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Corrals and Critical Behavior of the Distribution of Fluctuational Paths
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We investigate, theoretically and by analog experiment, the distribution of paths for large fluctu
away from a stable state. We have foundcritical broadeningof the distribution of the paths coming
to a cusp point that represents the simplest generic singularity in the pattern of most probable (o
fluctuational paths in nonequilibrium systems. The critical behavior can be described by a Landa
theory. We predict and observe two-ridged distributions for arrivals on aswitching linethat separates
the areas reached along optimal paths of different types. [S0031-9007(96)02007-8]

PACS numbers: 64.60.Ht, 05.20.–y, 05.40.+ j, 05.70.Ln
a
le
e

a
la
d
n
3
i
e

d
o
o
,
o

r.
t
t
n

l
e
s

rs

th
e
th

e
m

c

a
e
ie
u
u

ich
ral
wn

nal
ers
in

-

ns
m-
b-
al
e

ld
e

e
he

in
Large fluctuations, although infrequent, play a fund
mental role in a broad range of processes, from nuc
tion at phase transitions to failures of electronic devic
In many cases the fluctuating systems of interest are
from thermal equilibrium. Examples include lasers, p
tern forming systems [1], trapped electrons which disp
bistability and switching in a strong periodic field [2], an
spatially periodic systems (ratchets) which display a u
directional current when driven by a nonthermal noise [
It was recognized by Onsager and Machlup [4] that an
sight into the physics of large fluctuations can be gain
from an analysis of thedistribution of fluctuational paths
along which the system moves to a given state. This
tribution is a fundamental characteristic of the fluctuati
dynamics,and its understanding paves the way to contr
ling the fluctuations. In the present Letter we show that
systems away from thermal equilibrium, the distribution
fluctuational paths generically displays critical behavio

Fluctuational motion from the vicinity of the stable sta
(where the system spends most of its time) to a given s
may occur along different paths. For large fluctuatio
the distribution of these paths peaks sharply at theoptimal
(most probable) path, often called the Onsager-Mach
optimal path. In the theory of large fluctuations, the patt
of optimal paths plays a role similar to that of the pha
portrait in nonlinear dynamics; we report below the fi
experimental observations of this pattern.

For a system in thermal equilibrium with a bath wi
a short correlation time, the optimal path to a giv
state is the time-reversed path of the system from
state to the vicinity of the stable state in the neglect
fluctuations (the deterministic path) [5]. This is no long
true for nonequilibrium systems, because they lack ti
reversibility. Even for simple nonequilibrium system
the pattern of optimal paths, as well as the statisti
distribution [6], may have singular features.

The occurrence of singularities is clear from the form
analogy between extreme fluctuational paths and extr
paths in quantum mechanics. Well-known singularit
of the pattern of extreme paths in optics and quant
mechanics are caustics [7]. The wave function blows
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on a caustic (as it does at a classical turning point, wh
is an analog of a caustic in the 1D case). In the gene
case caustics start in pairs from a cusp point, also kno
as a focal point: see Fig. 1.

Caustics and cusps in the pattern of extreme fluctuatio
paths have been found numerically in a number of pap
[8,9], and some related analytical results were obtained
[9(c)], [10,11]. We note that, in the problem of fluctu
ations, contributions to the probability distribution from
different paths are all positive, whereas the contributio
to the transition amplitude in quantum mechanics are co
plex and it is their interference pattern that is actually o
served. Therefore the singularities in the pattern of optim
fluctuational paths differ from those known for the wav

FIG. 1. Extreme paths of (1) forK ­ q 2 q3 1 0.264 3
cos1.2t. The stable stateqs0dstd from the vicinity of which
the paths start is shown by the dashed line. The bo
line emanating from the cusp point is the switching lin
calculated for D ! 0. The data points show the maxima
of the prehistory probability distribution measured for thre
final points away from the cusp. Reduced variances of t
corresponding Gaussian distributionss2 (displaced along the
ordinate axis for clarity) are compared with the theory
the inset.
© 1996 The American Physical Society 5229
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fields [11]. In particular, optimal fluctuational paths d
not encounter caustics, but they do focus into cusp poi
Use of the prehistory probability density [12] (see belo
enables us to set the subject on an experimental footing
also makes it possible to reveal and analyze, theoretic
and experimentally, singular behavior of the distribution
fluctuational paths.

