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Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids
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We present a theory for thab initio computation of NMR chemical shifter) in condensed matter
systems, using periodic boundary conditions. Our approach can be applied to periodic systems such
as crystals, surfaces, or polymers and, with a supercell technique, to nonperiodic systems such as
amorphous materials, liquids, or solids with defects. We have computed the hydsogena set
of free molecules, for an ionic crystal LiH, and for a H-bonded crystal HF, using density functional
theory in the local density approximation. The results are in excellent agreement with experimental
data. [S0031-9007(96)01901-1]

PACS numbers: 76.60.Cq, 71.15.Mb

Nuclear magnetic resonance (NMR) is one of the mosapproximation (LDA). We compute the hydrogenfor
widely used experimental techniques in structural chemia set of small molecules, for an ionic crystal, and for a
stry. In particular, the chemical shifr) spectra are a H-bonded crystal. Our results are in excellent agreement
fingerprint of the molecular geometry and the chemicalwith experimental data.
structure of the material under study. Although the in- A uniform, external magnetic fielB.y;, applied to
terpretation of these spectra generally relies on empiria sample induces an electronic current dengity(r).
cal rules,ab initio calculations ofc for molecules have This current produces an induced magnetic fiBig(r).
led in many cases to an unambiguous determination df B, is small enough, a condition realized in NMR
the microscopic structure [1]. So faab initio calcula- experiments, then
tions of o have been restricted to finite systems such Bin(r) = —o(r)Bex - (1)

as isolated molecules or clusters [2,3]. This is a sce\ri]_|ere Z(r) is the chemical shift tensor. With NMR

ous limitation, beca.‘“S? most of the NMR E’Xper'memsspectroscopy, it is possible to measure the symmetric part
are performed on liquid samples. Moreover, it is now

possible to measurer also in solids with the resolu- of o(r), or more often its tracer (r) = (1/3)Trlo(r)], at

: . L the position of the nonzero spin nuclei.

tion required for structural determinations [4,5]. E.g., In the bulk of a periodic systeniz(r) is also periodic
spectra have been used for the characterization of amoyfye may write '
phous carbon [6]. In this Letter, we present a formalism A
to compute, from first principlesy in extended systems o) = > §(G)eST, ()
using periodic boundary conditions. Our approach can G

be applied to periodic systems such as crystals, surfacedhereG are the reciprocal lattice vectors. FGr# 0,
or polymers and, using a supercell technique, to nonped(G) is a bulk property,

riodic systems such as amorphous materials, liquids, or 7(G) = —47x(G,0), (3)
solids with defects. In the case of the amorphous soquN
or liquid, the atomic coordinates may be generated b
ab initio molecular dynamic simulations [7,8].

here ¥(G,G’) is the magnetic susceptibility matrix.
¥|owever, for G =0, &(0) is not a bulk property.

- : .. |ts value depends on the shape of the sample, and
: The chemlcgl shift measures _the local magnetic f'e.lc’s determined by macroscopic magnetostatics. In our
in a sample induced by a uniform applied magnetic

field. The computation ofo in an extended system calculations we zissume a;ghfrlcal sample, for which
is not straightforward, since the expectation values of a(0) = 3 x(0,0), 4

the individual terms of the perturbative Hamiltonian for - _ _ o
extended eigenstates are not well-defined quantities [9Jvherex(0,0) is the macroscopic susceptibility [11]. Thus
To overcome this problem, we follow Ref. [10] in which the calculation ofo in a periodic system requires the
a theory for the computation of the macroscopic magneti€nowledge of x(G,0). We compute the macroscopic
susceptibility is presented. In particular, (i) we obtain thesusceptibility x(0,0) following Ref. [10]. The other
magnetic response to a uniform field as the long-wavé&leéments ofy(G, 0) are computed as described below.
limit of a periodic field, and (i) we use a generalized The susceptibility matrix is defined as the second
f-sum rule to remove the numerical instability which derivative of the total energy with respect to the external
occurs in this limit. We apply the resulting equations magnetic field. In particular,

to real systems, describing the electronic structure within . 9’E[B]

b_¢ - X(G,0)by = —

—_
density functional theory (DFT) in the local density dBodB_¢ lg=0 Ep—c. (5
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where E[B] is the total energy of the system per unit B_g_qb_g-qexfd—i(G + q) - r]} [12], and we recover
volume in the external magnetic fiel®8(r), B(r) = the results for the uniform field by considering the limit
[Boby + B_gb_gexp—iG - r)], andb_g and by are [10]:

vectors of unit length. Thug(G,0) can be evaluated

using perturbation theory. However, the expectation b - X(G,0)by = —I|m Eq -G—q - (6)
values of the perturbative Hamiltonians for a uniform field

between extended eigenstates are ill defined. To avoid We now consider a spin compensated system described
this problem, we modulate the external periodic fieldby a single particle Hamiltonian. The derivatives of the
with a finite wave vectory, B(r) = {B,b, expliq - r) + | Hamiltonian required to compulﬂa”_c_q are

