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We present a theory for theab initio computation of NMR chemical shiftsssd in condensed matte
systems, using periodic boundary conditions. Our approach can be applied to periodic system
as crystals, surfaces, or polymers and, with a supercell technique, to nonperiodic systems s
amorphous materials, liquids, or solids with defects. We have computed the hydrogens for a set
of free molecules, for an ionic crystal LiH, and for a H-bonded crystal HF, using density funct
theory in the local density approximation. The results are in excellent agreement with experim
data. [S0031-9007(96)01901-1]

PACS numbers: 76.60.Cq, 71.15.Mb
o
m

c
in

c
e
n

-

s
s

c
p
,

e
t

o

h
e
h

n
h
ty

a
ent

art

.

and
ur

s
e
c

nd
al
Nuclear magnetic resonance (NMR) is one of the m
widely used experimental techniques in structural che
stry. In particular, the chemical shiftssd spectra are a
fingerprint of the molecular geometry and the chemi
structure of the material under study. Although the
terpretation of these spectra generally relies on emp
cal rules,ab initio calculations ofs for molecules have
led in many cases to an unambiguous determination
the microscopic structure [1]. So far,ab initio calcula-
tions of s have been restricted to finite systems su
as isolated molecules or clusters [2,3]. This is a s
ous limitation, because most of the NMR experime
are performed on liquid samples. Moreover, it is no
possible to measures also in solids with the resolu
tion required for structural determinations [4,5]. E.g.,s

spectra have been used for the characterization of am
phous carbon [6]. In this Letter, we present a formali
to compute, from first principles,s in extended system
using periodic boundary conditions. Our approach c
be applied to periodic systems such as crystals, surfa
or polymers and, using a supercell technique, to non
riodic systems such as amorphous materials, liquids
solids with defects. In the case of the amorphous so
or liquid, the atomic coordinates may be generated
ab initio molecular dynamic simulations [7,8].

The chemical shift measures the local magnetic fi
in a sample induced by a uniform applied magne
field. The computation ofs in an extended system
is not straightforward, since the expectation values
the individual terms of the perturbative Hamiltonian f
extended eigenstates are not well-defined quantities
To overcome this problem, we follow Ref. [10] in whic
a theory for the computation of the macroscopic magn
susceptibility is presented. In particular, (i) we obtain t
magnetic response to a uniform field as the long-wa
limit of a periodic field, and (ii) we use a generalize
f-sum rule to remove the numerical instability whic
occurs in this limit. We apply the resulting equatio
to real systems, describing the electronic structure wit
density functional theory (DFT) in the local densi
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approximation (LDA). We compute the hydrogens for
a set of small molecules, for an ionic crystal, and for
H-bonded crystal. Our results are in excellent agreem
with experimental data.

A uniform, external magnetic fieldBext, applied to
a sample induces an electronic current densityJinsrd.
This current produces an induced magnetic fieldBinsrd.
If Bext is small enough, a condition realized in NMR
experiments, then

Binsrd ­ 2s
$srdBext . (1)

Here s
$srd is the chemical shift tensor. With NMR

spectroscopy, it is possible to measure the symmetric p
of s

$srd, or more often its trace,ssrd ­ s1y3dTrfs$srdg, at
the position of the nonzero spin nuclei.

In the bulk of a periodic system,s
$srd is also periodic.

We may write

s
$srd ­

X
G

s̃
$sGdeiG?r , (2)

where G are the reciprocal lattice vectors. ForG fi 0,
s̃
$sGd is a bulk property,

s̃
$sGd ­ 24px

$sG, 0d , (3)

where x
$sG, G0d is the magnetic susceptibility matrix

However, for G ­ 0, s̃
$s0d is not a bulk property.

