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Slow Relaxation Phenomena Induced by Breathers in Nonlinear Lattices
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We study relaxation properties of one dimensional nonlinear lattices which are initially thermalized
and subsequently put intp contact with a cold bath simulated by absorbing boundary conditions. We
observe a nonexponential lattice energy relaxation in contrast to the standard exponential relaxation law
of the corresponding linear system. We connect the long-tail relaxation behavior with the presence of
long-lived nonlinear localized modes. The mobility of the breathers is shown to play a substantial role
in the lattice relaxation properties. [S0031-9007(96)01862-5]

PACS numbers: 63.20.Ry, 63.20.Pw
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It is well known that glass and spin-glass materials
hibit nonexponential slow relaxation properties [1]. Su
behavior is usually considered the consequence of a c
plex hierarchy of local minima in the energy of the sy
tem. These metastable states trap in their neighborh
the configuration of the system for very long times, lea
ing to a slowing down of its dynamics. The aim of th
Letter is to present numerical results related to exten
nonlinear dynamical systems that were obtained wit
simple method borrowed from the standard techniques
studying glasses. It is shown for the first time that th
exist certain dynamical systems which, even though t
do not exhibit any metastable states at all, neverthe
exhibit unambiguously slow relaxation behavior simi
to those of glasses. In our numerical experiments,
slowing down of the dynamics is due to the spontane
formation of dynamical structures which persist for lo
times and play the same role as the metastable stat
glasses. These dynamical structures were found to
sist of random distributions of pinned or weakly mob
breathers [2–10].

The existence of breathers, i.e., localized nonlinear
riodic oscillations in extended discrete nonlinear syste
is well established [5]. Breather solutions have be
proved to be linearly stable and robust under small p
turbations in a wide class of nonlinear models [9]. Th
might be rather mobile or strongly pinned to the lattice
pending on the specific model and its parameters. W
they exist, these nonlinear localized modes show up sp
taneously in the dynamics of nonlinear systems and m
change substantially system characteristics, especial
regard to their thermal properties. In such nonlinear s
tems at finite temperature, a breather can act as a loca
hot spot,i.e., a local accumulation of energy, which mig
be pinned in the lattice or may travel through it. Wh
several pinned breathers exist in the system, part o
energy is trapped for a long time at these hot spots e
though some energy exchange between breathers is
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sible through phase fluctuations. The lower the den
of breathers, the weaker the rate of energy transfer
be. This should be contrasted with the corresponding s
ation in linear systems where only phonons contrib
to the energy transfer. In that case local energy ac
mulation spontaneously generated by thermal fluctuati
relaxes shortly, independently of amplitude.

The thermal shock numerical experiments we p
formed on several nonlinear models, chosen for hav
different breather properties, are motivated by analog
but real experiments (Refs. [11–13]) performed on r
glassy systems. We considered one dimensional chain
anharmonic oscillators with free ends and also, for co
parison, the harmonic systems which are equivalent at
temperature. The isolated system is put initially in a st
at a given temperatureT . Subsequently, at time zero, ou
system is put into contact with a bath at zero tempe
ture and spontaneously commences relaxation toward
ground state. In our numerical experiments a numbe
end oscillators of the chain are submitted to an additio
damping force and thus act as a heat sink for the ther
energy accumulated in the chain. We observe the re
ation rate of the total energy of the system.

The Hamiltonian of our one dimensional chain ofN
oscillators has the form

H ­
NX

n­1

∑
1
2

Ùu2
n 1 Wsun11 2 und 1 V sund

∏
, (1)

where un is the dimensionless displacement of thenth
oscillator from equilibrium,Ùun its velocity. Wsud is the
nearest-neighbor coupling potential which is for mo
examples tested here,W sud ­

k
2 u2. The constantk

measures the strength of this coupling.V sud is a non-
linear on-site oscillator potential. We tested (i) the “har
f4 potential V sund ­

1
2 u2

n 1
1
4 u4

n and (ii) the “soft”
Morse potentialV sund ­

1
2 f1 2 exps2undg2.

Both cases are approximate by the same harmo
potentialV sund ­

1
2 u2

n at low temperature.
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The lattices are originally brought into contact with
heat bath at temperatureT (in units of lattice energy;
Boltzmann’s constant is taken equal to unity), for e
ample, through the Nose method [14]. After the therm
ization procedure is over we turn off the connection w
the bath at temperatureT and bring the lattice into contac
with a zero temperature bath by adding damping to
system edge atoms.