We investigate singular features of the paths distri
tion using as an example the simplest possible sys
where these features may arise: an overdamped Bro
ian particle driven by a periodic forceKsq; td and white
noisejstd, with the equation of motion

Ùq ­ Ksq; td 1 jstd, Ksq; td ­ Ksq; t 1 Td ,

kjstdjst0dl ­ Ddst 2 t0d .
(1)

The model (1) applies to a wide range of physical syste
and has attracted much attention recently, cf. [13,1
particularly in the context of stochastic resonance [15].

For smallD, within a relaxation timetr the system (1)
will approach the stable periodic stateqs0dstd,

Ùqs0d ­ Ksqs0d; td, qs0dst 1 Td ­ qs0dstd , (2)

and a periodic stationary probability distribution will b
formed in the basin of attraction to this state (transitio
between stable states will not be considered here; we
limit the discussion to period-one stable states).

The distribution of paths for large fluctuations can
investigated and visualized through the analysis of
prehistory probability density,phsq, t j qf , tfd [12]. This
is the conditional probability density for a system that h
been fluctuating aboutqs0dstd for a time greatly exceeding
tr , and arrived to the pointqf at the instanttf , to have
passed through the pointq at the instantt st , tfd. It can
be written as a path integral:

phsq, t j qf , tfd ­ C
Z qstf d­qf

qstidøqs0dstid
D qst0d exp

∑
2

Sfqstdg
D

∏
3 dfqstd 2 qg, ti ! 2` ,Z

dqphsq, t j qf , tfd ­ 1 , (3)

whereC is the normalization constant.
The functionalSfqg determines the probability distribu

tion over the paths of a Markovian system. To lowest
der in the noise intensityD it takes the form of the action
functional for an auxiliary dynamical system with the L
grangianLs Ùq, q; td (cf. [16]):

Sfqstdg ­
Z tf

ti

dt Ls Ùq, q; td ,

Ls Ùq, q; td ­
1
2

f Ùq 2 Ksq; tdg2. (4)

Clearly, the formulations (3) and (4) are similar to the pa
integral expression for the appropriate transition amplitu
in quantum mechanics [17], with" replaced by2iD.

The optimal fluctuational pathqoptst j qf , tfd along
which the system arrives at the pointqf at the instant
tf is the path that provides the minimum toSfqstdg. It is
5230
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given by the solution of the variational problem

dSfqg
dqstd

­ 0, qoptstf j qf , tfd ­ qf ,

qoptsti j qf , tfd ! qs0dstid for ti ! 2` .
(5)

In fact, Eq. (5) describesextremefluctuational paths.
Optimal paths provide theglobal minimum to the action
Sfqg. It is clear from (3) that for smallD it is these
optimal paths that are of physical significance. Extre
paths qstd as given by (4) and (5) can intersect ea
other, and the dynamical system with the time-depend
Lagrangian (4) is nonintegrable. In contrast, generica
only one optimal path can arrive at a given point.

The physical meaning of the prehistory probability de
sity ph (3) becomes clear if one expands the coordin
qstd into the orthonormal functionscnstd which diagonal-
ize the second variation of the action,

qstd ­ qoptst j qf , tfd 1
X
n

ancnstd . (6)

It follows from (4) that the functionscnstd satisfy a
Schrödinger-type equation

2c̈n 1 V stdcn ­ lncn ,

V std ­

∑
≠2K
≠q≠t

1
1
2

≠2K2

≠q2

∏
opt

, (7)

with the boundary conditionscnstid ­ cnstfd ­ 0 [in (7)
the derivatives ofK ; Ksq; td are evaluated forq ­
qoptst jqf , tfd].

