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New data and analysis of a 51-term series for self-avoiding walks on the (anisotropic) square
is given. Analysis of the series provides compelling evidence that the generating function for
cannot be written as an algebraic orD-finite function and that the correction-to-scaling exponent
D 

3
2 . [S0031-9007(96)02026-1]

PACS numbers: 75.10.Hk, 05.50.+q, 61.41.+e, 64.60.Fr
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The enumeration of self-avoiding walks (SAWs) a
polygons has for a quarter of a century been argu
the most powerful method for studying the critic
(long-chain) behavior of polymer molecules in a go
solvent [1,2]. Its connection with theN-vector model
of phase transitions and related problems of phy
is elucidated in [1,2]. It has also become a parad
of algorithm design for other graph-enumeration pr
lems arising in statistical mechanics. In this Let
we present a radical extension of the square la
SAW series, from 39 steps to 51 steps, and we
it to provide compelling evidence that the correctio
to-scaling exponent isD 

3
2 as predicted by Nienhui

[3]. This provides important validation of the Coulom
gas methods pioneered in [3]. We also find the co
sponding exponent at the antiferromagnetic critical p
to be 1, implying an analytic correction-to-scaling term

Until 1993, all SAW enumerations were based on
gorithms of exponential complexity, with the time tak
growing asymptotically asln, wherel ø 2.638, the con-
nective constant for SAWs on the square lattice. In 1
we [4] introduced a new algebraic technique based
enumerations on a finite lattice coupled with transfer m
trices. This algorithm is challenging to implement e
ciently, and requires large amounts of physical mem
but affords the advantage of an exponential increas
efficiency over previous algorithms, being of complex
kn, wherek  3

1

4 ø 1.316. We obtained 39-step SAW
from this algorithm, using an IBM 3090 with more tha
500 MB of memory.

In the present study, we have parallelized the algori
in order to run it on a 1024 processor Intel Paragon XPyS
0031-9007y96y77(26)y5284(4)$10.00
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150 supercomputer. While the parallelization is not,
principle, too difficult, an efficient implementation th
balances the load across all processors is more deman
The underlying algorithm is as described in [4], and
details of the parallelization scheme will be publish
elsewhere [5].

The present calculation took about 12 h, required ab
10 GB of memory, and was performed modulo differe
primes (seven times), with the final results being recon
tuted using the Chinese remainder theorem. The sca
the calculation can be gauged by the fact that somet
like 5 TB of data is moved between processors on e
run. Additional processing was required to construct
final series.

The SAW generating function is writtenCsxd P
cnxn , where cn denotes the number ofn-step SAWs

modulo translation. The 12 new series coefficients, be
the coefficientsc40 · · · c51 are given in Table I. (The
previous 40 coefficients can be found in [4].)

Analysis of series.—We have studied the SAW gen
erating function by the usual method of differential a
proximants [6], following the same procedure as in [
We find the following unbiased estimates of the critic
parameters from both first- and second-order differen
approximants:

xc  0.379 052 2s3d, g  1.343 67s10d 1st order,

xc  0.379 052 3s3d, g  1.343 72s10d 2nd order.

These are in perfect agreement with, though m
precise than, the estimates given previously [4]. They
also in very good agreement with the believed exact (
TABLE I. Coefficientsc40 · · · c51 of the walk generating function of square lattice SAWs.

n cn n cn

40 300 798 249 248 474 268 41 800 381 032 599 158 340
42 2 127 870 238 872 271 828 43 5 659 667 057 165 209 612
44 15 041 631 638 016 155 884 45 39 992 704 986 620 915 140
46 106 255 762 193 816 523 332 47 282 417 882 500 511 560 972
48 750 139 547 395 987 948 108 49 1 993 185 460 468 062 845 836
50 5 292 794 668 724 837 206 644 51 14 059 415 980 606 050 644 844
© 1996 The American Physical Society
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nonrigorous) value [3]g 
43
32  1.343 75. Assuming

this value for g then leads to our biased critcal poi
estimatexc  0.379 052 27s12d.

