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Random Matrix Model for Superconductors in a Magnetic Field
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We introduce a random matrix ensemble for bulk type-II superconductors in the mixed
and determine the single-particle excitation spectrum using random matrix theory. The r
are compared with planar tunnel junction experiments in PbBi thin films. More low en
states appear than in the Abrikosov-Gor’kov-Maki or Ginzburg-Landau descriptions, consisten
observations. [S0031-9007(96)01906-0]

PACS numbers: 74.60.Ec, 05.40.+ j, 74.25.Jb, 74.50.+r
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Random matrices have been used to understand
distribution of level spacings and widths in nuclei [1,2
complex atoms [2], small metallic particles [3,4], a
quantum systems whose classical limits are chaotic
Random matrix models have also appeared in the con
of solving certain SUsNd-invariant field theories in the
large N limit [6,7] and discretizing two-dimensiona
quantum gravity [8]. In this paper we consider a differe
context: using a random matrix model to solve t
electronic structure problem posed by the BCS descrip
of a superconductor in a magnetic field.

The BCS description for an ideal electronic syste
and the more general description for a realistic syst
can be formulated in a particular basis in terms o
large matrix in which the matrix elements have rapid
varying phases and a smooth magnitude distribution. T
problem, however, is too complicated to solve exac
For an ideal system, the matrix is too large, and fo
realistic system, the matrix elements are unknown. Th
are two motivations for using a random matrix mod
(1) In the limit of small level spacings compared
energy scales of interest, spectra are often insensitiv
the details of matrix elements with uncorrelated pha
and the same average magnitude. The robustnes
the Wigner semicircle distribution is an example. (2)
simple set of integral equations may be derived for
spectrum. These equations may be solved numeric
and compared directly with experiments.

The microscopic model for a superconductor in a m
netic field was developed as a generalization of the z
field BCS [9] theory by Gor’kov [10], using a Green
function description, and by de Gennes [11], using
wave-function description. The variational Hamiltoni
is

H 0 ­
Z

dr Cy
r

∑
H0srd Fsrd
Fpsrd 2H

p
0 srd

∏
Cr , (1)

where Cy
r ; fcy

r"cr#g, cy
rs are the electron cre

ation operators, andH0 is the bare Hamiltonian
H0 ; s1y2md si= 2 eAycd2 2 EF . The order parame
ter is

Fsrd ­ 2V0Vkcr"cr#l (2)
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for a system in a volumeV and with a local two-
body interaction of strengthV0 . 0. In the absence
of a magnetic field, plane waves diagonalize the b
Hamiltonian and the order parameter may be taken
be a constant,Fsrd ­ D0. Equation (1) then separate
into 2 3 2 matrices, yielding the BCS spectrumEk ­q

´
2
k 1 D

2
0, where´k ­ h̄2k2y2m 2 EF .

In magnetic fields large compared to the field of fir
penetration,Hc1, the field inside the superconductor
nearly uniform. The eigenstates ofH0, for an ideal
system, are Landau levels. The momentum with resp
to the vortex lattice, which distinguishes states within
Landau level, is conserved, and Eq. (1) separates
2N 3 2N matrices whereN , vDyvc, the cutoff energy
for the pairing interaction over the Landau level spacin
This formulation has been used to calculate cert
electronic properties of an ideal system [12,13].

A more general method [14], which does not depend
the exact eigenstates being Landau levels, is to consi
as in the Anderson description of dirty superconduct
in no magnetic field [15], arbitrary eigenstatesca of the
bare Hamiltonian:

H0casrd ­ ´acasrd . (3)

New quasiparticle operators may be defined with resp
to this basis:dy

as ­
R

dr casrdcy
rs . The order paramete

may be written

Fsrd ; fxsrd , (4)

where xsrd is normalized so that
R

jxsrdj2dr ­ V and
f, the spatial average, is real and positive. We can t
define a pairing matrix

Aab ;
Z

dr xsrdcasrdcbsrd , (5)

so that the variational two-body Hamiltonian is

H 0 ­ Cy

∑
´ fA

fAy 2´

∏
C , (6)

where C is the vector of quasiparticle operatorsCy ;
f· · · d

y
a" · · · · · · db# · · ·g and ´ is the diagonal matrix of

bare eigenvaluesj´aj , h̄vD. The cutoff energy for the
© 1996 The American Physical Society
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pairing interactionh̄vD is taken to be the Debye energ
in conventional superconductors.

