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Role of Bilayer Tilt Difference in Equilibrium Membrane Shapes
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Lipid bilayer membranes below their main transition have two tilt order parameters, correspond
to the two monolayers. These two tilts may be strongly coupled to membrane shape, but
weakly coupled to each other. We discuss some implications of this observation for rippled
saddle phases, bilayer tubules, and bicontinuous phases. Tilt difference introduces a length scal
the elastic theory of tilted fluid membranes. It can drive an instability of the flat phase; it al
provides a simple mechanism for the spontaneous breaking of inversion symmetry seen in some r
experiments. [S0031-9007(96)01883-2]
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The curvature model of fluid bilayer membranes ha
proved quite successful in explaining the shapes of me
branes above their main transition [1]. In this model lo
cality, coordinate invariance, and bilayer symmetry restr
the form of the energy functional for shapes to just tw
terms, involving the mean and Gauss curvature. In fix
topology the total Gauss curvature is constant, and so
minimum-energy conformation is a surface of vanishin
mean curvature, for example, a flat plane.

Below the main transition, additional degrees of fre
dom enter the elasticity of membranes as their hydr
carbon chains begin to order. In analogy to smec
liquid crystals, one expects a softtilt degree of freedom
to appear, reflecting the spontaneous breaking of rotatio
invariance in the plane. Helfrich and Prost began the s
tematic study of the mutual influence of tilt order an
membrane shape [2]. A number of nonflat ground sta
phenomena found in membranes below their main tra
sition have since been attributed to tilt, including ripple
phases and tubule phases (see, for example, [3–6]).
order also proves crucial for any intrinsicchirality of indi-
vidual amphiphiles to influence the conformations of mem
branes [7].

Despite much progress, however, a number of myster
remain in the study of one-component, symmetric bilay
membrane conformations. For example, experiments w
achiral lipids, or racemic mixtures of lipids, have foun
chiral ground states [8]. Similarly, achiral amphiphiles ca
form tubules [9], which again appears to require chirali
[4]. Even chiral lipids easily form helical ribbons ofeither
handedness; sometimes a single ribbon appears to sw
handedness in the middle of its growth [10]. Finally, cub
phases of bilayer membrane are predicted to be sca
invariant in the pure curvature model [11]. One migh
therefore expect them to collapse to a microscopic c
size, but in fact they can be stabilized at well-define
mesoscopic scales [12]. Theoretically, selection of
length-scale of several nanometers has been attribute
higher order curvature terms both for cubic phases [1
and for a presumed hats and saddle superstructure of fl
0031-9007y96y77(26)y5237(4)$10.00
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bilayers [13], but the origin of the long length scal
remains a mystery.

In this Letter we explore a new model for the conform
tion of membranes: we augment the curvature model w
two tilt director fields corresponding to the two monola
ers. Thus, our work fits into the general program of tak
more seriously the bilayer aspect of membranes, bot
their equilibria and dynamics (e.g., [14–16]). When t
directors are aligned, we reproduce existing models; w
they are not we get new physics. Imagining that the
in a monolayer induces spontaneous curvature orthog
to its direction, in the corresponding bilayer the flat st
with antiparallel tilt then is frustrated and thus more cos
than a saddle conformation in which the tilts are orien
orthogonal to each other. Without interaction between
two layers, the flat state is always unstable locally aga
this kind of saddle conformation. Real membranes w
always have at least some tendency to align the tilts.
instability will then occur only if the anisotropic spont
neous curvature is larger than a threshold value.

Our work was first motivated by a desire to understa
the origin of a nonanalytic curvature energy propos
by Fischer [18]. Our model is mathematically simil
to one independently proposed by Fournier [19], but
physical motivation is quite different: while he consider
an anisotropicimpurity adsorbed onto a membrane, o
tilt is an intrinsic property of apure bilayer, and hence
quite generic. Other differences will be noted below.

Model.—We will restrict attention to systems of nonch
ral amphiphiles. In the covariant notation developed
[7,20,22], this means we consider only elastic energy te
constructed without the in-plane antisymmetric tensoreab .
To focus attention on the new elements, we will a
impose an additional “nematic” symmetry (see belo
This assumption is strictly for mathematical simplicity; w
leave the full model to future work.