In [7] the estimatexc  0.379 052 28s14d based on
a 56-term square lattice polygon series was given.
unpublished work based on a 70-term polygon series
we find the central estimate unchanged, and the e
reduced by almost 2 orders of magnitude. As noted
[4], this value is indistinguishable from a zero of581x4 1
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7x2 2 13  0, which gives xc  0.379 052 277 76 . . .,
and we will use this value in our subsequent analysis.

In [7] we pointed out that there was no numerical e
dence for a nonanalytic correction-to-scaling term
polygons. Since the polygon generating function ex
nent 2 2 a equals 3

2 , this result is perfectly consisten
with the prediction [3] that the correction exponent
D 

3
2 . That is to say, if one writes the polygon gene

ating function as
Psxd 
X
n$0

pnxn , Asxd 1 Bsxd s1 2 xyxcd22af1 1 s1 2 xyxcdD 1 · · ·g

 Asxd 1 Bsxd s1 2 xyxcd
3

2 f1 1 s1 2 xyxcd
3

2 1 · · ·g  Ãsxd 1 Bsxd s1 2 xyxcd
3

2 f1 1 · · ·g ,
ar
nd
ent.

to

to-
ost
of

ed

lks
one sees that because2 2 a 1 D is an integer, the
nonanalytic correction-to-scaling term “folds into” th
analytic background termAsxd. On the other hand, sinc
2g 1 D is not an integer, a nonanalytic correction-t
scaling term is implied in thewalk generating function.

Subsequently, however, Saleur [9] investigated
correction exponents by studying the transfer ma
spectrum. He found two such exponents, correspon
to D 

1
2 and D 

11
16 . The first operator was dismisse

on technical grounds, but the second exponent is m
problematical. In the Coulomb gas formulation [10
this exponent arises from four-polymer vertices. It c
therefore be argued that this exponent does not contri
to SAWs, but should contribute to lattice trails. F
trails we [11] estimated this exponent to be in the ran
1
2 , D ,

3
4 , and more recently in [12] the valueD 

11
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-
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was found. However, in [12] it is argued that the ne
collisions that a SAW can have with itself also correspo
to four-polymer vertices, and so the term may be pres
We show below that the amplitude of this term appears
be vanishingly small in the case of SAWs.

We have analyzed the series for the correction-
scaling exponent by a wide variety of methods. The m
convincing, and arguably simplest method is a direct fit
the data to the assumed asymptotic form.

As proved in [13], the SAW generating functionCsxd
has, in addition to the “ferromagnetic” singularity atx 
xc, an “antiferromagnetic” singularity atx  2xc. The
exponent at the antiferromagnetic singularity is believ
to be equal to the internal energy exponent2 2 a 

3
2 .

We therefore expect the generating function for wa
to behave like
Csxd 
X

cnxn , Asxd s1 2 xyxcd2 43

32 f1 1 Bsxd s1 2 xyxcdD 1 · · ·g

1 Dsxd s1 1 xyxcd
1
2 f1 1 Esxd s1 1 xyxcdL 1 · · ·g ,
ite
4-
],
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of
whereA, B, C, D, E are smooth functions.
Hence the asymptotic form of the coefficients is giv

by

cnxn
c , n

11

32 fa1 1 a2n21 1 a3n2D 1 a4n22g

1 s21dnn2 3

2 fb1 1 b2n2L 1 b3n21 1 b4n22g .

The correction-to-scaling exponentL, associated with
the antiferromagnetic singularity, is one about which
have noa priori knowledge. Two obvious candidate
are L  1 and1.5, corresponding, respectively, to a
analytic correction and to the same correction as expe
for the ferromagnetic singularity. A third possibility
L  0.5, given that square roots are already presen
the antiferromagnetic singularity. We have investiga
all three possibilities (as well as others), and the evide
is strongly in favor of only an analytic correction, that
L  1.

A fit to the data of the above form withD 
3
2 and

L  1 (which we believe to be the correct values)
n
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shown in Table II. The coefficientb3 is redundant since
L  1.

Convergence is seen to be excellent (and qu
comparable to a corresponding analysis of the 5
term square lattice Ising susceptibility series [6
where both D and L are known to be1). We es-
timate a1  1.177 043, a2  0.5500, a3  20.140,
a4  20.12, b1  20.1899, b2  0.175, and
b3  21.51. We expect errors to be confined t
the last quoted digit.