In zero magnetic field, time-reversal invariance in
isotropic superconductor (x ­ 1) ensures that the pairin
matrix connects only time-reversed states:Aab ~ da,b.
In the case of the ideal system, nearHc2, it has been
shown thatAab ~ exps2j´a 2 ´bj2yW 2

0 d whereW0 ø
D0, the zero-field gap [12,13]. In other words, the effe
of the magnetic field is to “fuzz” out the energy rang
over which states are paired, by an amount of order of
zero-field gap.

The above pairing matrix description [12–14] mo
vates the choice of the following model. We consid
an ensemble of2N 3 2N Hermitian matrices

H ­

∑
E0 fA

fAy 2E0

∏
, (7)

whereE0 is a diagonal matrix ofN uniformly distributed
eigenvaluesj´ij , 1, and the pairing matrixA is

Aij ;
1

p
N

hs´i 2 ´jdcij , (8)

wherecij are selected from a complex Gaussian rand
distributionkcp

ijckll ­ dikdjl. The cutoff functionh is

hsxd ;
1
p

W
x2 1 W2 . (9)

The matrixE0 models the spectrum of the normal me
in the rangeEF 2 h̄vD , E , EF 1 h̄vD ; all energies
have been normalized in units of the Debye energy. T
bare energy level spacingd ­ h̄vDyN determines the
size of the matrix. The level spacing is assumed
be small, so that theN ! ` limit applies. The cutoff
function h is related to the Fourier transform of th
time dependence of the pair correlation function. T
Lorentzian form used in Eq. (9) is expected on gene
grounds in a diffusive system (Ref. [11], Chap. 8). T
spectrum is, however, not very sensitive to this cho
of cutoff function: a Gaussian cutoff yields results whi
differ by &10%.

The two parameters of the model aref and W .
f is the spatial average of the superconducting or
parameter. It decreases from the gap value in z
field, fsH ­ 0d ­ D0, to zero at the phase transitio
fsHc2d ­ 0. W is the scale for the relative energy diffe
ence between electrons being paired. Time-reversal s
metry givesW sH ­ 0d ­ 0; the scale increases steadi
with magnetic field, toWsHc2d ; W0. Solving the full
self-consistent equations for a given material would,
principle, determine the best values forf and W as a
function of applied field and properties of that materi
This would also make the model much more compl
We therefore, instead, find solutions for arbitraryf and
W and consider these as free parameters to be determ
from the data.

The spectrum ofH may be determined using method
similar to those discussed in the context of solving la
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N (1 1 1)-dimensional QCD [6] ors0 1 1d-dimensional
matrix-valued w4 theory [7]. These techniques wer
further developed in the context of a largeN Anderson
disorder model (many orbitals per lattice site) by Wegn
[16] and in analyzing the eigenvalue correlators of vario
matrix models by Brezin and Zee [17].

In general, the connection between random ma
models and (0 1 1)-dimensional field theory follows
from a Lagrangian of the formL ­ L0 1 L0, where
the bare Lagrangian contains anN vector of fermi-
ons c and anN 3 N scalar matrixM, L0 ­ icy Ùc 1

TrM2, and the interaction isL0 ­ N21y2cyMc. In
the largeN limit, the fermion propagator for this the
ory is the ensemble-averaged Green’s function forM:R

dt eiEtkcy
i stdcjs0dl ­ ksE 2 Md21

ij l. This propagator
may be evaluated using standard Feynman diagram t
niques. The important result is that in the largeN limit
only the planar (noncrossing; generalized rainbow) d
grams survive [6,7,16,17].

