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We show that many of the unusual properties of the one-dimensional random quantum Ising model
are shared also by dilute quantum Ising systems in the vicinity of a certain quantum transigion in
dimensiond > 1. Thus while these properties are not an artifactdof 1, they do require special
circumstances in higher dimensions. [S0031-9007(96)01936-9]

PACS numbers: 75.10.Nr, 05.50.+q, 75.10.Jm

There is considerable current interest in the propertiekation threshold, there is a finite range of transverse field
of phase transitions in random quantum systems. Exstrengths at which the system remains critical. There is
perimentally accessible quantum transitions such as théaus another quantum transition, across the percolation
transition from an insulator to a metal [1] or a supercon-threshold, at low but nonzero transverse field strengths,
ductor [2], and various magnetic-nonmagnetic transitionsvhich is potentially in a different universality class.
in heavy fermion compounds [3], high- cuprates [4], or These two critical lines meet at a multicritical poidt].
insulating dipolar Ising magnets [5], often occur in situ- The properties of the second transition, at the percola-
ations with strong randomness, and are only poorly undettion threshold, are determined largely by the statistics and
stood. Theoretically many authors [6—8] have analyzedyeometry of the percolating clusters about which much in-
the random Ising chain in a transverse field—perhaps thformation is available. This permits us to make definitive
simplest random quantum system. In particular, Fisher [8ftatements about the scaling properties of this transition in
used a real space renormalization group (RG) approaciiny dimension. We show that the dynamic scaling is ac-
to obtain a detailed description of the thermodynamicgivated, with length scales diverging logarithmically with
and static correlation functions in the vicinity of the criti- energy scales. We also demonstrate the existence of Grif-
cal point. The properties of the system were found tdiths phases on either side with diverging susceptibility.
be very unusual as compared to conventional quantur®ur approach shows clearly the connection between these
critical points. Specifically, length scales were found tobehaviors, and” = 0 phase transitions at which quantum
diverge logarithmically with energy scales, implying a dy- fluctuations are “dangerously irrelevant” [8,11]; indeed,
namic critical exponent = . The transition was shown various exponents of the transition are given by those of
to be flanked on either side by “Griffiths” regions with a
susceptibility diverging due to contributions from statisti-
cally rare fluctuations. There are very few reliable results A
on other random quantum transitions, especially in finite h
dimensionsd > 1; thus it is important to understand if Paramagnet
the anomalous properties of the random quantum Ising
chain are a specialty of = 1, or if there exist higher
dimensional quantum transitions which share these prop-
erties. Numerical work on higher dimensional transverse hut M
field Ising spin glasses has found evidence for the pres-
ence of Griffiths regions, but the dynamic scaling at the
critical point seems conventional [9]. Ordered

In this paper, we provide a simple example of such
anomalous scaling in higher dimensional random quan-
tum Ising systems. We consider bond or site diluted D >
Ising models with short range interactions. As was first c P
suggested by Harris [10], and as we argue below, thesgG. 1. Phase diagram of the dilute Ising model in a trans-
models have two quantum transitions (see Fig. 1): Aterse field §) at zero temperature. The dilution probability
low dilution, below the percolation threshold, there is ais p. The multicritical pointM is atp = p., h = hy. The

phase transition when the long range ferromagnetic ordefuantum transition along the vertical phase boundary: (/.
= p.) is controlled by the classical percolation fixed point at

is destroyed by increasing the transverse field. This i% — pe, h = 0; quantum effects (due to a nonzetpare dan-

expected to be in the universality class of the generic rangerously irrelevant and lead to activated dynamic scaling near
dom bond quantum Ising transition. Right at the percotheh < hy, p = p. line.
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the classical percolation transition and are hence knowaway from p.. Arguing as in the previous paragraph,
either exactly or numerically. We also obtain bounds orwe getG(x) ~ P (0 andx belong to the same cluster)

exponents characterizing the multicritical point. ~x~dt2=m f(x /&) for large x where the correlation
For concreteness, we considenddiluted Ising mod- length & ~ [p — p.|7?7. Similarly, for p < p. the
els defined by the Hamiltonian mean magnetization{c*(x,0))] ~ P (any given site
belongs to infinite cluster=(p. — p)?». The exponents
H == Jijoios - Zho'f’ (1) B,,m,.v, are those of classical percolation theory, and
1