Hy = %l(eiq'raq -V + ag - Ve'lT),

_i —i . —7 . IRl
H/—G—q = 7(6 l(G+‘1)l‘a_G_q -V+ a_G-q - Ve i(G+a) r, Hq “Goq = 8q " A_G-qe zGr, )

whereag = (is X bs)/(cs?), andc is the speed of Iight.| where Qx+q = (1 = Dico luk+qi) (uk+q.l) is the pro-

Using perturbation theory we obtain jector onto the empty subspace.
The first term on the right-hand side of Eq. (8) is
Eq-G-q = [(34,8-6-¢,6.0) obtained as a second order perturbation with the first
d3k order derivatives of the Hamiltoniai! andH’_G_q. The
+ 2aq - a-g—q Q) second term in the right-hand side of Eq. (8) is obtained as
_ a first order perturbation with the second order derivative
X > ureile O luy ), (8)  of the HamiltonianH, g, Sinceay diverges asl/q
€0 for ¢ — 0, the two terms on the right-hand side of Eq. (8)

whereluy ;) is the periodic part of the Bloch eigenstate of individually diverge asl/g. To remove this divergence,
the unperturbed HamiltoniaHy with eigenvalueey;, ©  which would produce a numerical instability, we use the
are the sets of occupied bands, and generalizedf-sum rule,
f(alsaQ’G? q) = ] dsr[h(a19a2s rs q) 2a1
+ h*(al,a5,r,—q)le 6T, (9)

where the integral is performed in the periodic cell, with

(e ile ™" luge )
(2 )3 ZEZ(:D uk.ile Uk,i

= —f(a;,a2,G,0). (12)

Substituting the f-sum rule into Eg. (8), we obtain

h(al’az’r q) E(’]’,-G—q = [f(aq’ a—G—an’ q) - f(aq> a—G—q’ G’ 0)]
qa Then, forG # 0,
(2 )3 > Kukile)(rlas - (—iV+k + q)lug;
i€e0 d
a b G,0)by=— I|m E! —_—
+ug iz - (—iV + K)Ir) (rlug; )] (10) ¢ - X(G.0b, ¢=6-4 7 T 2G24

X f((l X by, GX b_g,G, qd)|~0,

luw:') is the first order change of the eigenstéig ;)
due to a field with wave vectoq. It can be obtained (13)
by solving the linear system
Q. where( is the unit vector in the direction af. Finally,
(ex; — Hyrg)lux,; )

the derivative with respect tg in Eqg. (13) can also be
= Qx+qa; - (—iV + k + q/2)|uy,;), (11) evaluated using the following limit:
|

b + X(G.0by = — M [ /(G X bs.G X b-.G.4d) ~ f(@ X bo.G X b-¢.G.~90))/(24c°C").  (14)

Note that, for G # 0, ¥(G,0) is proportional to| Eq. (10) with a finite summation in the irreducible wedge

the first derivative off with respect tog, whereas the of the Brillouin zone.

macroscopic susceptibility (0, 0) is proportional to the We describe the electrons using DFT-LDA; i.e., we

second derivative of with respect tay [10]. neglect any explicit dependence of the exchange-
In practice, we evaluate numerically(G,0) using correlation functionalE,.) on the current density. The

Eq. (14) with a small, but finitey, and thek integral in  current dependence df,. could be taken into account
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using the approximate functional proposed in Ref. [13],TABLE I. Computed and measured H chemical shi#9 for
but, in practice, this produces only negligible correctiongg set of free molecules.

to o in real systems [3]. Armad hocprocedure to include o theory (ppm) o experiment (ppm)
many-body effects beyond DFT in the calculation «f

has been proposed in [14]. While this approach improve%-:_z| ggg gggf
over DFT in small molecules, the corrections to DFTC2H46 29:7 29:86
vanish for periodic systems, where the eigenstates argn, 24.5 25.43
always extended. In general, to compute the second,H, 28.6 29.26

order variation in the DFT total energy with respect to
an external perturbation, one should take into account th
linear variation of the Hamiltonian induced by the linear
variation of the chargép. However, if the perturbation

2Reference [23].
eference [24].