Its value depends on the shape of the sample,
is determined by macroscopic magnetostatics. In o
calculations we assume a spherical sample, for which

s̃
$s0d ­ 2

8p

3
x
$s0, 0d , (4)

wherex
$s0, 0d is the macroscopic susceptibility [11]. Thu

the calculation ofs in a periodic system requires th
knowledge of x

$sG, 0d. We compute the macroscopi
susceptibility x

$s0, 0d following Ref. [10]. The other
elements ofx

$sG, 0d are computed as described below.
The susceptibility matrix is defined as the seco

derivative of the total energy with respect to the extern
magnetic field. In particular,

b̂2G ? x
$sG, 0db̂0 ­ 2

≠2EfBg
≠B0≠B2G

Ç
B­0

­ 2E00
0,2G , (5)
© 1996 The American Physical Society
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where EfBg is the total energy of the system per un
volume in the external magnetic fieldBsrd, Bsrd ­
fB0b̂0 1 B2Gb̂2G exps2iG ? rdg, and b̂2G and b̂0 are
vectors of unit length. Thusx

$sG, 0d can be evaluated
using perturbation theory. However, the expectat
values of the perturbative Hamiltonians for a uniform fie
between extended eigenstates are ill defined. To a
this problem, we modulate the external periodic fie
with a finite wave vectorq, Bsrd ­ hBqb̂q expsiq ? rd 1
o

it

n
d
oid
ld

B2G2qb̂2G2q expf2isG 1 qd ? rgj [12], and we recover
the results for the uniform field by considering the lim
[10]:

b̂2G ? x
$sG, 0db̂0 ­ 2 lim

q!0
E00

q,2G2q . (6)

We now consider a spin compensated system descr
by a single particle Hamiltonian. The derivatives of t
Hamiltonian required to computeE00

q,2G2q are
H 0
q ­

2i
2

seiq?raq ? = 1 aq ? =eiq?rd ,

H 0
2G2q ­

2i
2

se2isG1qd?ra2G2q ? = 1 a2G2q ? =e2isG1qd?rd , H 00
q,2G2q ­ aq ? a2G2qe2iG?r , (7)
is
first

as
tive

8)
,
he

n

whereas ­ sis 3 b̂sdyscs2d, andc is the speed of light.
Using perturbation theory we obtain

E00
q,2G2q ­ fsaq, a2G2q, G, qd

1 2aq ? a2G2q

Z d3k
s2pd3

3
X

i[O

kuk,ije
2iG?rjuk,il , (8)

wherejuk,il is the periodic part of the Bloch eigenstate
the unperturbed HamiltonianHk with eigenvalueek,i, O

are the sets of occupied bands, and

fsa1, a2, G, qd ­
Z

d3rfhsa1, a2, r, qd

1 hpsap
1, ap

2, r, 2qdge2iG?r, (9)

where the integral is performed in the periodic cell, with

hsa1, a2, r, qd

­
Z d3k

s2pd3

X
i[O

fkuk,ijrl krja2 ? s2i= 1 k 1 qdjuq,a1

k,i l

1kuk,ija2 ? s2i= 1 kdjrl krju
q,a1

k,i lg . (10)

ju
q,a1

k,i l is the first order change of the eigenstatejuk,il
due to a field with wave vectorq. It can be obtained
by solving the linear system

sek,i 2 Hk1qdjuq,a1

k,i l

­ Qk1qa1 ? s2i= 1 k 1 qy2djuk,il , (11)
f

where Qk1q ­ s1 2
P

i[O juk1q,il kuk1q,ijd is the pro-
jector onto the empty subspace.

The first term on the right-hand side of Eq. (8)
obtained as a second order perturbation with the
order derivatives of the HamiltonianH 0

q andH 0
2G2q. The

second term in the right-hand side of Eq. (8) is obtained
a first order perturbation with the second order deriva
of the HamiltonianH 00

q,2G2q. Sinceaq diverges as1yq
for q ! 0, the two terms on the right-hand side of Eq. (
individually diverge as1yq. To remove this divergence
which would produce a numerical instability, we use t
generalizedf-sum rule,

2a1 ? a2

Z d3k
s2pd3

X
i[O

kuk,ije
2iG?rjuk,i l

­ 2fsa1, a2, G, 0d . (12)