Some additional methods are necessary for the ens
ble defined by Eqs. (7)–(9) because of the Pauli ma
structure and the cutoff function inA. The Green’s func-
tion for H, GsEd ; 1ysE 2 Hd, may be written in the
Gor’kov notation,

G ;
∑

G F
F0 G0

∏
(10)

Bold-faced quantities are2 3 2 matrices in electron-hole
space. Dyson’s equation is

G ­ G0 1 G0SG , (11)

where S is the self-energy andG0 is the bare Green’s
function (f ­ 0). In the largeN limit, only the non-
crossing diagrams survive, which implies

Sij ­ f2
X
k,l

kAikAp
jllt1Gklt1

­ dij
1
N

f2
X

k

t1Gkkt1hs´k 2 ´id

; dijf2t1Ss´idt1 ,

wheret1 is the Pauli matrix and we introduce the functio

Ss´d ;
1
N

X
k

Gkkhs´k 2 ´d . (12)

Note thatS depends on two energies,E and´. It is not
a Green’s function, it is just a construct useful for solvin
this particular problem. In the nonbanded, uniformA case
we would haveh ­ 1 and S ­ s1yNdTr G, independent
of ´.

Inserting the result forS into Dyson’s equation, per-
forming the sum in Eq. (12), and replacing the discre
bare energieśi by the continuous variablé, yields

Ssnd ­
Z 1

21
d´

hsn 2 ´d
fG21

0 s´d 2 f2t1Ss´dt1g
. (13)
5277
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This is an implicit integral equation forS. Writing

S ;
∑

S1 S3

S4 S2

∏
(14)

and usingG21
0 ­ E 2 t3´, we find that the off-diagona

elements of the matrix in the denominator of the integ
equation areS3 and S4. Hence, a solution exists wit
S3 ­ S4 ­ 0. For a given theory, the spectrum in t
large N limit is unique, so we expect this to be the on
solution. Equation (13) then reduces to

S1snd ­
Z 1

21
d´

hsn 2 ´d
E 2 ´ 2 f2S2s´d

, (15a)

S2snd ­
Z 1

21
d´

hsn 2 ´d
E 1 ´ 2 f2S1s´d

. (15b)

For a givenf andW , Eq. (15) may be solved numerical
to obtain S1s´d and S2s´d at any energyE. The single-
particle excitation spectrum then follows from

Tr GsEd ­
Z `

2`

dn S1sn, Ed , (16)

and the usual relationrsEd ­ s21ypd Im Tr GsE 1 i´d.
In the weak coupling limit, the bare BCS gapD0 ø

h̄vD, so bothf andW in Eq. (15) are much less than
In that case, the limits of integration may be extended
` in both directions,W may be scaled out, and solutio
depend only on the parameterfyW.

In Fig. 1 we compare the spectrum obtained this w
with tunneling spectra from planar tunnel junctions
PbBiyGe thin films [18]. These spectra where tak
at temperatures low enough (T ­ 360 mK) that thermal
smearing affects the line shape by less than a few
cent. This thermal correction is included with the st
dard expression [19] for the tunneling currentdIydV ­
2sG0yr0d

R
dE rsEd≠fsE 1 eV dy≠V , where the Ferm

factor isfsxd ­ 1ysebx 1 1d.
The numerical agreement between the random ma

model and the tunneling data is fairly close, a lit
worse at lower fields. Also shown in Fig. 1 is a
with an Abrikosov-Gor’kov spectrum to the 3 T data,
which the gap and pair-breaking strength are taken
free parameters. A pair-breaking strength [20]z ­ 0.5
was used, which correctly reproduces the peak; a p
breaking strengthz ø 1 gives more low energy states b
fits poorly at all energies.

One interesting feature of the random matrix mod
as seen in Fig. 1, is the presence of more low ene
states at low fields than is conventionally assumed.
conventional view, however, has been based on se
indirect arguments rather than a direct solution o
microscopic model.