Being in a nonequilibrium state the lattice evolv
towards equilibrium through the equations of motion:

ün ­ ksun11 2 2un 1 un21d 2 V 0sund
2 g Ùunsdn,L 1 dn,Rd , (2)

whereL and R denote all left-end and right-end conta
oscillators, respectively, andd denotes the Kronecke
delta.
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In Figs. 1 and 2 we present the basic results of
numerical study for the nonlinear potential of case (i).
Fig. 1 we show the spatiotemporal energy landscape
the lattice by plotting the local energy density in ea
lattice site and follow the thermalization process in tim
The local energy density is the symmetrized total ene
in each lattice site. In Fig. 2 we plot the normalize
total lattice energy as a function of time for the tempe
ture cases portrayed in Fig. 1 and also compare w
the corresponding linear system. In Fig. 1 dark regio
correspond to large local energy accumulation, wher
white regions designate low energy density. The cas
temperatureT ­ 1 corresponds to high energy for ou
energy scale. We note the clear presence of essent
pinned long-lived breathers that block the energy pro
gation towards the system edges. We also observe s
in local
ots of the
FIG. 1. Energy density landscape of a system of 72 particles as a function of time. Dark regions correspond to highs
energy accumulation. In the horizontal axis we have the lattice sites whereas in the vertical local energy density snapsh
entire system as a function of time. The lattices have been initially thermalized to (a)T ­ 1, (b) T ­ 0.1, (c) T ­ 0.01, (d)
linear. The value of the coupling constant isk ­ 0.1, and damping of the edge atoms equalsg ­ 0.1.
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FIG. 2. Normalized averaged lattice energy decay as a fu
tion of time for the nonlinearf4 lattice (NL) with A ­ B ­ 1
and comparison with the corresponding linear lattice (L) w
A ­ 1, B ­ 0. In all cases we usek ­ 0.1 and take64 os-
cillators with eight additional bath oscillators, four on each e
of the chain. The unit of time is equal to100 periods of the
linearized oscillators. The vertical lines are error bars o
ten realizations. Both linear and nonlinear lattices were th
malized initially toT ­ 1, 0.1, 0.01, respectively. In the linear
cases the relaxation rate is independent of the temperature.

creation and annihilation of localized modes. T
breather structures seem to be opaque to local pho
mode propagation and as a result the system is c
pletely partitioned in thermal cells. The macroscop
manifestation of this microscopic energy picture is clea
seen in the corresponding energy relaxation curve
Fig. 2. In the latter we observe an effective absence
relaxation after an initial small decay. When the syst
is thermalized to smaller temperatures [Fig. 1(b)] t
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breather content is lower while the breathers are n
mobile. Because of breather creation and annihilat
there is more de-trapping of energy, and as a result
energy decay of the system is faster (Fig. 2). We n
that energy relaxation is still distinctly nonexponenti
and much slower than the exponential relaxation
the corresponding linear system also shown in Fig
for comparison. In this intermediate regime, breath
mobility contributes to the thermal relaxation properti
of the lattice.

When the system temperature is reduced further,
breather size increases, and they quickly disappear f
the picture; the energy relaxation is now complete
phonon dominated since at small temperatures only
linear part of the potential is effective and thus ener
relaxation proceeds in the usual exponential fash
(Fig. 2). We note that similar results were obtained f
the homogeneously nonlinear case of the potentialV sud ­
1
4 u4 with the exception being that at small temperatur
due to the absence of phonon modes in this system, en
exchange is dominated by breathers diverging in size [1

Having tested the case of the hardf4 potential we now
turn to the soft Morse potential. The two nonlinear on-s
potentials result in quite different breather properties
zero temperature. While in the hardf4 potential moving
breathers were not identified at zero temperature, in
case of the Morse potential they do exist. Furthermo
Morse breathers exist below the phonon band that star
the frequency of the linearized potential, viz., at frequen
one, and extends to

p
1 1 4k. Before a sideband of a

breather of frequencyvb enters in the linear phonon
spectrum the breather becomes unstable and decays
An approximate maximal coupling where this instabili
that separates stable from unstable breathers occurs w
of time
FIG. 3. Energy relaxation in a Morse chain of 72 particles as a function of time. We plot the local energy as function
for a chain thermalized initially atT ­ 0.001. The dark regions correspond to local energy accumulation in (a)k ­ 0.01, (b)
k ­ 0.05.
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1 1 4kc ­ 2, viz., atkc ­ 3y4. As a result we expec

that to the extent that breathers are responsible for ene
relaxation in nonlinear systemsthere will be a drastically
different pattern in the equilibration for coupling value
much smaller than the ones in the vicinitykc. In Fig. 3
we show the “microscopic” flows of energy redistributio
and relaxation for the Morse lattice at temperatureT ­
0.001 and two coupling constantsk.

