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Role of Bilayer Tilt Difference in Equilibrium Membrane Shapes
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Lipid bilayer membranes below their main transition have two tilt order parameters, corresponding
to the two monolayers. These two tilts may be strongly coupled to membrane shape, but only
weakly coupled to each other. We discuss some implications of this observation for rippled and
saddle phases, bilayer tubules, and bicontinuous phases. Tilt difference introduces a length scale into
the elastic theory of tilted fluid membranes. It can drive an instability of the flat phase; it also
provides a simple mechanism for the spontaneous breaking of inversion symmetry seen in some recent
experiments. [S0031-9007(96)01883-2]

PACS numbers: 68.15.+e, 61.30.Gd, 82.70.—y, 87.22.Bt

The curvature model of fluid bilayer membranes hasilayers [13], but the origin of the long length scales
proved quite successful in explaining the shapes of menremains a mystery.
branes above their main transition [1]. In this model lo- In this Letter we explore a new model for the conforma-
cality, coordinate invariance, and bilayer symmetry restriction of membranes: we augment the curvature model with
the form of the energy functional for shapes to just twotwo tilt director fields corresponding to the two monolay-
terms, involving the mean and Gauss curvature. In fixeers. Thus, our work fits into the general program of taking
topology the total Gauss curvature is constant, and so th@ore seriously the bilayer aspect of membranes, both in
minimum-energy conformation is a surface of vanishingtheir equilibria and dynamics (e.g., [14—16]). When the
mean curvature, for example, a flat plane. directors are aligned, we reproduce existing models; when

Below the main transition, additional degrees of free-they are not we get new physics. Imagining that the tilt
dom enter the elasticity of membranes as their hydroin a monolayer induces spontaneous curvature orthogonal
carbon chains begin to order. In analogy to smectido its direction, in the corresponding bilayer the flat state
liquid crystals, one expects a sdit degree of freedom with antiparallel tilt then is frustrated and thus more costly
to appear, reflecting the spontaneous breaking of rotation#than a saddle conformation in which the tilts are oriented
invariance in the plane. Helfrich and Prost began the sysarthogonal to each other. Without interaction between the
tematic study of the mutual influence of tilt order andtwo layers, the flat state is always unstable locally against
membrane shape [2]. A number of nonflat ground stat¢his kind of saddle conformation. Real membranes will
phenomena found in membranes below their main tranalways have at least some tendency to align the tilts. The
sition have since been attributed to tilt, including rippledinstability will then occur only if the anisotropic sponta-
phases and tubule phases (see, for example, [3—6]). Tifteous curvature is larger than a threshold value.

order also proves crucial for any intringibirality of indi- Our work was first motivated by a desire to understand
vidual amphiphiles to influence the conformations of mem-the origin of a nonanalytic curvature energy proposed
branes [7]. by Fischer [18]. Our model is mathematically similar

Despite much progress, however, a number of mysterie® one independently proposed by Fournier [19], but the
remain in the study of one-component, symmetric bilayephysical motivation is quite different: while he considered
membrane conformations. For example, experiments witn anisotropidmpurity adsorbed onto a membrane, our
achiral lipids, or racemic mixtures of lipids, have found tilt is an intrinsic property of apure bilayer, and hence
chiral ground states [8]. Similarly, achiral amphiphiles canquite generic. Other differences will be noted below.
form tubules [9], which again appears to require chirality Model—We will restrict attention to systems of nonchi-
[4]. Even chiral lipids easily form helical ribbons either  ral amphiphiles. In the covariant notation developed in
handedness; sometimes a single ribbon appears to switfh,20,22], this means we consider only elastic energy terms
handedness in the middle of its growth [10]. Finally, cubicconstructed without the in-plane antisymmetric tensgy.
phases of bilayer membrane are predicted to be scal§o focus attention on the new elements, we will also
invariant in the pure curvature model [11]. One mightimpose an additional “nematic” symmetry (see below).
therefore expect them to collapse to a microscopic cellhis assumption is strictly for mathematical simplicity; we
size, but in fact they can be stabilized at well-definedeave the full model to future work.
mesoscopic scales [12]. Theoretically, selection of a Above the main transition we imagine the membrane to
length-scale of several nanometers has been attributed be two identical two-dimensional fluid sheets of elastic
higher order curvature terms both for cubic phases [11linonomers, independent except for the constraint that
and for a presumed hats and saddle superstructure of flutdey lie a fixed distance above and below a common
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surface. We will label the layers arbitrarily as-* and  terms. All told, our simplified model is defined by the
“—", but since the layers are identical we will insist that elastic energy density functional
nothing changes if we reverse the labeling. To define the