A corresponding fit withD 
3
2 and L  0.5 was

made (not shown) and the fit to the antiferromagne
singularity amplitudes was significantly worse than wi
the above exponent set. More significantly, the amplitu
b2 of the term associated with the assumed correcti
to-scaling exponent was small in magnitude, and tend
towards zero asn grows: this is a sign of its absence
A similar analysis (not shown) was made withL  1.5,
and again a poorer fit was observed, with the amplitude
5285
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TABLE II. A fit to the asymptotic form withD  1.5 andL  1.

n a1 a2 a3 a4 b1 b2 b4

40 1.177 042 1 0.550 21 20.141 18 20.118 16 20.189 84 0.174 11 21.495 11
41 1.177 042 2 0.550 18 20.141 00 20.118 57 20.189 84 0.174 22 21.497 25
42 1.177 042 1 0.550 19 20.141 04 20.118 48 20.189 84 0.174 24 21.497 70
43 1.177 042 2 0.550 16 20.140 82 20.118 99 20.189 84 0.174 39 21.500 54
44 1.177 042 2 0.550 17 20.140 89 20.118 84 20.189 84 0.174 43 21.501 42
45 1.177 042 3 0.550 15 20.140 71 20.119 27 20.189 85 0.174 55 21.503 89
46 1.177 042 3 0.550 15 20.140 73 20.119 22 20.189 85 0.174 56 21.504 14
47 1.177 042 3 0.550 14 20.140 61 20.119 51 20.189 85 0.174 64 21.505 85
48 1.177 042 3 0.550 14 20.140 60 20.119 54 20.189 85 0.174 63 21.505 66
49 1.177 042 4 0.550 13 20.140 51 20.119 76 20.189 85 0.174 69 21.507 03
50 1.177 042 4 0.550 13 20.140 49 20.119 80 20.189 85 0.174 68 21.506 74
51 1.177 042 4 0.550 12 20.140 42 20.119 98 20.189 85 0.174 73 21.507 91
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the assumed correction term decreasing rapidly. Thus
conclude that there is no numerical evidence for a non
alytic correction at the antiferromagnetic singularity.

Returning to the physical singularity, if we now s
D 

11
16 , and also allow for a second correction-to-scali

exponentD1 
3
2 , the asymptotic form of the coefficient

becomes

cnxn
c , n

11

32 fa1 1 a2n2D 1 a3n21 1 a4n22D 1 a5n2D1 g

1 s21dnn2 3

2 fb1 1 b2n21 1 b3n22g .

The results of this fit are shown in Table III. The e
tremely small values of the estimateda2 strongly sug-
gest that this term is in fact absent. (Including high
order terms in the above equation strengthens this con
sion.) Furthermore, the values of the other amplitudes
consistent with the values of the corresponding terms
Table II.

A variety of other combinations of values forD and
L were tried, with equally persuasive numerical eviden
in favor of just one correction-to-scaling exponent, giv
originally [3] asD  1.5, and only analytic corrections a
the antiferromagnetic singularity, a result we believe to
new. The estimate ofD is in agreement with a recen
finite-size scaling analysis [12], and in disagreem
with a recent numerical study [14]. The fact that tw
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independent methods yield an identical estimate forD

considerably strengthens our confidence in that estim
It similarly lends support to the Coulomb gas methods t
first led to the prediction of that same value, and underp
the application of both methods to other models of ph
transitions.

Anisotropic lattice and exact solutions.—Recently [15]
a numerical procedure was given that indicates whe
a given statistical-mechanical system is solvable, in
sense of being expressible in terms ofD-finite functions
(one which may be expressed as the solution o
linear ordinary differential equation of finite order wit
polynomial coefficients). As discussed in [15], most
the solved models in statistical mechanics fall into t
class. We can show, on the basis of the behavior
the SAW generating function on theanisotropic square
lattice, that it is almost surely notD finite.

We first write the walk generating function as

Csx, yd 
X̀

m,n0

cm,nxmyn 
X̀
n0

Hnsxdyn .