For trajectoriesqstd close to the optimal path, thean

in (6) are small, and the actionSfqstdg is quadratic inan

[unlesssqf , tfd is close to the cusp; see below],

Sfqstdg ­ Ssqf , tfd 1 sshanjd, sshanjd ­
1
2

X
n

lna2
n ,

Ssqf , tfd ; Sfqoptst j qf , tfdg .
(8)

If one writes the path integral (3) as an integral over
an and substitutes Eqs. (6) and (8) into (3), one obtains

phsq, t j qf , tfd ­ M exp

√
2

fq 2 qoptst j qf , tfdg2

2Ds2st j qf , tfd

!
,

s2st j qf , tfd ­
X
n

l21
n c2

nstd, M ­ s2pDs2d21y2.

(9)

It is seen from (9) that, near the maximum, th
distribution ph is Gaussian in the distance of the poi
sq, td from the optimal pathqoptst j qf , tfd (cf. [12]).
Therefore by investigatingph one can find directly the
optimal path itself, and also analyze the shape of the t
of paths arriving at a given pointsqf , tfd. Away from the
cusp point, the width of this tube is~D1y2.

The reduced width of the distribution (9)sst j qf , tfd
is given by the Green function of (7) at zero energy. F
an arbitrary periodic forceK in (1) its evaluation reduces
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to the solution of an ordinary differential equation

s2st j qf , tfd ­
Z tf

t
dt1 exp

"
22

Z t1

t
dt2 bst2d

#
,

Ùb 1 b2 ­ V std , (10)

bstid ­ bsti 1 T d for ti ! 2` .
Clearly, sst j qf , tfd is independent ofqf , tf for tf 2

t ¿ tr : it gives the reduced width of the stationa
Gaussian distribution aboutqs0dstd. Experiments on an
analog electronic model of (1), based on a stand
technique [18], have yielded results which are in ve
good agreement with Eqs. (5) and (10); see Fig. 1.

The only generic structurally stable singularities of t
pattern of extreme paths ofSfqg (4) are caustics and
cusps [19]. Since caustics may not be observed in
pattern of optimal paths [11], it is particularly interestin
to investigate the distributionph near cusp points. At the
cuspsqc, tcd one of the eigenvaluesln becomes equal to
zero [7] (we setl0 ­ 0). Equation (9) does not apply i
the final pointsqf , tfd is close tosqc, tcd; in particular,s
diverges forl0 ­ 0. We now present results for the ca
where the final point is precisely the cusp.

At the cusp point it is necessary [7] to keep in t
expansion of the actions (8) the higher-order terms in
the amplitudea0 of the “soft mode” c0std ; cc0std ~

expf
Rt dt0bst0dg:

scshanjd ø
1
4

g0a4
0 1

1
2

X
n.0

lna2
n 1

1
2

a2
0

X
n.0

gnan .

(11)
If we change to integration over the coefficientsan in the
path integral (3), and integrate over allan.0 with account
taken of Eqs. (8) and (11) we obtain the prehisto
probability distribution for the paths coming to the cu
point in the form

phsq, t j qc, tcd ­ Mc

Z `

2`
da0 expf2F sa0 j qc, tcdyDg

3 exp

"
2

fq 2 qoptst j qc, tcd 2 a0cc0stdg2

2Ds2
c st j qc, tcd

#
, (12)

F sa0 j qc, tcd ­
1
4

ga4
0, g ­ g0 2

1
2

X
n.0

l21
n g2

n .

The functions2
c in (12) is given by Eq. (9) with the term

n ­ 0 being eliminated from the sum;Mc ; Mcstd is a
normalization constant.

Very close to the cusp point, i.e., for very sma
stc 2 td the shape of the distribution (12) is dominat
by diffusion, so that the distribution is Gaussian; the te
a0cc0 can be neglected, andscstd ø stc 2 td1y2.