K K
curvature tensok,z, we will choose the normal vector f= 71 (K3 + 72Kaﬁ + g((my - m_)?)
N pointing from the " to the “+” side. Each sheet
has its own bending stiffness, stretching modulus, and + Z [i,BKaﬂmam'B
spontaneous curvature. When we combine the sheets, m=m.
the bending stiffnesses and stretching moduli. add, while + ki Vamﬂvamﬁ + ka (Vama)z] @)
the spontaneous curvatures cancel (for details see, e.g., 4 4

[16]). We will neglect the stretchiness of the membranes,l.he constantsc,. k, are related to the usual mean and

leaving only the c_urvature_ .stlffness. Gaussian rigidities, whil&, k, are related to the usual
Below the main transition each monolayer developq,igidities of theXY model

a lgc?l avc_et'rag(-‘f‘t t”'l[]; We WIII_IT?tkbetr:ntzfest;—:‘d |r} ttrf:e A remarkable feature of (2) is that the parameger
main transition 1tseil, so we will take the director ot € o jimensions of (energx) inverse length. This is

amphiphiles to be at a fixed angle to the layer normal,a key qualitative difference from the case of parallel

and the degree of ordering to be constant. In Othe{ilt directors: achiral symmetric bilayers with one tilt

}{vc)l(rjds, wet wil dtetsc?rl])e thef tlt bt?’] a parr 9{;“”” vechr dmit only dimensionlesgouplings [20,23]. In order to
I€ldsm. tangent {o the surlace, these are tne normalized ., ;0 a typical value @8, we identify the energy scale

projections of the average molecular directors. The elastiﬁ,ith a bending rigidity~10~'2erg. The length scale is

energby IS thﬁn a Ic(;cal f%n((:jtlcgnqlt oh, "t"’ ing, the associated with the difference of spontaneous curvature
Qem rat’.‘e sdap(ke), escribe i y Itﬁ C““’f.‘f_ufe” SRS of a monolayer in the direction parallel to the monolayer
S mentioned above, we will rather artlicially assume g qopy that perpendicular to the tilt. While a typical

invariance when eithan . orm- changes sign. value for the isotropic spontaneous curvature/&anm,

Trad|t|onally one takesn, = —m- (e.g., see [20]), the anisotropic part of it depends on the magnitude of
or in other words assumes that the average directors fhe tilt order. For strong tilt, it may well be/10 nm

each layer are collinear. The reasoning is that WhinNh”e for weak tilt it could be as small ag'100 nm, thus

an overall rotation of bothm+ is related to a broken setting a mesoscopic scale. Our estimate ois thus
symmetry, still theelativeangle is not, and so is expected t1076_10,7 erg/cm '

to lock to a preferred value. We propose to explore wha
happens when this assumption is relaxed. Our motivatio f
is the observation that the degree of interdigitation o
the lipid chains between the layers is in fact quite
small, as deduced, for example, from measurements
the interlayer friction coefficient [14]. We will allow
for some weak aligning potentigl((m. - m_)?), but as
we will show other energetic contributions can readilyW
overcome it. For simplicity we will continue to assume ¢
thatg is minimized atmy = —m_, but later on we will
reconsider this assumption too. In Ref. [1§)was taken
to be zero, an extreme limit of our model.