Here cm,n is the number of SAWs withm steps in
the x direction andn steps in they direction. From
our enumerations we can calculate the first 11 val
Hnsxd, n  0, . . . , 10.
TABLE III. A fit to the asymptotic form withD  11
16 , D1  3

2 , andL  1. Note that the amplitudea2 is small, and consistent
with a limit of zero.

n a1 a2 a3 a4 a5 b1 b2 b3

40 1.177 015 9 0.005 55 0.504 39 0.372 07 20.564 79 20.189 84 0.174 10 21.494 95
41 1.177 025 3 0.004 23 0.512 80 0.329 02 20.525 46 20.189 84 0.174 17 21.496 24
42 1.177 017 4 0.005 36 0.505 56 0.366 44 20.559 76 20.189 84 0.174 23 21.497 38
43 1.177 029 3 0.003 62 0.516 76 0.307 99 20.506 01 20.189 84 0.174 32 21.499 18
44 1.177 018 5 0.005 23 0.506 33 0.362 97 20.556 73 20.189 84 0.174 40 21.500 89
45 1.177 029 5 0.003 56 0.517 24 0.304 92 20.503 01 20.189 85 0.174 49 21.502 71
46 1.177 022 5 0.004 64 0.510 10 0.343 25 20.538 59 20.189 85 0.174 55 21.503 93
47 1.177 028 6 0.003 68 0.516 51 0.308 50 20.506 24 20.189 85 0.174 60 21.505 05
48 1.177 025 3 0.004 20 0.513 01 0.327 64 20.524 11 20.189 85 0.174 63 21.505 68
49 1.177 029 0 0.003 61 0.517 01 0.305 58 20.503 46 20.189 85 0.174 66 21.506 40
50 1.177 027 0 0.003 93 0.514 79 0.317 96 20.515 08 20.189 85 0.174 68 21.506 81
51 1.177 029 7 0.003 49 0.517 83 0.300 93 20.499 05 20.189 85 0.174 71 21.507 39
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The first few values are

H0sxd 
1 1 x
1 2 x

,

H1sxd 
2s1 1 xd2

s1 2 xd2
,

H2sxd 
2s1 1 7x 1 14x2 1 16x3 1 9x4 1 3x5d

s1 2 xd3s1 1 xd2
,

H3sxd 
2s1 1 10x 1 29x2 1 44x3 1 41x4 1 22x5 1 7x6d

s1 2 xd4s1 1 xd2
;

i-

s
gu-

at-
the rest will be given elsewhere [5].
The rational functionsHnsxd are observed to have un

modal asymmetric (forn . 1) numerators with positive
coefficients, and denominators of the same degree a
numerator. The denominators appear to form a re
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lar pattern, though we cannot be certain that this p
tern persists. However, if we definetn21 

12xn

12x and
sn  s1 1 xnd then the denominator ofHnsxd appears to
be given by
s1 2 xdn11sn
1 tn24

2 sn27
2 tn29

4 sn210
4 tn214

6 sn217
6 tn219

8 sn220
8 tn224

10 · · · , n even,

s1 2 xdn11sn21
1 tn24

2 sn26
2 tn29

4 sn211
4 tn214

6 sn216
6 tn219

8 sn221
8 tn224

10 · · · , n odd.
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In the above expressions, any negative expone
should be replaced by zero. If this is indeed the patt
of the denominators, this regularity must say someth
profound about the analytic structure of the generat
function. While more denominators would be needed
be quite sure that the pattern persists, it clear is that
n increases, the zeros of the denominator appear to
becoming dense on the unit circle in the complexx plane.
As previously discussed [15], this implies thatCsx, yd
has a natural boundary atjxj  1. This then excludes
all algebraic functions, allD-finite functions, and a large
class of functions that are common in mathemati
physics. [Just what it implies forCsx, xd is less clear.]
Regrettably, no obvious regularity has been obser
in the numerators, nor does evaluating the numera
polynomials atx  1 lead to any recognizable sequenc
which is sometimes the case with simpler problem
There is no feature that suggests the existence of
inversion relation for this problem, unlike the anal
gous case of the Ising model susceptibility [15], whe
the numerator polynomials are symmetric, as well
unimodal.
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