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Corrals and Critical Behavior of the Distribution of Fluctuational Paths

M. I. Dykman! D. G. Luchinsky>* P. V. E. McClintock? and V. N. Smelyanskiy
'Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
2School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom

(Received 23 August 1996

We investigate, theoretically and by analog experiment, the distribution of paths for large fluctuations
away from a stable state. We have fourritical broadeningof the distribution of the paths coming
to a cusp point that represents the simplest generic singularity in the pattern of most probable (optimal)
fluctuational paths in nonequilibrium systems. The critical behavior can be described by a Landau-type
theory. We predict and observe two-ridged distributions for arrivals ewitching linethat separates
the areas reached along optimal paths of different types. [S0031-9007(96)02007-8]

PACS numbers: 64.60.Ht, 05.20.—y, 05.40.+j, 05.70.Ln

Large fluctuations, although infrequent, play a funda-on a caustic (as it does at a classical turning point, which
mental role in a broad range of processes, from nucleds an analog of a caustic in the 1D case). In the general
tion at phase transitions to failures of electronic devicescase caustics start in pairs from a cusp point, also known
In many cases the fluctuating systems of interest are faas a focal point: see Fig. 1.
from thermal equilibrium. Examples include lasers, pat- Caustics and cusps in the pattern of extreme fluctuational
tern forming systems [1], trapped electrons which displaypaths have been found numerically in a number of papers
bistability and switching in a strong periodic field [2], and [8,9], and some related analytical results were obtained in
spatially periodic systems (ratchets) which display a uni{9(c)], [10,11]. We note that, in the problem of fluctu-
directional current when driven by a nonthermal noise [3].ations, contributions to the probability distribution from
It was recognized by Onsager and Machlup [4] that an indifferent paths are all positive, whereas the contributions
sight into the physics of large fluctuations can be gainedo the transition amplitude in quantum mechanics are com-
from an analysis of thdistribution of fluctuational paths plex and it is their interference pattern that is actually ob-
along which the system moves to a given state. This disserved. Therefore the singularities in the pattern of optimal
tribution is a fundamental characteristic of the fluctuationfluctuational paths differ from those known for the wave
dynamicsand its understanding paves the way to control-
ling the fluctuations. In the present Letter we show that, in
systems away from thermal equilibrium, the distribution of
fluctuational paths generically displays critical behavior.

Fluctuational motion from the vicinity of the stable state
(where the system spends most of its time) to a given state
may occur along different paths. For large fluctuations,
the distribution of these paths peaks sharply atih@Emal
(most probable) path, often called the Onsager-Machlup
optimal path. Inthe theory of large fluctuations, the pattern o
of optimal paths plays a role similar to that of the phase
portrait in nonlinear dynamics; we report below the first
experimental observations of this pattern.

For a system in thermal equilibrium with a bath with
a short correlation time, the optimal path to a given
state is the time-reversed path of the system from this
state to the vicinity of the stable state in the neglect of
fluctuations (the deterministic path) [5]. This is no longer
true for nonequilibrium systems, because they lack t'm‘?:IG. 1. Extreme paths of (1) foK = g — ¢* + 0.264 X

reversibility. Even for simple nonequilibrium SySt,emS cosl.2r. The stable statg®(r) from the vicinity of which
the pattern of optimal paths, as well as the statisticajne paths start is shown by the dashed line. The bold
distribution [6], may have singular features. line emanating from the cusp point is the switching line
The occurrence of singularities is clear from the formalcalculated forD — 0. The data points show the maxima
analogy between extreme fluctuational paths and extre the prehistory probability distribution measured for three

ths i { hani Well-k ! lariti ihal points away from the cusp. Reduced variances of the
paihs In quantum mechanics. ell-known singulari Iescorresponding Gaussian distributiong (displaced along the

of the pattern of extreme paths in optics and quantundrdinate axis for clarity) are compared with the theory in
mechanics are caustics [7]. The wave function blows uphe inset.
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fields [11]. In particular, optimal fluctuational paths do given by the solution of the variational problem
not encounter caustics, but they do focus into cusp points. 55[4]

Use of the prehistory probability density [12] (see below) =0, Gopt(tr | qr.tr) = gy,
enables us to set the subject on an experimental footing. It dq(1)

also makes it possible to reveal and analyze, theoretically  gop(2; | gf.17) — q(o)(t,-) fors;, —» —.

and experimentally, singular behavior of the distribution of In fact, Eq. (5) describesxtremefluctuational paths.