While the direct interaction of the tilts may be small
the:f wildl gertf;inly bel_an irr;p(_)lrtarinﬁirect inte(;lnction becomesy — 2y’
mediated by the coupling of tilt to the commaape. . Co . . .
To lowest order in the curvature tensor, the effect of tilt Adding up all energies to quadrgnc order in a Fourier
on a monolayer is to create an anisotropic spontaneod§Presentation fop (x, y) and the height(x, y) leads to

curvature, by adding the terms

Stability of flat surfaces—To understand the physics
the model (2), we first note that if the director in

the “+” layer is pointing in thex direction, and the
ne in the “" layer in the y direction, the 8 term
ecomesB[K,, — K,y], which favors saddles (or other

nonspherical shapes).

For a quantitative stability analysis of the flat state in

hich both nematic fields are parallel, we need an explicit

orm of the interactiong. A simple form that favors
parallel alignment isg = y[1 — (m; - m_)?]/2. We
parametrize small deviations from this parallel state for
the director fields am. = (°%¢)) = (1;"5(2;/2). In this

' representation, the coupling term between the two layers

K
f=5 @) hg + 4Baxgyhadq + 2vdq

* = KamﬁmEE m: - K- -m- 1

S0 Papmin= = s Kome (@) B+ Eele ©)
to the elastic free energyB is a new parameter depending
on the degree of ordering [21]. The combinati6h —  with k = k; + k,. Minimizing with respect toq yields
f~ is then invariant under renaming the two leaves of they, = —4 % ¢q. Inserting this result into (2) leads to
bilayer. It vanishes iim; = —m_, but more generally the effective energy for theé field as
we need to keep these terms. At higher order in curvature, —-882¢24> X X
we have the more familiar terms;(K,gmemi)? +  f = [(—Z)AZV +2y + ?1(61% +qy) + fqi}bé.
K4Ka/3m§ml (see [22]). Since (1) will already drive <\
our instability, we will neglect the higher-curvatuke, x4 4)
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The stability criterion for the flat phase is now obvious. /2 when the mean curvature changes sign. A more
For weak enough interlayer coupling, realistic model would broaden these discontinuities into
y < B%/x (5) domain walls, with an energy cost per unit length.

First, we discuss the ripple phase. For a one-

the flat phase becomes unstable to a long-wavelengiyensionally modulated conformation, the free energy
modulation. This is our main result. The preferreddensity takes the form

directions for theq vectors areq, = *q, = +Jq?/2.
Adding just two modes withy; = —q yields a ripple  f = (x/2) (h,.)? + Bhu(co@ ¢ — co ¢ )
shape, whereas adding four modes witly, = *g¢, N 3 e 5
leads to a egg-carton-like square modulated phase. Using T+ &5 y[1 — (cos¢™ cosg™ + sing ™ sing)7].
the estimates given above, we find that the instability (6)
should occur at an interlayer locking energy of~
1-102 erg/cn?, which is comparable to typical van der One could try as a trial variational function a sinusoidal
Waals energies on the scale of the membrane thickness.ripple with wave numbelg and heighti, and nematic
Lubensky and MacKintosh also obtained symmetricfields always arranged perpendicular to each other, which
ripples in a nonchiral model. They balanced an effecleads to an energy density ¢f = —48%/k7? + /2.
tively negative(Vm)? term against a stabilizingv>m)>  However, one can easily see that the sinusoidal shape is
term [3]. Far from the main transition, such a balance idar from optimal. If the tilts are orthogonal, thus rendering
likely to select a microscopic length scale. In contrast, wehe 8 term —|Bh..|, ripples that consist of circular arcs of
have seen how our model can select long lengths. Otheadiusk /B are lower in energy than sinusoidal ripples. A
models assumed hexatic order [3,5], while we have not. straightforward calculation shows that allowing the fields
Beyond instability—In order to distinguish the two to assume a nonorthogonal configuration does not lead to a
alternatives, ripple or saddle, we have to go beyondower energy fory < 82/« which is the region of interest.
the instability. We will do so in the following using Thus, in summary, as long as only one-dimensionally
exact analysis, a simple variational shape, and numericahodulated phases are considered, a ripple phase consisting
minimization. To keep our formulas tractable, in this of circular arcs with the nematic fields orthogonal in the
section we will neglect the tilt stiffness terms, i.e., wetwo layers is the most favorable configuration.
setk; = k, = 0. Thus the tilt fields track the curvature  When modulation of the membrane in two dimensions
exactly, and in particular can change discontinuously bys allowed, the free energy density takes the form

f= (K/2) (hye + hyy)2 + (7/2) [1 - COSZ(¢+ - ¢7)]
+ Blh(coS ¢t —coS ¢ ) + hy,(Sit ¢ —sit ¢ ) + hyy(sin2¢ " —sin2¢ 7)]. (7)