) tic fieldS o | by i | i The results for a set of molecules are reported in Ta-
l‘l§ha mégne ? Ielfp IS z€ro by ".nr?. ret\)/gfrsa SYMMELY. pie 1. All the computed values are in excellent agreement
us Egs. (7)—(14) are correct within ) with experimental data. The discrepancies are larger for

In the present calculation, we will consider the magneticC2H4 andC, H,, in which a double and a triple C-C bond

response of valence electrons only. We describe t.hgxist, respectively. This could indicate a relatively larger

ionic cores by norm conserving pseudopotentials [15] iy, racy of LDA in describing these types of bonds.

the Kleinman-Bylander form [.16]: This approximation Similar agreement with experiments for the hydrogen
does not affects of the nuclei without core electrons, in molecules is found in previous calculations [2,3].

S#CT as H [2,17], but thoze C.Ot?tammg core el_etl:tr(é_r;?. N The results for molecular and crystalline LiH are re-
]E N at;er caseo compu;e .V\rqt pse”u Iopotentla:; : er; orted in Table Il. LiH is an ionic system, which crys-
rom the one computed with an all-electron scheme DY i, a5 in the rock-salt structure. The Li-H equilibrium

three different terms: (i) the diamagnetic core Contrlbut'ondistance in the crystal is significantly larger than that of the

Which is .independent of the phemical environment;, (ii) @molecule. Our results show that the difference between
contribution due to the transitions from valence states tqln the molecule and in the solid is very small. To verify if

gore stateﬁ [10&; (Ii“) a contrlibution due }0 the_: dif‘ferechU is sensitive to the geometry, we consider a crystal at a
etween the all-electron valence wave functions and thgqqq re of 65 GPa, in which the Li-H distance is equal to
pseudo-wave-functions in the core region. We found tha hat of the molecule. In this case, we find a much larger

for first row atoms su_ch as _carbon, the error_.due to .t..h?/alue ofa. Thus,o of the crystal and of the free molecule
pseudopotential is minor, since the terms (ii) and ("')fare only similar at the equilibrium geometries,

are\)/viliﬁut?lléycr;gr%?czlmearilvei:cfgr?wgr:?e Ir:l?r?: 0:6\;2;:?“3” eor The results for molecular and crystalline HF are reported
gowever we present only the reéults ﬁmro? H Whi(r:hp In Table Ill. The intramolecular bond of HF is covalent.
: P y J In the liquid and solid phases, the HF molecules are

is not affected by thg use of p'seudopotentials.. I:ina”ybonded together in zigzag chains via H bonds. HF has
ll?fué/g)s?r?dfgo(tﬂ)t'%tﬁt?ITISE-; ")sz r(\jva:z((r:jiz: the strongest H bonding found in nature. This strong
[ . v intermolecular bond is reflected in the large variatiorrof

(d/dk)Hj is the velocity operator, andly; is the pseudo-  ghserved in the transition from the gas phase to the liquid
Hamiltonian [18]. . . hase, and in the large temperature dependence iof

We expand the wave functions using a plane wave (PWyhe |iquid phase [23]. The HF crystal is constituted of a
basis set. We obtaimy; ) by solving Eq. (11) withacon- 5 gtacking of parallel 1D zigzag chains. We compute
jugate gradient minimization [19]; i.e., we never use the, tor the crystal at the experimental geometries measured
unoccu(ﬂ?d eigenstates HEZ We obtainf(ai,a:,G.q)  for a DF crystal at two temperatures, 4.2 and 85 K [25].
from [u; ) using fast Fourier transforms. Thus, the com-The computedr in the free HF molecule is in outstanding
putational effort to evaluate for all nuclei in the sample agreement with experimental data. In the crystal, the

is comparable to that required for a computation of the tOta&omputeda decreases dramatically to a value close to the
energy [20]. We compute in systems containing atoms

