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Random Matrix Model for Superconductors in a Magnetic Field
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We introduce a random matrix ensemble for bulk type-ll superconductors in the mixed state
and determine the single-particle excitation spectrum using random matrix theory. The results
are compared with planar tunnel junction experiments in PbBi thin films. More low energy
states appear than in the Abrikosov-Gor'’kov-Maki or Ginzburg-Landau descriptions, consistent with
observations. [S0031-9007(96)01906-0]

PACS numbers: 74.60.Ec, 05.40.+j, 74.25.Jb, 74.50.+r

Random matrices have been used to understand tHer a system in a volum&) and with a local two-
distribution of level spacings and widths in nuclei [1,2], body interaction of strengthVy > 0. In the absence
complex atoms [2], small metallic particles [3,4], andof a magnetic field, plane waves diagonalize the bare
quantum systems whose classical limits are chaotic [5Hamiltonian and the order parameter may be taken to
Random matrix models have also appeared in the contekie a constant®(r) = Ay. Equation (1) then separates
of solving certain SUV)-invariant field theories in the into 2 X 2 matrices, yielding the BCS spectruffy =
large N Iimit'[6,7] and _discretizing twojdimens.ional &2 + AZ wheres, = ii%k2/2m — Er.
quantum gravity [8]. In this paper we consider a different
context: using a random matrix model to solve the

electronic structure problem posed by the BCS descriptio early uniform. The eigenstates oy, for an ideal

of a superconductor in a magnetic field. _ system, are Landau levels. The momentum with respect
The BCS description for an ideal electronic systéMyg the yortex lattice, which distinguishes states within a

and the more general description for a realistic system, 5nqau level, is conserved, and Eq. (1) separates into

can be formulated in a particular basis in terms of &y w on matrices wherev ~ wp/w., the cutoff energy

large matrix in which the matrix elements have rapidlyt, the pairing interaction over the Landau level spacing.
varying phases and a smooth magnitude distribution. Thlqrhis formulation has been used to calculate certain

problem, however, is too complicated to solve exactly.g|actronic properties of an ideal system [12,13].

For_an ideal system, the_z matrix is too large, and for a A more general method [14], which does not depend on
realistic system, the matrix elements are unknown. The_rﬂ"le exact eigenstates being Landau levels, is to consider,
are two motivations for using a random matrix model: 55 iy the Anderson description of dirty superconductors

(1) In the limit of small level spacings compared 10y ho magnetic field [15], arbitrary eigenstatgs of the
energy scales of interest, spectra are often insensitive {9, .o Hamiltonian:

the details of matrix elements with uncorrelated phases
and the same average magnitude. The robustness of Hotha(r) = eaipal(r). 3)

the Wigner semicircle distribution is an example. (2) ANew quasiparticle operators may be defined with respect
simple set of integral equations may be derived for theg this basisd!, = [dr . (r)ct,. The order parameter
spectrum. These equations may be solved numericallyhay be written

and compared directly with experiments.

The microscopic model for a superconductor in a mag- O(r) = px(r), 4)
netic field was developed as a generalization of the zerowhere y(r) is normalized so thaff |y (r)|*’dr = Q and
field BCS [9] theory by Gor'kov [10], using a Green’'s ¢, the spatial average, is real and positive. We can then
function description, and by de Gennes [11], using adlefine a pairing matrix
wave-function description. The variational Hamiltonian

is Aap E]dr)((r)%(r)ab,g(r), )

Ho(r d(r
H' = [ dr ‘I’f[ @383 _5_[(0*)(r) }‘I’r, (1)  so that the variational two-body Hamiltonian is

In magnetic fields large compared to the field of first
enetration,H,.{, the field inside the superconductor is

where ¥ = [c;rTcrl], ¢t~ are the electron cre- H = xp’r[ ® ¢ﬂ}xp’ (6)

ation operators, andH, is the bare Hamiltonian pAT  —e

5{0_ = (1/2m) iV — eA/c)* — Er. The order parame- \here ¥ is the vector of quasiparticle operatoist =