Again a variational trial function sinusoidal in two direcl- for cylindrical segments. For small amplitudes this means
tions is not the best choice. It leads to an energy derthat the combinatiort, g2, but notq itself, is fixed. This
sity of f = —32B8%/«kw* + /2. Using the fact that the happened because we neglected the gradient terms in the
lowest energy ripple conformation had constant curvatilt fields: the energy of a configuration is then invariant
ture, we construct a saddle phase in which the curvaturender a rescaling of(x,y) — Ak(Ax, Ay) if at the same
is piecewise constant. This leads to a saddle conformdime y — y/A%> and3 — B/A. Gradient terms im, of
tion in which the corrugations are parabolic arcs. In re-course, would favor large wavelength, up to a maximum
gions where the principal curvatures have the same sigmf ~«/8, where the membrane rolls up into cylinders. A
we allow the nematic fields to be parallel (thus gaininglateral tension restricts the instability to a finite band of
from the y term), and where they have opposite signs thevave vectors as a simple calculation shows. Stretching
fields remain orthogonal. The free energy density of thisthe membrane could thus stabilize finite-wavelength rip-
state isf = —(B2/k — v)/4. This energy is never lower ples. Dropping the implicit periodic boundary conditions,
than either the flat phase or the circular arc ripples, eveour results indicate an instability of freely floating mem-
though it improves the value of the sinusoidal saddle fobranes to a phase of cylinders or other curved objects, es-
y > 0.313%/«. Numerical minimization of the full free pecially saddles. Particularly intriguing is the possibility
energy (7) improves on the parabolic saddles, but does n¢that the tilt-difference term could set a scale for bicon-
lead to a saddle phase with lower energy than either citinuous phases without resorting to microscopic (higher-
cular ripples or the flat phase. curvature) terms as in [11].

Discussion—We have not obtained a unique wave- Other authors have obtained rippled or striped phases
length for the instability. What we found was rather thatin tilted bilayers by explicitly breaking parity invari-
the tilt-difference coefficien sets a preferredurvature  ance (e.g., [3,4]). In particular, explicit parity-violating
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terms in the free energy have so far been necessary t¢5] C.-M. Chen, T. Lubensky, and F. MacKintosh, Phys. Rev.
obtain asymmetric,or sawtooth, rippled phases. But E 51, 504 (1995).

the presence of chiral amphiphiles does not guaranted6] C.-M. Chen and F. MacKintosh, Phys. Rev.53, 4933

a parity-breaking Landau energy [24]. Moreover, as __ (1996).

mentioned earlier, several arguments point to the pos-/l P- Nelson and T. Powers, Phys. Rev. Lef9, 3409
sibility of spontaneous breakingf parity invariance: (1992).

e ! L [8] J. Pang and N. Clark, Phys. Rev. Lef3, 2332 (1994);
;[jhoen%?ndau energy has parity invariance, butniisima J. Katsaras and V. Raghunathan, Phys. Rev. L&t

. 2022 (1995). The latter authors took care to rule out the
In an elegant paper, Selingeat al.have proposed — possibility that their results reflected phase separation of

possible mechanisms for spontaneous parity breaking in  the enantiomers.

monolayers [25]. Two of these could also apply to pure [9] A. Singh, P. Schoen, and J. Schnur, Chem. Commun.

bilayers: (a) if the membrane has both tilt and hexatic 1988 1222 (1988).

order, the corresponding directors may lock to a fixed[10] B. Thomas, talk presented at Santa Barbara (Sept. 1994);

nonzerorelative angle; (b) conceivably two distinct local B. Thomas (to be published).

packings of molecules could be preferred, each of whictill] R. Bruinsma, J. Phys. Il (Francg) 425 (1992).

is the other’s mirror image. We would like to point out a [12] U. Peter, S. Konig, D. Roux, and A.-M. Bellocq, Phys.

very simple, concrete option with some elements of each Rev. Lett.76, 3866 (1996).