fluctuational paths. Optimal paths provide thglobal minimum to the action
We investigate singular features of the paths distribu- P P P 9 o

. . i . S[g]. It is clear from (3) that for smalb it is these
tion using as an example the simplest possible system-:: . S
o optimal paths that are of physical significance. Extreme

where these features may arise: an overdamped Browr)-

. . : T ) . paths ¢(t) as given by (4) and (5) can intersect each
1an particle erven by a Pe”Od'C fquE'(q, ) and white other, and the dynamical system with the time-dependent
noiseé(t), with the equation of motion

] Lagrangian (4) is nonintegrable. In contrast, generically
g =K(g;t) + @),  K(g;t) = K(g;t +T), 1) only one optimal path can arrive at a given point.
(EDER)) = DSt — 1'). The physical meaning of the prehistory probability den-

The model (1) applies to a wide range of physical systemgIty pi (3) becomes clear if one expands the coordinate

; g(¢) into the orthonormal functiong,, () which diagonal-
and. has at'tracted much attention _recently, cf. [13,14]-rze the second variation of the action,
particularly in the context of stochastic resonance [15].
For smallD, within a relaxation timer, the system (1)
will approach the stable periodic staté(r),

- (0) (0). 0) — 0

q Kg™:0),  q7+T)=q70. @)y follows from (4) that the functionsy,(r) satisfy a
and a periodic stationary probability distribution will be Schrédinger-type equation
formed in the basin of attraction to this state (transitions

(5)

(’I(t) = QOpt(t | Qf’tf) + Zan¢n(t)~ (6)

between stable states will not be considered here; we also —Yn + VO, = Authn,
limit the discussion to period-one stable states). [ %k 1 9°K?
The distribution of paths for large fluctuations can be Vi) = TS o (1)
dqot 2 dq opt

investigated and visualized through the analysis of the

prehistory probability densityp, (¢, | g5,7;) [12]. This  with the boundary conditiong, (1;) = (1) = 0 [in (7)
is the conditional probability density for a system that hadthe derivatives ofK = K(q;1) are evaluated forg =
been fluctuating about®(¢) for a time greatly exceeding dopt(t lgy,5)]-

7., and arrived to the poing, at the instant;, to have ~ For trajectoriesy(s) close to the optimal path, the,
passed through the poigtat the instant (r < t;). Itcan in (6) are small, and the actio${¢(1)] is quadratic ina,
be written as a path integral: [unless(gy, tr) is close to the cusp; see below],
qlty)=q; , S[q(0)] 1 )
pulg.t L gz 1) = C i) Dqr)exp - —5— Sla] = S(ay.tp) + sQaad),  sCan}) = 5 D Ay,
q\ti)=q i n
(8)
X 8[q(t) — ql, t; — —o=, S(qr.tr) = S[qopi(t | gr.15)].
_ If one writes the path integral (3) as an integral over all
f dapnia.t 1 ag.1p) =1, 3) a, and substitutes Egs. (6) and (8) into (3), one obtains

whereC is the normalization constant.
The functionalS[4] determines the probability distribu-  pr(q.t | g5.t7) = M exp —
tion over the paths of a Markovian system. To lowest or-
der in the noise intensit it takes the form of the action 2 _ -1,,2 _ 2—1/2
. i~ . . t Jtp) = A 1), M = 27D .
functional for an auxiliary dynamical system with the La- ot lar.y) ; w V) @mDa)

[C] - QOpt(t | Qf,tf)]z
2Do?(t | gy, t5) ’

grangianL(q, q; t) (cf. [16]): )
Iy
Slq(®)] =[ dtL(q,q;1), It is seen from (9) that, near the maximum, the
fi distribution p,, is Gaussian in the distance of the point
SN I STy (g,7) from the optimal pathgep,(r | g7,t) (cf. [12]).
L@, ¢:1) 2 lg = Klg; T “) Therefore by investigating, one can find directly the

Clearly, the formulations (3) and (4) are similar to the path-optimal path itself, and also analyze the shape of the tube
integral expression for the appropriate transition amplitud®f paths arriving at a given poirig s, 7,). Away from the
in quantum mechanics [17], with replaced by—iD. cusp point, the width of this tube sD'/2.

The optimal fluctuational pathyep(z | g7, 15) along The reduced width of the distribution (9)(z | gy, 1)
which the system arrives at the poigf at the instant is given by the Green function of (7) at zero energy. For
t7 is the path that provides the minimum $gq(¢)]. Itis  an arbitrary periodic forc& in (1) its evaluation reduces
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to the solution of an ordinary differential equation
tr 1
ot | gp.1p) = ] dty exp[—2 ] dt B(tz)]
t t

B+ B =V, (10)
,B(ti) = ,B(ti + T) fort;, — —oo.