The energy landscape picture shows the existenc
various regimes. At small coupling (k ­ 0.01) robust
breathers are formed that are relatively immobile, b
certainly much more mobile that the ones of the ha
f4 potential lattice. At larger coupling (k ­ 0.05) the
breathers become quite mobile, while at even further lar
coupling they quickly diverge in size and thus assist
incoherent thermalization [15]. This microscopic pictu
is manifested in the macroscopic energy relaxation sho
in Fig. 4. We note the clear nonexponential nature
the relaxation in the small and intermediate coupli
regimes while there is an exact exponential relaxat
curve in the high coupling regime. Near the coupling va
k ­ 0.4 the Morse breather changes stability propert
and becomes an unstable breatherlike extended pho
mode [10].

Although the system we studied has only one degre
freedom per unit cell, the existence of stable breather
not subjected to this condition since we know that th
can persist very generally in systems at any dimens
and with many degrees of freedom per unit cell includi
acoustic phonons. The discrete breather induced phen
ena of slow nonexponential relaxation that are shown h

FIG. 4. Normalized averaged lattice energy decay as a fu
tion of time for the Morse lattice. We consider an initi
thermalized state atT ­ 0.001 and vary the nearest-neighbo
couplingk. The unit of time is equal to one oscillation perio
of the linearized local potential. The vertical lines are er
bars over ten realizations. The distinctly nonexponential
proach to equilibrium followed by long-lived saturation effec
at small couplings are evident.
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to be generic to discrete nonlinear lattice systems sho
also have distinct signatures in observables other th
the energy distribution relaxation tail. They are expect
to appear in equilibrium dynamical correlation function
evaluated at long times through long molecular dynam
ics simulations [16]. Furthermore, the effect of breathe
in thermal system properties can be accentuated throu
the systematic introduction of spatially distributed therm
gratings. In this case we could partition the system in
well separated, long-lived thermal cells that could b
probed experimentally [15]. The glassy nature of e
tended discrete nonlinear systems found here could
connected to the well known slow thermalization prop
erties of the Fermi-Pasta-Ulam model. Finally, it is po
sible that localized breather modes play also some role
the real glassy systems, an implication that is curren
under investigation.

We thank Ding Chen, T. Cretegny, J. Luis Marin
G. Nicolis, and C. van den Broeck for helpful discussion
We are also indebted to P. Monceau and K. Biljakov
for communicating their experimental results. One of u
(GPT) acknowledges CEA Saclay for its hospitality. Th
work has been supported by the European Union, HC
Program No. ERB-CHRX-CT93-0331.

[1] Phase Transitions and Relaxations in Systems with Co
peting Energy Scales,edited by T. Riste and D. Sherring-
ton (Kluwer Academic, Dordrecht, 1993).

[2] A. J. Sievers and S. Takeno, Phys. Rev. Lett.61, 970
(1988).

[3] D. K. Campbell and M. Peyrard, inCHAOS—Soviet
American Perspectives on Nonlinear Science,edited by
D. K. Campbell (American Institute of Physics, New York
1990).

[4] S. Takeno and K. Hori, J. Phys. Soc. Jpn.60, 947 (1991).
[5] R. S. MacKay and S. Aubry, Nonlinearity7, 1623 (1994).
[6] K. S. Rasmussen, D. Hennig, G. P. Tsironis, an

H. Gabriel, Phys. Rev. E52, 4628 (1995).
[7] D. Cai, A. R. Bishop, and N. Gronbech-Jensen, Phy

Rev. E52, 5784 (1995).
[8] S. Takeno and M. Peyrard, Physica (Amsterdam)92D,

140 (1996).
[9] S. Aubry, Physica (Amsterdam) D (to be published).

[10] J. L. Marin and S. Aubry, Nonlinearity (to be published).
[11] J. Zimmermann and G. Weber, Phys. Rev. Lett.46, 661

(1981).
[12] Yu. N. Ovchinnikov, K. Biljakovic, J. C. Lasjaunias, and

P. Monceau, Europhys. Lett.34, 645 (1996).
[13] J. C. Lasjaunias, K. Biljakovic, and P. Monceau, Phy

Rev. B53, 7699 (1996).
[14] S. Nose, J. Chem. Phys.81, 551 (1984); Mol. Phys.52,

255 (1994).
[15] G. P. Tsironis and S. Aubry (to be published).
[16] S. Flach and G. Mutschke, Phys. Rev. E49, 5018 (1994).