teris [---le ------ dg)---] and ¢ is the diagonal matrix of
®(r) = —VoQ{crer)) (2) bare eigenvaluel,| < hiwp. The cutoff energy for the
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pairing interactioniwp is taken to be the Debye energy N (1 + 1)-dimensional QCD [6] of0 + 1)-dimensional
in conventional superconductors. matrix-valued ¢* theory [7]. These techniques were
In zero magnetic field, time-reversal invariance in anfurther developed in the context of a large Anderson
isotropic superconductol(= 1) ensures that the pairing disorder model (many orbitals per lattice site) by Wegner
matrix connects only time-reversed stateg,z = 6,3. [16] and in analyzing the eigenvalue correlators of various
In the case of the ideal system, nedr,, it has been matrix models by Brezin and Zee [17].
shown thatA,p « exp(—|e, — aBIZ/W(%) whereW, = In general, the connection between random matrix
Ay, the zero-field gap [12,13]. In other words, the effectmodels and @ + 1)-dimensional field theory follows
of the magnetic field is to “fuzz” out the energy rangefrom a Lagrangian of the formL = L, + L', where
over which states are paired, by an amount of order of ththe bare Lagrangian contains avwi vector of fermi-
zero-field gap. ons ¢ and anN X N scalar matrixM, Lo = ity +
The above pairing matrix description [12—14] moti- TrM?, and the interaction isL’ = N~ 2yt My. In
vates the choice of the following model. We considerthe largeN limit, the fermion propagator for this the-

an ensemble dIN X 2N Hermitian matrices ory is the ensemble-averaged Green’'s function f6r
_[ Eb oA . [ dt e (ys] (6);(0)) = ((E — M);;'). This propagator
H = oAt —E |’ @) may be evaluated using standard Feynman diagram tech-

niques. The important result is that in the lagelimit

only the planar (noncrossing; generalized rainbow) dia-
grams survive [6,7,16,17].

(8) Some additional methods are necessary for the ensem-

whereE, is a diagonal matrix oV uniformly distributed
eigenvaluege;| < 1, and the pairing matrix is
1

Ajj = h(e; — &j)cij,

JN ble defined by Egs. (7)—(9) because of the Pauli matrix
wherec;; are selected from a complex Gaussian randonstructure and the cutoff function it. The Green’s func-
distribution(c;;cx;) = 846;,. The cutoff functionh is tion for H, G(E) = 1/(E — H), may be written in the

1 W Gor’kov notation,
—“LF G (10)

The matrix Ey, models the spectrum of the normal metal
in the rangeEr — hiwp < E < Er + hwp; all energies  Bold-faced quantities arg2 X 2 matrices in electron-hole
have been normalized in units of the Debye energy. Thepace. Dyson’s equation is

b_are energy Ieve_l spacing = ﬁwD/N_ det.ermlnes the G =Gy + G3G. (11)
size of the matrix. The level spacing is assumed to ] ) ,
be small, so that theV — = limit applies. The cutoff Wher_eE is the self-energy ands is .the bare Green’'s
function # is related to the Fourier transform of the function (¢ = 0). In the largeN limit, only the non-
time dependence of the pair correlation function. Thefr0SSing diagrams survive, which implies

Lorentzian form used in Eq. (9) is expected on general

grounds in a diffusive system (Ref. [11], Chap. 8). The ) = ¢’ Z<AikAjl>71leTl
spectrum is, however, not very sensitive to this choice ki
of cutoff function: a Gaussian cutoff yields results which - 5ijl ¢ZZ 11Gurih(er — &)
differ by <10%. N p

The two parameters of the model agg and W.
¢ is the spatial average of the superconducting order = 8;;¢*mS(e)71,

parameter. It decreases from the gap value in zerg . . . : .
field, ¢(H = 0) = Ao, to zero at the phase transition, Wherer; is the Pauli matrix and we introduce the function
¢(H.,) = 0. W is the scale for the relative energy differ- S(s) = 1 Guhler — 12
ence between electrons being paired. Time-reversal sym- (2) N % wh(er = ). (12)
metry givesW (H = 0) = 0; the scale increases steadily Ngte thats depends on two energies, ande. It is not
with magnetic field, toW(H,) = Wo. Solving the full 5 Greens function, it is just a construct useful for solving
self-consistent equations for a given material would, ingig particular problem. In the nonbanded, unifotnsase

principle, determine the best values f¢rand W as a ;o \would haveh = 1 andS = (1/N)TrG, independent
function of applied field and properties of that material. ¢

This would also make the model much more complex. |yserting the result foi, into Dyson’s equation, per-

We therefore, instead, find solutions for arbitrafyand forming the sum in Eq. (12), and replacing the discrete