Clearly, o(t | gy.ty) is independent of, ¢, for 1, —
t > 7,. it gives the reduced width of the stationary

Equation (13) shows that, at the critical point, fluctuations
about the optimal path become strongly non-Gaussian,
and the prehistory probability distribution can be used
to reveal the critical behavior of the fluctuational paths.
The characteristic width of the distribution (13)+sD'/4,

and its shape is determined by the soft magg(z).
This mode is localized within the range — ¢t < 7,.
Fort. — t > 7, the distribution (12) goes over into the

Gaussian distribution about®(r). Experiments on an stationary Gaussian distribution about the attragt®r).
analog electronic model of (1), based on a standara_he measured and calculated evolutions of the distribution

technique [18], have yielded results which are in very

good agreement with Egs. (5) and (10); see Fig. 1.

with (¢, — ¢) are in good agreement: see Fig. 2. Critical

behavior of the distribution of paths coming to a cusp

The only generic structurally stable singularities of thePoint is much more pronounced than that of the statistical

pattern of extreme paths dof[q] (4) are caustics and

distribution near a cusp, where it is seen primarily in a

cusps [19]. Since caustics may not be observed in thBlOwing up of the prefactor [9(c)], [11].

pattern of optimal paths [11], it is particularly interesting
to investigate the distributiop;, near cusp points. At the
cusp(q., t.) one of the eigenvalues, becomes equal to
zero [7] (we set\g = 0). Equation (9) does not apply if
the final point(g, t7) is close to(g., t.); in particular,o
diverges forAo = 0. We now present results for the case
where the final point is precisely the cusp.

At the cusp point it is necessary [7] to keep in the
expansion of the action (8) the higher-order terms in
the amplitudeao of the “soft mode” () = eo(r) =

exd J' di' B(")]:
1 1
Sc({an}) = Zgoag + Z )\na;% + Ea(z) Z gnlp -
n>0 n>0
(11)

If we change to integration over the coefficientsin the
path integral (3), and integrate over ajl~, with account

1
2

The above analysis can be generalized to describe
critical broadening of the prehistory distribution for the
final point close to the cusp. It can also be shown that,
as in the case of stationary systems [11$watching line
emanates from the cusp point. This line separates regions
of the (gq,t) plane which are reached along different
sets of optimal paths. On this line the logarithm of
the stationary probability distribution is nondifferentiable
in the limit D — 0; the singularity shown to occur in
nonequilibrium systems by Graham and Tél [13]. Its
position is determined by equality of the probabilities to
reach it along optimal paths arriving from opposite sides.
It can be explicitly found in special cases [9(a)], [1L0(a)].

For (¢r.17) lying close to the switching line [and
far enough from (g.,t.)], the prehistory distribution
should have two ridges centered at the optimal paths

qf,ll.ﬁtz)(t | gr,t7) which intersect each other dyy,1/).

taken of Egs. (8) and (11) we obtain the prehistory

probability distribution for the paths coming to the cusp
point in the form

pila.1 1 getd) = Me [ dagexd~Fao | geoto)/D]

> ex;{— [C] B QOpt(t | Gerte) — aO‘rIICO(l‘)]2 :| ’ (12)

2Dt | gc,tc)

1 1 _
.T((10|(*Ic,tc)=_ g=g0__z/\nlgi'

4 2 n>0
The functiona? in (12) is given by Eq. (9) with the term
n = 0 being eliminated from the suni¥/. = M.(¢) is a
normalization constant.

Very close to the cusp point, i.e., for very small

(z. — t) the shape of the distribution (12) is dominated

4
84y,

by diffusion, so that the distribution is Gaussian; the term

aoieo can be neglected, ang.(r) = (r. — 1)'/2.
For larger(z. — t) we have from (12)

8

4D

> |:C] - QOpt(t | e tc)
Peo(t)

te — 1> D212 [y (zc).

piu(g,t | ge,te) = M. exp —

I}
(13)

=

T

P (atla_t )

FIG. 2. Cross sections of the prehistory probability distri-
bution for fluctuations to the cusp point in Fig. {g. =
—0.70,t. = 7.69) for three values ofr. The distribution is
Gaussian very close to, and far from, the cusp, but is critically
broadened and strongly non-Gaussian, cf. Eq. (13), at interme-
diate values of.
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