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Slow Relaxation Phenomena Induced by Breathers in Nonlinear Lattices
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We study relaxation properties of one dimensional nonlinear lattices which are initially thermalized
and subsequently put intp contact with a cold bath simulated by absorbing boundary conditions. We
observe a nonexponential lattice energy relaxation in contrast to the standard exponential relaxation law
of the corresponding linear system. We connect the long-tail relaxation behavior with the presence of
long-lived nonlinear localized modes. The mobility of the breathers is shown to play a substantial role
in the lattice relaxation properties. [S0031-9007(96)01862-5]

PACS numbers: 63.20.Ry, 63.20.Pw

It is well known that glass and spin-glass materials exsible through phase fluctuations. The lower the density
hibit nonexponential slow relaxation properties [1]. Suchof breathers, the weaker the rate of energy transfer will
behavior is usually considered the consequence of a conpe. This should be contrasted with the corresponding situ-
plex hierarchy of local minima in the energy of the sys-ation in linear systems where only phonons contribute
tem. These metastable states trap in their neighborhodd the energy transfer. In that case local energy accu-
the configuration of the system for very long times, lead-mulation spontaneously generated by thermal fluctuations
ing to a slowing down of its dynamics. The aim of this relaxes shortly, independently of amplitude.

Letter is to present numerical results related to extended The thermal shock numerical experiments we per-
nonlinear dynamical systems that were obtained with drmed on several nonlinear models, chosen for having
simple method borrowed from the standard techniques fodifferent breather properties, are motivated by analogous
studying glasses. It is shown for the first time that therebut real experiments (Refs. [11-13]) performed on real
exist certain dynamical systems which, even though theglassy systems. We considered one dimensional chains of
do not exhibit any metastable states at all, neverthelesnharmonic oscillators with free ends and also, for com-
exhibit unambiguously slow relaxation behavior similarparison, the harmonic systems which are equivalent at low
to those of glasses. In our numerical experiments, théemperature. The isolated system is put initially in a state
slowing down of the dynamics is due to the spontaneouat a given temperature. Subsequently, at time zero, our
formation of dynamical structures which persist for longsystem is put into contact with a bath at zero tempera-
times and play the same role as the metastable states tire and spontaneously commences relaxation towards its
glasses. These dynamical structures were found to comround state. In our numerical experiments a number of
sist of random distributions of pinned or weakly mobile end oscillators of the chain are submitted to an additional
breathers [2—10]. damping force and thus act as a heat sink for the thermal

The existence of breathers, i.e., localized nonlinear peenergy accumulated in the chain. We observe the relax-
riodic oscillations in extended discrete nonlinear systemsation rate of the total energy of the system.
is well established [5]. Breather solutions have been The Hamiltonian of our one dimensional chain &f
proved to be linearly stable and robust under small perescillators has the form
turbations in a wide class of nonlinear models [9]. They N
might be rather mobile or strongly pinned to the lattice de-  H = . [5 iy + Wtpir — uy) + V(Mn)] (1)
pending on the specific model and its parameters. When n=1
they exist, these nonlinear localized modes show up spowhere u, is the dimensionless displacement of thih
taneously in the dynamics of nonlinear systems and magscillator from equilibriumu, its velocity. W(u) is the
change substantially system characteristics, especially ifearest-neighbor coupling POtfntlﬁﬂ which is for most
regard to their thermal properties. In such nonlinear sysexamples tested herey’(u) = 5u*>. The constantk
tems at finite temperature, a breather can act as a localizégeasures the strength of this coupling.(«) is a non-
hot spotii.e., a local accumulation of energy, which might linear on-site oscillator potential. We tested (i) the “hard”
be pinned in the lattice or may travel through it. When¢* potential V (u,) = sul + zut and (i) the “soft’
several pinned breathers exist in the system, part of itMorse potentiaV/ (u,,) = %[1 — exp(—u,) .
energy is trapped for a long time at these hot spots even Both cases are approximate by the same harmonic
though some energy exchange between breathers is pgmtentialV (u,) = %uﬁ at low temperature.
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The lattices are originally brought into contact with a In Figs. 1 and 2 we present the basic results of our
heat bath at temperaturE (in units of lattice energy; numerical study for the nonlinear potential of case (i). In
Boltzmann’s constant is taken equal to unity), for ex-Fig. 1 we show the spatiotemporal energy landscape of
ample, through the Nose method [14]. After the thermalthe lattice by plotting the local energy density in each
ization procedure is over we turn off the connection withlattice site and follow the thermalization process in time.
the bath at temperatuf@ and bring the lattice into contact The local energy density is the symmetrized total energy
with a zero temperature bath by adding damping to thén each lattice site. In Fig. 2 we plot the normalized
system edge atoms. total lattice energy as a function of time for the tempera-