! . - [13] R. Goetz and W. Helfrich, J. Phys. Il (Francé) 215
of these: (c) a tilted membrane may prefer on packin (1996), and references therein.

grounds to order its two tilt directors at a fixed relative [14] E. Evans and A. Yeung, Chem. Phys. Lipi& 39 (1994).

angle « = *ay, i.e., m, - m- = cosay. This option  [15] u. Seifert and S. Langer, Europhys. Le2§, 71 (1993).

may prove more generic than the ones above. [16] L. Miao, U. Seifert, M. Wortis, and H.-G. Ddbereiner,
To see how our proposal leads to parity breaking, note  Phys. Rev. E49, 5389 (1994).

thatyy = (m; X m_) - N is a well-defined pseudoscalar [17] The x-ray studies of G. Smith, E. Sirota, C. Safinya,

order parameter.sy vanishes asx — 0, as required. R. Plano, and N. Clark, J. Chem. Phy82 4519
We can writem+ = [ cosa /2 isina/Z]m’ wherem is (1990), averaged over many crystals and could not

. . T sina/2 COS“LZ 01 detect tilt difference. Other detailed studies involved
a common tilt variable. Writinge = [, ], the terms fully three-dimensional crystals, e.g., J. Lando and

(1) now be(fomef+ - f 2B Sln%)m ) [.EK] "m. In R. Sudiwala, Chem. Mater2, 594 (1990). Even so,
this expression, we recognize the chiral tilt-shape coupling  these sometimes found tilts locked into configurations
introduced by Helfrich and Prost [2], in the coordinate- other than the naive one: see D. Smaflandbook of
invariant form given in [20]. This is precisely the term Lipid Research, Vol. 4, The Physical Chemistry of Lipids:
responsible for the formation of asymmetric ripples in From Alkanes to Phospholipid¢Plenum Press, New
the work of Lubensky and MacKintosh [3]. A similar York, 1986), pp. 108,118. Finally, realistic molecular

analysis, dropping the requirement of nematic symmetry, ~ dynamics simulations have found gel phases with filt
could also yield the chiral term which gives rise to tubules ~ difference: K. Tu, D.J. Tobias, J.K. Blasie, and M.L.
and helices [4] Klell:l, Biophys. J.70, 595 (1996). o

In conclusion, we have shown that tilt difference may[18] T. Fischer, J. Phys. Il (France) 337 (1992)jbid. 3, 1795

be expected quite generally to affect the conformationﬁg] Sl?:go?}nier Phys. Rev. Lef6, 4436 (1996)

of symmetric bilayer membranes introducing a new in->o] p. Nelson and T. Powers, J. Phys. Il (FranGe)1535
termediate length scale and favoring cylindrical and sad- ~ (1993).

dle curvature over flat or spherical shapes. Tilt differencg21] The term (k) (V - m), which drove the rippling transi-

could also provide an attractively general mechanism for  tion in [3], does not have our nematis — —m symme-

the spontaneous breaking of parity invariance. try. We will obtain an instability even without this term.
We are grateful to T. Fischer, R. Kamien, T. Lubensky, While this term is of equal order in derivatives to our 1,

J. Prost, C. Safinya, and J. Selinger for helpful discus- it does not favor saddles, nor does it spontaneously break

sions. This work was supported in part by the Yl§aeli Inversion symmetry.

Binational Foundation Grant 94-00190 and NSF Grant22] T- Powers and P. Nelson, J. Phys. Il (Fran&e)1671

) (1995).
DMR95-07366. [23] This result is valid even if we do not impose the artificial

nematic symmetry used here.
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