First, the Abrikosov-Gor’kov solution for the Green
functions of a superconductor in the presence of a
lute gas of magnetic impurities [21] was applied to typ
II superconductors by Maki, with impurity concentrati
mapping to magnetic field strength [20]. This mapp
5278
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FIG. 1. Normalized junction conductance for PbBiyGe with
Tc ­ 5.52 K at 360 mK for several magnetic fields [18]. Sol
lines: random matrix model (fyW ­ 0.3, 0.8, 1.6). Dashed
line: Abrikosov-Gor’kov spectrum (z ­ 0.5).

assumes, in addition to the dirty limit and local electrod
namics, translationally invariant Green’s functions (e.
spatially uniform order parameter), which cannot apply
a bulk type-II superconductor at any magnetic field abo
Hc1. Further, it requires that the impurity averaging tec
nique, valid for a dilute gas of weak, uncorrelated, sc
terers apply to the case of a nearly uniformly penetrat
magnetic field distribution, which seems unlikely.

Second, a vortex solution in the Ginzburg-Land
model has a small “core” of sizej, the coherence length
compared tol, the penetration depth. Although th
Ginzburg-Landau model does not contain electro
the assumption is that the small core size over wh
the order parameter magnitude is reduced acts as a
in which electronic states are confined, leading to
small “normal fraction” of bound states. However, th
order parameter does not act on electrons like a pote
in a single-particle Schrödinger equation. The ord
parameter enters the Bogoliubov–de Gennes equat
analogous to a spatially varying mass in a Dirac equat
Squaring the equation shows that currents also ac
a confining potential. A more direct analogy might b
made with a tornado: it is not just objects in the eye
the storm which are trapped and move with the torna
but also objects in the circulating currents around the
of the storm.

Bound states in the currents could explain why both
data and the random matrix model indicate the presenc
more low energy states than expected from a Ginzbu
Landau picture. Solutions for the electronic structu
around an isolated vortex would help address this qu
tion; initial numerical work shows clear deviation from
Ginzburg-Landau behavior [22]. Note that if the bou
states can be shown to extend out to a penetration de
then the overlap with neighboring vortices, for fields abo
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Hc1, would cause a significant bandwidth. This would fu
ther increase the expected low energy density of state

Experimentally, a surplus of low energy states is se
in the planar tunnel junction measurements [18] as wel
in local scanning tunneling microscopy (STM) measu
ments in the vortex state [23] and near superconducto
normal-metal (SN) junctions [24]. Deviations from th
linear in magnetic field heat capacity of the Ginzbur
Landau picture have been seen clearly in high-Tc super-
conductors [25], as well as conventional superconduc
[26]. More systematic studies of the spectrum would h
clarify the issue.

Another interesting feature of Eq. (15) is that there
a simple solution in the limitW ø f. Physically, this
corresponds to the situation where the energy scale
time-reversal symmetry breaking is small, yet many b
eigenstates are mixed chaotically. This might apply n
SN junctions, in strongly anisotropic superconductors,
at magnetic fields much smaller thanHc2. (Note that it is
necessary that many bare eigenstates be mixed, evenW
is small, so that the largeN limit for the matrix ensemble
applies.) In this small-W limit, the cutoff functionhsxd
becomes a delta function, and Eq. (15) is solved by

Ŝ1sÊ, ˆ́ d ­ sÊ 1 ˆ́ d f1 2

q
1 2 sÊ2 2 ˆ́ 2d21 g , (17)

where the solution fors2 is given by s2sE, ´d ­
s1sE, 2´d and all energies scale withf: Ê ­ Ey2f,
ˆ́ ­ ´y2f, Ŝi ­ s2fdsi. The resulting spectrum
vanishes linearly near zero energy. This offers a poss
alternative to thed-wave pairing explanation for the
cuprate superconductors, for which many observati
have indicated close to a linearly vanishing spectrum [2

We also note that mesoscopic superconducting d
have recently been fabricated [28]. It is an interest
possibility that the matrix ensemble discussed here m
describe the eigenvalue fluctuations of such systems,
as the standard Gaussian orthogonal ensemble desc
the eigenvalue fluctuations of small metallic particles.
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