Above the main transition we imagine the membrane
be two identical two-dimensional fluid sheets of elas
monomers, independent except for the constraint
they lie a fixed distance above and below a comm
© 1996 The American Physical Society 5237
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surface. We will label the layers arbitrarily as “1” and
“2”, but since the layers are identical we will insist th
nothing changes if we reverse the labeling. To define
curvature tensorKab, we will choose the normal vecto
N pointing from the “2” to the “1” side. Each shee
has its own bending stiffness, stretching modulus, a
spontaneous curvature. When we combine the she
the bending stiffnesses and stretching moduli add, w
the spontaneous curvatures cancel (for details see,
[16]). We will neglect the stretchiness of the membran
leaving only the curvature stiffness.

Below the main transition each monolayer develo
a local average tilt. We will not be interested in th
main transition itself, so we will take the director of th
amphiphiles to be at a fixed angle to the layer norm
and the degree of ordering to be constant. In ot
words, we will describe the tilt by a pair of unit vecto
fieldsm6 tangent to the surface; these are the normali
projections of the average molecular directors. The ela
energy is then a local functional ofm1, m2, and the
membrane shape, described by its curvature tensorKab .
As mentioned above, we will rather artificially assum
invariance when eitherm1 or m2 changes sign.

Traditionally one takesm1 ­ 2m2 (e.g., see [20]),
or in other words assumes that the average director
each layer are collinear. The reasoning is that wh
an overall rotation of bothm6 is related to a broken
symmetry, still therelativeangle is not, and so is expecte
to lock to a preferred value. We propose to explore w
happens when this assumption is relaxed. Our motiva
is the observation that the degree of interdigitation
the lipid chains between the layers is in fact qu
small, as deduced, for example, from measurement
the interlayer friction coefficient [14]. We will allow
for some weak aligning potentialgssssm1 ? m2d2ddd, but as
we will show other energetic contributions can read
overcome it. For simplicity we will continue to assum
that g is minimized atm1 ­ 2m2, but later on we will
reconsider this assumption too. In Ref. [19],g was taken
to be zero, an extreme limit of our model.

While the direct interaction of the tilts may be sma
there will certainly be an importantindirect interaction
mediated by the coupling of tilt to the commonshape.
To lowest order in the curvature tensor, the effect of
on a monolayer is to create an anisotropic spontane
curvature, by adding the terms

f6 ­ bKabma
6m

b
6 ; bm6 ? K ? m6 (1)

to the elastic free energy.b is a new parameter dependin
on the degree of ordering [21]. The combinationf1 2

f2 is then invariant under renaming the two leaves of
bilayer. It vanishes ifm1 ­ 2m2, but more generally
we need to keep these terms. At higher order in curvat
we have the more familiar termsk3sKabma

6m
b
6d2 1

k4Kabma
6m

g
6 (see [22]). Since (1) will already drive

our instability, we will neglect the higher-curvaturek3, k4
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terms. All told, our simplified model is defined by th
elastic energy density functional

f ­
k1

2
sKa

a d2 1
k2

2
Kab 1 gssssm1 ? m2d2ddd

1
X

m­m6

∑
6bKabmamb

1
k1

4
=amb=amb 1

k2

4
s=amad2

∏
. (2)

The constantsk1, k2 are related to the usual mean an
Gaussian rigidities, whilek1, k2 are related to the usua
rigidities of theXYmodel.

A remarkable feature of (2) is that the parameterb

has dimensions of (energy3) inverse length. This is
a key qualitative difference from the case of parall
tilt directors: achiral symmetric bilayers with one til
admit only dimensionlesscouplings [20,23]. In order to
estimate a typical value ofb, we identify the energy scale
with a bending rigidity,10212 erg. The length scale is
associated with the difference of spontaneous curvat
of a monolayer in the direction parallel to the monolay
tilt from that perpendicular to the tilt. While a typica
value for the isotropic spontaneous curvature is 1y10 nm,
the anisotropic part of it depends on the magnitude
the tilt order. For strong tilt, it may well be 1y10 nm,
while for weak tilt it could be as small as 1y100 nm, thus
setting a mesoscopic scale. Our estimate forb is thus
1026 1027 ergycm.

Stability of flat surfaces.—To understand the physics
of the model (2), we first note that if the director in
the “1” layer is pointing in thex direction, and the
one in the “2” layer in the y direction, the b term
becomesbfKxx 2 Kyyg, which favors saddles (or othe
nonspherical shapes).

