. + 7,. After a time of flight7, we obtain, neglecting
terms of order 2 ine and terms vanishing in the limit

TF— %
1
A (1o + 7 + 7f) = 7 TOA(Te + 7))

1
— Z[WT‘f —4intp + 1]% S (1. + 70),
(26)

oA (Te + Ty + 7f) = A (T, + 7))

d
+ Tf; SA (1. + 710).(27)

For collective excitations of a condensate in the linear
response regime we could predict not only the frequency
but also the phase and amplitude of the measured signal
(see Fig. 2). Our treatment can be applied in the nonlinear
response regime as well, for example, for oscillations of
the condensate induced by a strong modulation or by a
partial opening of the trap.
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From this we determine the aspect ratio (22) of the
expanding cloud. Figure 2 shows that our predictions are[1)
in good agreement with the experimental results of [5]
for short free oscillation times,. For longer timesr,
a damping of the oscillations is observed experimentally,
which cannot be explained with our mean field treatment.
In conclusion, we have been able to extend the Thomas{3l
Fermi approximation to the motion of a condensate in a
time dependent harmonic potential: the time dependenc%]
is entirely contained in three scaling factors which can
be obtained from the evolution of a classical gas. This 1
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