Substituting the f-sum rule into Eq. (8), we obtai
E00

q,2G2q ­ f fsaq, a2G2q, G, qd 2 fsaq, a2G2q, G, 0dg.
Then, forG fi 0,

b̂2G ? x
$sG, 0db̂0 ­ 2 lim

q!0
E00

q,2G2q ­ 2
≠

c2G2≠q

3 fsq̂ 3 b̂0, G3 b̂2G, G, qq̂djq­0 ,

(13)

whereq̂ is the unit vector in the direction ofq. Finally,
the derivative with respect toq in Eq. (13) can also be
evaluated using the following limit:
b̂2G ? x
$sG, 0db̂0 ­ 2 lim

q!0
f fsq̂ 3 b̂0, G 3 b̂2G, G, qq̂d 2 fsq̂ 3 b̂0, G 3 b̂2G, G, 2qq̂dgys2qc2G2d . (14)
ge

e
ge-

t

Note that, for G fi 0, x
$sG, 0d is proportional to

the first derivative off with respect toq, whereas the
macroscopic susceptibilityx

$s0, 0d is proportional to the
second derivative off with respect toq [10].

In practice, we evaluate numericallyx
$sG, 0d using

Eq. (14) with a small, but finiteq, and thek integral in
Eq. (10) with a finite summation in the irreducible wed
of the Brillouin zone.

We describe the electrons using DFT-LDA; i.e., w
neglect any explicit dependence of the exchan
correlation functionalsExcd on the current density. The
current dependence ofExc could be taken into accoun
5301
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using the approximate functional proposed in Ref. [1
but, in practice, this produces only negligible correctio
to s in real systems [3]. Anad hocprocedure to include
many-body effects beyond DFT in the calculation ofs

has been proposed in [14]. While this approach impro
over DFT in small molecules, the corrections to D
vanish for periodic systems, where the eigenstates
always extended. In general, to compute the sec
order variation in the DFT total energy with respect
an external perturbation, one should take into accoun
linear variation of the Hamiltonian induced by the line
variation of the chargedr. However, if the perturbation
is a magnetic field,dr is zero by time reversal symmetr
Thus Eqs. (7)–(14) are correct within DFT.

In the present calculation, we will consider the magn
response of valence electrons only. We describe
ionic cores by norm conserving pseudopotentials [15
the Kleinman-Bylander form [16]. This approximatio
does not affects of the nuclei without core electron
such as H [2,17], but those containing core electrons.
the latter case,s computed with pseudopotentials diffe
from the one computed with an all-electron scheme
three different terms: (i) the diamagnetic core contributi
which is independent of the chemical environment; (ii
contribution due to the transitions from valence state
core states [10]; (iii) a contribution due to the differen
between the all-electron valence wave functions and
pseudo-wave-functions in the core region. We found t
for first row atoms such as carbon, the error due to
pseudopotential is minor, since the terms (ii) and (
are usually much smaller than the range of variation
s with the chemical environment. In the present pap
however, we present only the results fors of H, which
is not affected by the use of pseudopotentials. Fina
in our pseudopotential calculation, we replaces2i= 1

k 1 qy2d in Eq. (11) with svp
k 1 v

p
k1qdy2, wherev

p
k ­

sdydkdHp
k is the velocity operator, andH

p
k is the pseudo

Hamiltonian [18].
We expand the wave functions using a plane wave (P

basis set. We obtainju
q,a1

k,i l by solving Eq. (11) with a con
jugate gradient minimization [19]; i.e., we never use
unoccupied eigenstates ofH

p
k . We obtainfsa1, a2, G, qd

from ju
q,a1

k,i l using fast Fourier transforms. Thus, the co
putational effort to evaluates for all nuclei in the sample
is comparable to that required for a computation of the t
energy [20]. We computes in systems containing atom
of H, C, Li, and F. For H we use a local pseudopoten
to speed up the convergence with respect to the PW
sis [21]. For C, Li, and F atoms, we use a pseudopote
with a nonlocals projector to describe the interaction
valence states with the1s core states. We use a PW e
ergy cutoff of 100 Ry for the F atom, and of 70 Ry for t
other atoms. Molecular and crystalline structures are ta
from experiments [22]. The results for the free molecu
are obtained using supercells, such that the error ons due
to interaction between a molecule and its periodic rep
is smaller than 0.1 parts per million (ppm).
5302
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TABLE I. Computed and measured H chemical shiftsssd for
a set of free molecules.

s theory (ppm) s experiment (ppm)

H2 25.9 26.2a

CH4 30.7 30.61a

C2H6 29.7 29.86b

C2H4 24.5 25.43b

C2H2 28.6 29.26b

aReference [23].
bReference [24].