W and consider these as free parameters to be determingd o energies; by the continljous variable, yields

from the data. . '
The spectrum o may be determined using methods S(v) = [ de h(v — &) L)

similar to those discussed in the context of solving large 1 [Gol(e) — ¢271S(e)71]
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This is an implicit integral equation f8. Writing a 5T
. 4T
_[S Ss:| 12 | 3T
S = 14 s M,
[54 > () R S N

and usingG, ' = E — 3¢, we find that the off-diagonal
elements of the matrix in the denominator of the integral
equation areS; and S4. Hence, a solution exists with
S3 =S4 = 0. For a given theory, the spectrum in the
large N limit is unique, so we expect this to be the only
solution. Equation (13) then reduces to

di/dv

_ (! h(v — e) 02| ]
e R A I ¥ B

_ ! h(v — &) -2 -1 0 1 2
S(v) = f_l de E+e— 25 (15b) V (meV)

] ) FIG. 1. Normalized junction conductance for PpBe with
For a giveny andW, Eg. (15) may be solved numerically 7. = 5.52 K at 360 mK for several magnetic fields [18]. Solid

to obtain S(e) and S(g) at any energy:. The single- I@nes: random matrjx modelg(/W = 0.3, 0.8, 1.6). Dashed
particle excitation spectrum then follows from line: Abrikosov-Gor'kov spectrum( = 0.5).

TrG(E) = f

dv S (v,E), (16)
and the usual relatiop(E) = (—=1/7)ImTrG(E + ig). assumes, in addition to the dirty limit and local electrody-
In the weak coupling limit, the bare BCS gadp <  namics, translationally invariant Green’s functions (e.qg.,
hwp, so both¢ andW in Eq. (15) are much less than 1. spatially uniform order parameter), which cannot apply to
In that case, the limits of integration may be extended ta bulk type-Il superconductor at any magnetic field above
c in both directionsW may be scaled out, and solutions H.;. Further, it requires that the impurity averaging tech-
depend only on the parametgry/W. nique, valid for a dilute gas of weak, uncorrelated, scat-
In Fig. 1 we compare the spectrum obtained this wayterers apply to the case of a nearly uniformly penetrating
with tunneling spectra from planar tunnel junctions inmagnetic field distribution, which seems unlikely.
PbBi/Ge thin films [18]. These spectra where taken Second, a vortex solution in the Ginzburg-Landau
at temperatures low enougl’ & 360 mK) that thermal model has a small “core” of siz&, the coherence length,
smearing affects the line shape by less than a few pecompared toA, the penetration depth. Although the
cent. This thermal correction is included with the stan-Ginzburg-Landau model does not contain electrons,

dard expression [19] for the tunneling curretit/dV =  the assumption is that the small core size over which
—(Go/po) [dE p(E)of(E + eV)/aV, where the Fermi the order parameter magnitude is reduced acts as a box
factorisf(x) = 1/(ef* + 1). in which electronic states are confined, leading to a

The numerical agreement between the random matrismall “normal fraction” of bound states. However, the
model and the tunneling data is fairly close, a little order parameter does not act on electrons like a potential
worse at lower fields. Also shown in Fig. 1 is a fit in a single-particle Schrédinger equation. The order
with an Abrikosov-Gor’kov spectrum to the 3 T data, in parameter enters the Bogoliubov—de Gennes equations
which the gap and pair-breaking strength are taken aanalogous to a spatially varying mass in a Dirac equation.
free parameters. A pair-breaking strength [20} 0.5  Squaring the equation shows that currents also act as
was used, which correctly reproduces the peak; a paim confining potential. A more direct analogy might be
breaking strengtld = 1 gives more low energy states but made with a tornado: it is not just objects in the eye of
fits poorly at all energies. the storm which are trapped and move with the tornado,

One interesting feature of the random matrix modelbut also objects in the circulating currents around the eye
as seen in Fig. 1, is the presence of more low energpf the storm.
states at low fields than is conventionally assumed. The Bound states in the currents could explain why both the
conventional view, however, has been based on severdhta and the random matrix model indicate the presence of
indirect arguments rather than a direct solution of amore low energy states than expected from a Ginzburg-
microscopic model. Landau picture. Solutions for the electronic structure

First, the Abrikosov-Gor’kov solution for the Green’s around an isolated vortex would help address this ques-
functions of a superconductor in the presence of a dition; initial numerical work shows clear deviation from
lute gas of magnetic impurities [21] was applied to type-Ginzburg-Landau behavior [22]. Note that if the bound
Il superconductors by Maki, with impurity concentration states can be shown to extend out to a penetration depth,
mapping to magnetic field strength [20]. This mappingthen the overlap with neighboring vortices, for fields above
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