Being in a nonequilibrium state the lattice evolvesture cases portrayed in Fig. 1 and also compare with
towards equilibrium through the equations of motion: the corresponding linear system. In Fig. 1 dark regions

i, = k(upsy — 21y + 1) — V'u,) cor_respor_1d to Iarge local energy accum_ulation, whereas
. white regions designate low energy density. The case of
— Yn(Bpp + Sur)s () temperatureT = 1 corresponds to high energy for our
whereL and R denote all left-end and right-end contact energy scale. We note the clear presence of essentially
oscillators, respectively, ané@ denotes the Kronecker pinned long-lived breathers that block the energy propa-
delta. gation towards the system edges. We also observe some

{a} e . '-i ] = (h] 108

é
" -'.- I -
BEf L . .. Aok
1 H ii" § g 50
L EELLE | :
i 1% ) i
i j l= ? i
:'!3, 1
s -
'E - ﬁ r‘l:ll-
w1 IR !
|- JEENE !
] 1o T @ 50 [T a u- : -
© wf @ =f i

! -';T‘T’T‘fll'll

&

EneTay-Tire

4n

an

40 50 a0 o

FIG. 1. Energy density landscape of a system of 72 particles as a function of time. Dark regions correspond to highs in local
energy accumulation. In the horizontal axis we have the lattice sites whereas in the vertical local energy density snapshots of the
entire system as a function of time. The lattices have been initially thermalized ® €a)l, (b) 7 = 0.1, (¢) T = 0.01, (d)

linear. The value of the coupling constantkis= 0.1, and damping of the edge atoms equgls= 0.1.
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breather content is lower while the breathers are now

10 mobile. Because of breather creation and annihilation
there is more de-trapping of energy, and as a result the
0.8 energy decay of the system is faster (Fig. 2). We note
--r::JuiHi{I:i:}:{Hmuuml...u that energy relaxation is still distinctly_nonexpon_ential
_ R and much slower than the exponential relaxation of
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041 1 mobility contributes to the thermal relaxation properties
—eT=1(N) of the lattice.
02 | |®®T=0.1(NL) When the system temperature is reduced further, the
A aT=00T(NL) breather size increases, and they quickly disappear from
the picture; the energy relaxation is now completely
%%.0 50 100 15.0 20.0 phonon dominated since at small temperatures only the

Time linear part of the potential is effective and thus energy
FIG. 2. Normalized averaged lattice energy decay as a funC[e!axatlon proceeds in .th_e usual exponentlal_ fashion
tion of time for the nonlineary* lattice (NL) withA = B = 1 (Fig. 2). We note that similar results were obtained for
and comparison with the corresponding linear lattice (L) withthe homogeneously nonlinear case of the potemtia) =
A=1,B=0. Inall cases we usé = 0.1 and take64 os-  1,* with the exception being that at small temperatures,
cillators with eight additional bath oscillators, four on each enddue to the absence of phonon modes in this system, energy

of the chain. The unit of time is equal W0 periods of the : . . A
linearized oscillators. The vertical lines are error bars overexChange is dominated by breathers diverging in size [15].