@ are known exactly ind =2 and ford > 6. For any
where(ij) labels the nearest-neighbor sites of-dimen- d < 6, they satisfyB, = v,(d — 2 + 75,)/2.
sional lattice § > 1), andJ;; equals 0 with probability Now consider dynamic correlations. The imaginary
and equalg > 0 with probabilityl — p. The transverse part of the local dynamic susceptibilify; (w)] = 2y P
field & is nonrandom, although our results remain valid(given sitei belongs to a cluster oW sites)[ ydy P [if
for weakly random distributions as well. At = 0, ash  site i belongs to a cluster a¥ sites, y/(w) = y]. The
is increased, there is a zero temperature phase transiti@mergy levels of a cluster @¥ sites can be described for
from an ordered ground state to a disordered one (sele < J as follows: The two lowest levels correspond to
Fig. 1). On the other axis, wheh = 0, so that the the states of a single effective Ising spin with magnetic
system is classical, there is a percolation transition amoment~N in an effective transverse fielbkg . For
p = p.. Forp < p.there is a thermodynamically large largeN, ket can be estimated iNth order perturbation
connected cluster, while fgs > p. there are only finite theory to beh exp(—cN). (In general, there would also
connected clusters. Fgs < p., for small enough#, be a prefactor that varies as a powe\gfwe will ignore
the system retains long range order. This is ultimatelythis as it is subdominant to the exponentialNn When
destroyed for somé > h.(p), with h.(p) expected to be necessary, we will indicate the modifications induced by
a monotonically decreasing function pf On the other keeping this prefactor.) The quantitidsand ¢ are of
hand ifp > p., there is no long range order for ahy orderh and In(J/h), respectively, but their precise values

Now considerp = p.. Again there is zero magneti- depend on the particular cluster being considered. As the

zation and no long range order for ahy However, the distribution of 2 and ¢ is not expected to become very
system stays critical foh < hy; = h.(p.) (Fig. 1). To broad near the transition [13], we will replace them by
see this, note that although there is no thermodynamitheir typical valuesi, and co, respectively. Apart from
cally large connected cluster at., there still is an in- these two lowest levels, there are other levels separated
finite connected cluster with a fractal dimension smalleffrom these by energiesJ. These can be ignored for the
thand. The spins on this cluster align together/at= low-energy physics, and for small < 4, we only need
0. A small but nonzerok is not sufficient to destroy to consider large clusters.
this order on the critical cluster. In fact, two spins on We now need the following results [12] from perco-
any sufficiently large finite cluster remain strongly cor-lation theory for the probabilityP(N, p) that a given
related with each other for small. The critical clus- site belongs to a large cluster of sites. Atp = p.,
ter eventually loses order whenreaches:y,. To make P(N,p.) ~ N'"7 wherer equals% ford > 6, and equals
this more precise consider the disorder averaged, equal+ 4/D for d < 6 whereD is the fractal dimension of
time (r), two point spin correlation function. Spins at the critical clusters. In particular = 187/91 in d = 2,
points 0 and x are correlated only if they belong to and is approximatel2.18 in 4 = 3. Away from p.., for

the same cluster; thus(x) = [(oc*(x,7 = 0)0%(0,0)) — d < 60ord > 8, P(N, p) satisfies the scaling form
(% (x,0)Xo?(0,0))] = [dCCP (0 and x belong to the
same cluster)P (if 0 andx belong to the same cluster, P(N.p) ~ N'"""g(N/&P). (2)

they have correlatiof’), where angular brackets are aver- ) ) . . L
ages over quantufthermal fluctuations, square brackets The scaling functiorg(y) is universal but is different for

represent disorder averages, &h(E) is the probability of 7 < Pe and p > p.; it approachesl for y < 1, while

the eventE. At p = p., the first probability~x—4+2=m  fory > 1,

for largex [12]. The arguments above imply that the in- - L —0tT —cuy

tegral overC is nonzero and independent.offor largex 80y, p > pe) =y ¢ ’ 3)
for h < hy. ThusG(x,p = p.) ~ x 427" for large gly,p < p.) ~ y_e/”e_c’»"lfl/d,

x for h < hy, and there is a critical line fok < hy, at _ 3 s

P = pe. with § =1, 5 and 5 for d = 2,3 and d > 8, respec-

In this paper we will primarily focus attention on the tively, and#’ = %, —1/9in d = 2,3, respectively. The
transition across this critical line. We show thaffat= 0 constantsc, - are of order unity. For6 <d <38,
the properties of this transition are strikingly similar to P(N, p) satisfies a more complicated two-variable scal-
the d = 1 results for the random quantum Ising chaining form [14]. For simplicity, we shall not discuss this
[8]. First consider the equal-time two point function case here, though including it is straightforward.
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Using these percolation results, we get for the dynamigpure systems, but is probably generic to many random

susceptibility of the Ising model quantum transitions [8,9,15].
dN The magnetization in response to a uniform external
[x[(@)] ~f NT,lg(N/fD)és(w — hoe M) applied magnetic field# along the 2 direction can
be calculated similarly. For small < h, only large
_ 1 [ |n(ho/w)} (@) clusters contribute. The magnetization per site of a cluster
w[ln(ho/w)]f—lg coéP of size N is that of an Ising spin of magnetic momeit