For a quantitative stability analysis of the flat state
which both nematic fields are parallel, we need an expli
form of the interactiong. A simple form that favors
parallel alignment isg ­ gf1 2 sm1 ? m2d2gy2. We
parametrize small deviations from this parallel state f
the director fields asm6 ­ s cosf

6 sinf d ø s 12f2y2
6f d. In this

representation, the coupling term between the two lay
becomesg ­ 2gf2.

Adding up all energies to quadratic order in a Fouri
representation forfsx, yd and the heighthsx, yd leads to

f ­
k

2
sq2d2h2

q 1 4bqxqyhqfq 1 2gf2
q

1

∑
k1

2
sq2

x 1 q2
yd 1

k2

2
q2

y

∏
f2

q (3)

with k ; k1 1 k2. Minimizing with respect tohq yields
hq ­ 24b

qxqy

ksq2d2 fq. Inserting this result into (2) leads to
the effective energy for thef field as

f ­

∑
28b2q2

xq2
y

ksq2d2 1 2g 1
k1

2
sq2

x 1 q2
yd 1

k2

2
q2

y

∏
f2

q.

(4)
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The stability criterion for the flat phase is now obviou
For weak enough interlayer coupling,

g , b2yk , (5)

the flat phase becomes unstable to a long-wavele
modulation. This is our main result. The preferr
directions for theq vectors areqx ­ 6qy ­ 6

p
q2y2.

Adding just two modes withq1 ­ 2q2 yields a ripple
shape, whereas adding four modes with6qx ­ 6qy

leads to a egg-carton-like square modulated phase. U
the estimates given above, we find that the instab
should occur at an interlayer locking energy ofg ,
1 1022 ergycm2, which is comparable to typical van de
Waals energies on the scale of the membrane thickne

Lubensky and MacKintosh also obtained symme
ripples in a nonchiral model. They balanced an eff
tively negatives=md2 term against a stabilizings=2md2

term [3]. Far from the main transition, such a balance
likely to select a microscopic length scale. In contrast,
have seen how our model can select long lengths. O
models assumed hexatic order [3,5], while we have no

Beyond instability.—In order to distinguish the two
alternatives, ripple or saddle, we have to go beyo
the instability. We will do so in the following using
exact analysis, a simple variational shape, and nume
minimization. To keep our formulas tractable, in th
section we will neglect the tilt stiffness terms, i.e., w
set k1 ­ k2 ­ 0. Thus the tilt fields track the curvatur
exactly, and in particular can change discontinuously
.
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py2 when the mean curvature changes sign. A m
realistic model would broaden these discontinuities i
domain walls, with an energy cost per unit length.

First, we discuss the ripple phase. For a on
dimensionally modulated conformation, the free ene
density takes the form

f ­ sky2d shxxd2 1 bhxxscos2 f1 2 cos2 f2d

1
1
2

gf1 2 scosf1 cosf2 1 sinf1 sinf2d2g .

(6)

One could try as a trial variational function a sinusoid
ripple with wave numberq and heighthq and nematic
fields always arranged perpendicular to each other, wh
leads to an energy density off ­ 24b2ykp2 1 gy2.
However, one can easily see that the sinusoidal shap
far from optimal. If the tilts are orthogonal, thus renderi
theb term2jbhxx j, ripples that consist of circular arcs o
radiuskyb are lower in energy than sinusoidal ripples.
straightforward calculation shows that allowing the fiel
to assume a nonorthogonal configuration does not lead
lower energy forg , b2yk which is the region of interest
Thus, in summary, as long as only one-dimensiona
modulated phases are considered, a ripple phase cons
of circular arcs with the nematic fields orthogonal in t
two layers is the most favorable configuration.