ten realizations. Both linear and nonlinear lattices were ther- Having tested the case of the hagd potential we now
malized initially to7 = 1,0.1,0.01, respectively. In the linear turn to the soft Morse potential. The two nonlinear on-site

cases the relaxation rate is independent of the temperature. potentials result in quite different breather properties at
zero temperature. While in the hagd potential moving

creation and annihilation of localized modes. Thebreathers were not identified at zero temperature, in the
breather structures seem to be opaque to local phonarase of the Morse potential they do exist. Furthermore,
mode propagation and as a result the system is conMorse breathers exist below the phonon band that starts at
pletely partitioned in thermal cells. The macroscopicthe frequency of the linearized potential, viz., at frequency
manifestation of this microscopic energy picture is clearlyone, and extends t&/1 + 4k. Before a sideband of a
seen in the corresponding energy relaxation curve odbreather of frequencyw, enters in the linear phonon
Fig. 2. In the latter we observe an effective absence o$pectrum the breather becomes unstable and decays [10].
relaxation after an initial small decay. When the systemAn approximate maximal coupling where this instability

is thermalized to smaller temperatures [Fig. 1(b)] thethat separates stable from unstable breathers occurs when

(a)

Ermzgy-Time
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FIG. 3. Energy relaxation in a Morse chain of 72 particles as a function of time. We plot the local energy as function of time
for a chain thermalized initially ai” = 0.001. The dark regions correspond to local energy accumulation itk &)0.01, (b)
k = 0.05.
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V1 + 4k, = 2, viz., atk, = 3/4. As a result we expect to be generic to discrete nonlinear lattice systems should
thatto the extent that breathers are responsible for energylso have distinct signatures in observables other than
relaxation in nonlinear systenteere will be a drastically the energy distribution relaxation tail. They are expected
different pattern in the equilibration for coupling valuesto appear in equilibrium dynamical correlation functions
much smaller than the ones in the vicinky. In Fig. 3  evaluated at long times through long molecular dynam-
we show the “microscopic” flows of energy redistribution ics simulations [16]. Furthermore, the effect of breathers
and relaxation for the Morse lattice at temperatilire=  in thermal system properties can be accentuated through
0.001 and two coupling constants the systematic introduction of spatially distributed thermal

The energy landscape picture shows the existence a@fratings. In this case we could partition the system into
various regimes. At small couplingk (= 0.01) robust well separated, long-lived thermal cells that could be
breathers are formed that are relatively immobile, buprobed experimentally [15]. The glassy nature of ex-
certainly much more mobile that the ones of the hardended discrete nonlinear systems found here could be
¢* potential lattice. At larger couplingk(= 0.05) the  connected to the well known slow thermalization prop-
breathers become quite mobile, while at even further largegrties of the Fermi-Pasta-Ulam model. Finally, it is pos-
coupling they quickly diverge in size and thus assist insible that localized breather modes play also some role in
incoherent thermalization [15]. This microscopic picturethe real glassy systems, an implication that is currently
is manifested in the macroscopic energy relaxation shownnder investigation.
in Fig. 4. We note the clear nonexponential nature of We thank Ding Chen, T. Cretegny, J. Luis Marin,
the relaxation in the small and intermediate couplingG. Nicolis, and C. van den Broeck for helpful discussions.
regimes while there is an exact exponential relaxatioWe are also indebted to P. Monceau and K. Biljakovic
curve in the high coupling regime. Near the coupling valugfor communicating their experimental results. One of us
k = 0.4 the Morse breather changes stability propertie{GPT) acknowledges CEA Saclay for its hospitality. This
and becomes an unstable breatherlike extended phonevork has been supported by the European Union, HCM
mode [10]. Program No. ERB-CHRX-CT93-0331.
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