For largerstc 2 td we have from (12)

phsq, t j qc, tcd ­ M̃c exp

(
2

g
4D

3

∑
q 2 qoptst j qc, tcd

cc0std

∏4
)

,

tr * tc 2 t ¿ D1y2g1y2y Ùc2
c0stcd . (13)
rd
y

e

he

e

e

y
p

l
d
m

Equation (13) shows that, at the critical point, fluctuatio
about the optimal path become strongly non-Gaussi
and the prehistory probability distribution can be us
to reveal the critical behavior of the fluctuational path
The characteristic width of the distribution (13) is,D1y4,
and its shape is determined by the soft modecc0std.
This mode is localized within the rangetc 2 t & tr .
For tc 2 t ¿ tr the distribution (12) goes over into the
stationary Gaussian distribution about the attractorqs0dstd.
The measured and calculated evolutions of the distribut
with stc 2 td are in good agreement: see Fig. 2. Critic
behavior of the distribution of paths coming to a cu
point is much more pronounced than that of the statisti
distribution near a cusp, where it is seen primarily in
blowing up of the prefactor [9(c)], [11].

The above analysis can be generalized to desc
critical broadening of the prehistory distribution for th
final point close to the cusp. It can also be shown th
as in the case of stationary systems [11], aswitching line
emanates from the cusp point. This line separates reg
of the sq, td plane which are reached along differe
sets of optimal paths. On this line the logarithm
the stationary probability distribution is nondifferentiab
in the limit D ! 0; the singularity shown to occur in
nonequilibrium systems by Graham and Tél [13]. I
position is determined by equality of the probabilities
reach it along optimal paths arriving from opposite side
It can be explicitly found in special cases [9(a)], [10(a)]

For sqf , tfd lying close to the switching line [and
far enough from sqc, tcd], the prehistory distribution
should have two ridges centered at the optimal pa
q

s1,2d
opt st j qf , tfd which intersect each other atsqf , tfd.

FIG. 2. Cross sections of the prehistory probability dist
bution for fluctuations to the cusp point in Fig. 1sqc ø
20.70, tc ø 7.69d for three values oft. The distribution is
Gaussian very close to, and far from, the cusp, but is critica
broadened and strongly non-Gaussian, cf. Eq. (13), at inter
diate values oft.
5231
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FIG. 3(color). Measured prehistory probability distribution f
a final point lying on the switching line, showing a corral
optimal fluctuational paths.

The shapes of the ridges are given by Eq. (9), with
normalization factors~exps2Sfqs1,2d

opt gyDd, respectively.
The resultant corral formed by the ridges as measure
the experiment is shown in Fig. 3.

We note that the optimal paths “die” on the switchi
lines: the extreme paths which provide a solution
Eqs. (5) are no longer optimal at the distance¿D1y2

beyond the switching line. In particular, as is clear fro
Figs. 1 and 3 they are not optimal when they encoun
caustics, and thus caustics are not seen directly in
prehistory probability density (cf. [11]).

Observation of the pattern of optimal paths and
critical effects is possible because, for classical fluctua
processes, we can establish how the system had
moving before its arrival in a given state. This contra
with quantum mechanics, where e.g., observation o
path passing through a slit destroys the interference
a two-slit experiment. We note that the Landau the
of critical behavior applies exactly to the present syste
since the soft mode is localized and there is a gap betw
its energy and the energies of other modes.

In conclusion, we have used the prehistory probabi
distribution to analyze singular features of the pattern
optimal fluctuational paths in systems away from therm
equilibrium. We have predicted and observed criti
broadening of the distribution of paths arriving in t
vicinity of cusp points, and we have also observed
switching line in the pattern of optimal paths.

The work was supported in part by the Engineer
and Physical Sciences Research Council (UK) and by
Russian Foundation for Basic Research.
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