Note that the scaling variable is (w)/£0. This is in a transverse field.¢ v, and is therefore given by

a precise statement of the activated dynamic scaling . NH
. ) , My(H) = 3 .
mentioned earlier, which has thus been shown to occur [((NH)? + hZ ]2

in all d > 1 in the present model. Asymptotic forms o ) )
in various limits can be obtained from the limiting be- Thus the total magnetization per site (after subtracting the

havior of g(x) described above. Fop = p., we get regular contribution of the infinite cluster for < p.) is
xi ~ o " In(hg/w)]'"7 with a ~ ¢ P so that at 1 b

p = pe,a = 0 (including the power-law prefactor in M(H) — M(H = 0) ~ [ dN = g(N/E)My(H).
hess v Will only change the power of Ii/w) in by ) )

~¢-P, and similarly for the prefactor in the expres- The singular part therefore has the scaling form
sion for p < p. given below). Note that just on the 1 In(ho/H)

disordered side the system is gapless with a power- Miing (H) ~ [In(ho/H)]™2 [ £D } (5)
law density of states. The physical origin of this is,

as usual, the presence of rare, large clusters with arbWith ¢ a nonuniversal constant, anti(y) a universal
trarily small energy gaps. Fgv < p., the presence of function which is related tg(y) by

the infinite cluster (and the associated long range order) %

gives rise to a delta function ab = 0. For  # 0, ®(y) = [ w! T dwg(wy).

xL(w) is still determined by contributions from the fi- !

nite clusters. Proceeding as before, we fipd(w #  Again note that the scaling variable is(kg/H)¢ 2,

0) ~ (1/w)[In(hy/®)]' "™ exp{—k[In(hy/w)]'~1/4} with  which is unlike conventional critical behavior, but is
k ~ £~P0-1/d) Again the system is gapless. The gap-similar to thed = 1 random quantum Ising chain [8].
lessness of both the ordered and disordered phases in thewe thus have the following asymptotic forms as
vicinity of the transition is unlike quantum transitions iP H— 0

[In(ro/H)J7, P = Pe,
Mg (H) ~ { €°0n(ho/H)]"™" (H /ho)?, L P =D (6)
érD(l—l/d)[ln(hO/H)]—0’+l—l/de—[y’In(hO/H)] —1/d . P = Pes

with y, vy’ ~ £7P [as with the dynamic susceptibility] are determined mainly by the geometric properties of the

including the power-law prefactor ih.s y Cchanges the lattice near the percolation threshold. Asdn= 1, all

power of I(1/H) for p > p., and the prefactor for the g dependence is in nonuniversal quantities and in a

p < p. by ~£7P]. Note that the magnetization rises high-energy cutoff limiting the regime of universal scaling

as a power off, with a continuously varying exponent behavior.

which is smaller than one in a region of the disordered We now briefly mention results fof # 0. At p =

phase close to the transition. This is again similar top. and h < hy, there is a thermal correlation length

the d = 1 result and gives rise to a divergent linear £&7 ~ exp(consyT), much like theh = 0 classical model

susceptibility throughout this region. In the ordered sidg10], and using similar arguments. In contrast, for the

dM/dH ~ 1/H with weak corrections. Thus the linear d = 1 random quantum Ising chaig; rises as a power

susceptibility diverges in the ordered side as well. of In(1/T) at the critical coupling. Fop > p. andT
Similarities tod = 1 are also present for the random below the crossover poigt ~ &7, or T < In"![1/(]p —

g-state Potts model. ld = 1, all the critical exponents p.|], we found, for instance, a linear susceptibiljpy ~

and the scaling functions for the mean spatial correlationg ~!** (up to log corrections) withc ~ ¢ . Forp <

and magnetization are independenydfl6], i.e., they are  p,. there is a phase transition & ~ In"'[1/(p. — p)],

the same as for the Ising case. For #he> 1 diluted as in the classical model.

models, it should be clear that a vertical critical line exists We now turn to the special poirif (Fig. 1). Corre-

at the percolation threshold for all. The exponents lations at the poind/ should decay faster than along the

and appropriate scaling functions of the correspondingertical critical line considered above. ThusGf,(x) ~

guantum transitions are again independenyadds they x~ ¢, then¢ > d — 2 + n,. Similarly, asp approaches
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