of H, C, Li, and F. For H we use a local pSeudOpcm_mtiaLI'ABLE II.  Computed H chemical shiftés) in LiH for a free
tc.) speed up the convergence with respect to the PW t.’%’uolecule and apspherical crystalline S%Tr%ple (in the rock-salt
sis [21]. For C, Li, and F atoms, we use a pseudopotentiajirycture). 4, is the equilibrium bond length of the molecule,
with a nonlocals projector to describe the interaction of 4 is the lattice constant, ang, is the experimental equilibrium
valence states with thes core states. We use a PW en- lattice constant. Fos# = 2d,, the shortest Li-H distance in the
ergy cutoff of 100 Ry for the F atom, and of 70 Ry for the rystal is equal tal.
other atoms. Molecular and crystalline structures are taken o theory (ppm)
from experiments [22]. The results for the free molecules-
are obtained using supercells, such that the errar glue -t Molecule do = 1.595 26.6
X ) . o . _LiH crystal a = ay = 4.08 26.3
to interaction between a molecule and its periodic replicg;, crystal a = 2dy = 3.19 312
is smaller than 0.1 parts per million (ppm). y :
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TABLE Illl. Computed and measured hydrogen chemical [6] C. Jager, J. Gottwald, H.W. Spiess, and R.J. Newport,

shifts o in HF for a free molecule, a spherical crystalline Phys. Rev. B50, 846 (1994).

sample, and a spherical liquid samplé. is the temperature. [7] K. Laasonen, M. Sprik, M. Parrinello, and R. Car,
J. Chem. Phys99, 9080 (1993).

[8] N.A. Marks, D.R. McKenzie, B.A. Pailthorpe,

T (K) o theory (ppm) o experiment (ppm)

HF molecule 28.4 285 M. Bernasconi, and M. Parrinello, Phys. Rev. Lett.
HF crystal 4.2 20.71 76, 768 (1996).

HF crystal 85 21.76 [9] K. Kobayashi and M. Tsukada, Phys. Rev.3B, 8566
HF liquid 214 21.48 (1988), and references therein.

aReference [23]. [10] F. Mauri and S.G. Louie, Phys. Rev. Leff6, 4246
bReference [24]. (1996).

[11] This macroscopic term is important for the determination
of the hydrogeno in condensed matter. E.g., in water,
477 x(0,0) = —9.2 ppm, which is comparable to the
variation of o with the chemical environment. We
consider a spherical geometry for two reasons. Firstly, it
is the most suitable to identify intermolecular interactions,
becauseoc measured in a spherical sample of liquid is
equal to that of the isolated molecule, if the molecules in
the liquid do not interact. Secondly, if the magic angle
spinning (MAS) technique is used [5] for a solid with
isotropic y(0,0), o is independent of the particular shape
of the sample, and is equal to the one obtained without
MAS but with a spherical shape.

one measured in the liquid phase (we are not aware of

any experimental measurement®ffor solid HF). Also

the theoretical variation of with temperaturedo /8T =

0.013 ppm/K, is very close to the one measured in the

liquid, which is do/dT = 0.0135 ppm/K [23]. Thus,

with respect tar, the behavior of the solid is very similar

to that of the liquid. Interestingly, a single H bond does

not account for the large decrease @wfobserved in the

condensed phases. Indeed, the computéar the central

H atom in a HF-HF dimer, is closer to the of the free

molecule than to that of the liquid [2]. ; ' DU Tt _
In conclusion, we have presentedaminitio theory for Hg} él_n(iﬁgnag(r;r;joi\ﬂq. Rba?sgl'? a;ﬁ;g. +R((a;v). Ll;_ﬁ%_qz_sgb

the evaluation of NMR chemical shiftgr) in extended (1987). ’ ’

systems. We have computed, for the first timein real  [14] v.G. ‘Malkin, O.L. Malkina, M.E. Casida, and D.R.
solids. Our results show that DFT-LDA predicts hydro- Salahub, J. Am. Chem. Sot16, 5898 (1995).
geno which are in excellent agreement with experiment.[15] N. Troullier and J.L. Martins, Phys. Rev. B3, 1993
The evaluation ofo requires the same numerical effort (1991).
as the computation of the total energy [20]. Thus, ouf16] L. Kleinman and D.M. Bylander, Phys. Rev. Let#t,
approach can be applied to supercells containing up to a _ 1425 (1982). . .
hundred atoms, which are sufficient to model liquids orl17] g"-l ';agpréh V. thMaltlné3E?é|§2 ggg‘g;a’ and D.R.
amorphous materials [6-8]. aiahub, Lhem. Fhys. LeRss, 20 S
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