When modulation of the membrane in two dimensio
is allowed, the free energy density takes the form
f ­ sky2d shxx 1 hyyd2 1 sgy2d f1 2 cos2sf1 2 f2dg

1 bfhxxscos2 f1 2 cos2 f2d 1 hyyssin2 f1 2 sin2 f2d 1 hxyssin2f1 2 sin2f2dg . (7)
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Again a variational trial function sinusoidal in two direc-
tions is not the best choice. It leads to an energy den
sity of f ­ 232b2ykp4 1 gy2. Using the fact that the
lowest energy ripple conformation had constant curva
ture, we construct a saddle phase in which the curvatu
is piecewise constant. This leads to a saddle conform
tion in which the corrugations are parabolic arcs. In re
gions where the principal curvatures have the same sig
we allow the nematic fields to be parallel (thus gaining
from theg term), and where they have opposite signs th
fields remain orthogonal. The free energy density of thi
state isf ­ 2sb2yk 2 gdy4. This energy is never lower
than either the flat phase or the circular arc ripples, eve
though it improves the value of the sinusoidal saddle fo
g . 0.31b2yk. Numerical minimization of the full free
energy (7) improves on the parabolic saddles, but does n
lead to a saddle phase with lower energy than either ci
cular ripples or the flat phase.

Discussion.—We have not obtained a unique wave-
length for the instability. What we found was rather tha
the tilt-difference coefficientb sets a preferredcurvature
-
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for cylindrical segments. For small amplitudes this me
that the combinationhqq2, but notq itself, is fixed. This
happened because we neglected the gradient terms i
tilt fields: the energy of a configuration is then invaria
under a rescaling ofhsx, yd ! lhslx, lyd if at the same
time g ! gyl2 andb ! byl. Gradient terms inm, of
course, would favor large wavelength, up to a maxim
of ,kyb, where the membrane rolls up into cylinders.
lateral tension restricts the instability to a finite band
wave vectors as a simple calculation shows. Stretch
the membrane could thus stabilize finite-wavelength
ples. Dropping the implicit periodic boundary condition
our results indicate an instability of freely floating mem
branes to a phase of cylinders or other curved objects
pecially saddles. Particularly intriguing is the possibil
that the tilt-difference term could set a scale for bico
tinuous phases without resorting to microscopic (high
curvature) terms as in [11].

Other authors have obtained rippled or striped pha
in tilted bilayers by explicitly breaking parity invari
ance (e.g., [3,4]). In particular, explicit parity-violatin
5239
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terms in the free energy have so far been necessar
obtain asymmetric,or sawtooth, rippled phases. Bu
the presence of chiral amphiphiles does not guaran
a parity-breaking Landau energy [24]. Moreover,
mentioned earlier, several arguments point to the p
sibility of spontaneous breakingof parity invariance:
the Landau energy has parity invariance, but itsminima
do not.

In an elegant paper, Selingeret al. have proposed
possible mechanisms for spontaneous parity breaking
monolayers [25]. Two of these could also apply to pu
bilayers: (a) if the membrane has both tilt and hexa
order, the corresponding directors may lock to a fixe
nonzerorelative angle; (b) conceivably two distinct loca
packings of molecules could be preferred, each of wh
is the other’s mirror image. We would like to point out
very simple, concrete option with some elements of ea
of these: (c) a tilted membrane may prefer on pack
grounds to order its two tilt directors at a fixed relativ
angle a ­ 6a0, i.e., m1 ? m2 ­ cosa0. This option
may prove more generic than the ones above.

To see how our proposal leads to parity breaking, n
thatc ; sm1 3 m2d ? N is a well-defined pseudoscala
order parameter.c vanishes asa ! 0, as required.

We can writem6 ­ f cosay2
7 sinay2

6 sinay2
cosay2 g m, where m is

a common tilt variable. Writinǵ ­ f 0
21

1
0 g, the terms

(1) now becomef1 2 f2 s2b sin a

2 dm ? f´Kg ? m. In
this expression, we recognize the chiral tilt-shape coupl
introduced by Helfrich and Prost [2], in the coordinat
invariant form given in [20]. This is precisely the term
responsible for the formation of asymmetric ripples
the work of Lubensky and MacKintosh [3]. A simila
analysis, dropping the requirement of nematic symme
could also yield the chiral term which gives rise to tubul
and helices [4].

In conclusion, we have shown that tilt difference m
be expected quite generally to affect the conformatio
of symmetric bilayer membranes introducing a new
termediate length scale and favoring cylindrical and s
dle curvature over flat or spherical shapes. Tilt differen
could also provide an attractively general mechanism
the spontaneous breaking of parity invariance.

We are grateful to T. Fischer, R. Kamien, T. Lubensk
J. Prost, C. Safinya, and J. Selinger for helpful disc
sions. This work was supported in part by the U.S.yIsraeli
Binational Foundation Grant 94-00190 and NSF Gra
DMR95-07366.
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