The results for a set of molecules are reported in T
ble I. All the computed values are in excellent agreeme
with experimental data. The discrepancies are larger
C2H4 andC2H2, in which a double and a triple C-C bon
exist, respectively. This could indicate a relatively larg
inaccuracy of LDA in describing these types of bond
Similar agreement with experiments for the hydrogens

in molecules is found in previous calculations [2,3].
The results for molecular and crystalline LiH are r

ported in Table II. LiH is an ionic system, which crys
tallizes in the rock-salt structure. The Li-H equilibrium
distance in the crystal is significantly larger than that of t
molecule. Our results show that the difference betweens

in the molecule and in the solid is very small. To verify
s is sensitive to the geometry, we consider a crystal a
pressure of 65 GPa, in which the Li-H distance is equal
that of the molecule. In this case, we find a much larg
value ofs. Thus,s of the crystal and of the free molecul
are only similar at the equilibrium geometries.

The results for molecular and crystalline HF are report
in Table III. The intramolecular bond of HF is covalen
In the liquid and solid phases, the HF molecules a
bonded together in zigzag chains via H bonds. HF h
the strongest H bonding found in nature. This stro
intermolecular bond is reflected in the large variation ofs

observed in the transition from the gas phase to the liq
phase, and in the large temperature dependence ofs in
the liquid phase [23]. The HF crystal is constituted of
2D stacking of parallel 1D zigzag chains. We compu
s for the crystal at the experimental geometries measu
for a DF crystal at two temperatures, 4.2 and 85 K [25
The computeds in the free HF molecule is in outstandin
agreement with experimental data. In the crystal, t
computeds decreases dramatically to a value close to t

TABLE II. Computed H chemical shiftsssd in LiH for a free
molecule and a spherical crystalline sample (in the rock-s
structure). d0 is the equilibrium bond length of the molecule
a is the lattice constant, anda0 is the experimental equilibrium
lattice constant. Fora ­ 2d0, the shortest Li-H distance in the
crystal is equal tod0.

s theory (ppm)

LiH molecule d0 ­ 1.595 26.6
LiH crystal a ­ a0 ­ 4.08 26.3
LiH crystal a ­ 2d0 ­ 3.19 31.2
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TABLE III. Computed and measured hydrogen chemi
shifts s in HF for a free molecule, a spherical crystallin
sample, and a spherical liquid sample.T is the temperature.

T (K) s theory (ppm) s experiment (ppm)

HF molecule 28.4 28.5a

HF crystal 4.2 20.71
HF crystal 85 21.76
HF liquid 214 21.45b

aReference [23].
bReference [24].

one measured in the liquid phase (we are not aware
any experimental measurement ofs for solid HF). Also
the theoretical variation ofs with temperature,dsydT ­
0.013 ppmyK, is very close to the one measured in t
liquid, which is dsydT ­ 0.0135 ppmyK [23]. Thus,
with respect tos, the behavior of the solid is very simila
to that of the liquid. Interestingly, a single H bond do
not account for the large decrease ofs observed in the
condensed phases. Indeed, the computeds for the central
H atom in a HF-HF dimer, is closer to thes of the free
molecule than to that of the liquid [2].

In conclusion, we have presented anab initio theory for
the evaluation of NMR chemical shiftsssd in extended
systems. We have computed, for the first time,s in real
solids. Our results show that DFT-LDA predicts hydr
gens which are in excellent agreement with experime
The evaluation ofs requires the same numerical effo
as the computation of the total energy [20]. Thus, o
approach can be applied to supercells containing up
hundred atoms, which are sufficient to model liquids
amorphous materials [6–8].
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