
VOLUME 77, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 1996

rmany
any

518
First-Principles Calculations of Absolute Concentrations and
Self-Diffusion Constants of Vacancies in Lithium
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For lithium the absolute concentrations of thermal monovacancies and the self-diffusion constants
via vacancies are calculatedab initio using the local-density approximation in combination with the
transition-state theory of diffusion. The diffusion data are in good agreement with experimental data
for high temperatures. [S0031-9007(96)00663-1]

PACS numbers: 66.30.Fq, 61.72.Ji, 71.15.Mb
e
s

e

u
e

u

o

o

e

b

r

do
ing
ty
ial

l
).
gy

-

for

the

the
ism

h
tal
-

ra-
Li.
al-

tra-
es

h

The mechanisms of self-diffusion in solids have be
intensively discussed for several decades (for reviews,
Refs. [1] and [2]). Possible candidates [1] are nondef
mechanisms such as the direct exchange of two atom
adjacent lattice sites or ring mechanisms involving mo
than two atoms, and defect mechanisms via monovac
cies, divacancies, or self-interstitials. Concerning elem
tary metals, the monovacancy mechanism is confirm
[1] to be dominant in fcc and hcp metals as well as
bcc Fe. In other bcc metals the situation is less cle
and the self-diffusion is sometimes, at least in part, infl
enced by the characteristic low-frequency LA2y3 k111l
phonon mode [3]. Solid Li in the bcc phase is especia
intriguing because it possesses a rather “open” struct
i.e., a rather large lattice constant and low electron d
sity. It was therefore suggested that, in addition to t
monovacancy mechanism, there might be contributions
self-interstitials at high temperatures [4] and of direct e
change or extended ring mechanisms at low temperat
[1]. In the present Letter we report on parameter-fr
ab initio calculations of the self-diffusion parameters f
these mechanisms in Li. For Si a similar study has be
performed by Blöchlet al. [5] with the result that the self-
interstitial mechanism is dominating over the contributi
of the other mechanisms.

In a cubic crystal the tracer self-diffusion is describ
by the self-diffusion constantDT sT d. Experimentally,
it turns out that in many cases this quantity may
described by an Arrhenius behavior,

DT sT d ­ DT
0 exps2HSDykBT d , (1)

at least over several powers of ten. HereHSD is the
activation enthalpy of self-diffusion, which at atmosphe
pressure is nearly identical to the activation energyESD ,
and D0 is the preexponential factor. For the case of
defect mechanism we may write

DT sT d ­ gfT CeqDdefect . (2)

Here the geometrical factorg and the correlation factor
fT are numerical factors which are well known fo
various defect mechanisms. The concentration of defe
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in thermal equilibrium,Ceq, is given by

Ceq ­ expsSFykBT d exps2EFykBTd , (3)

whereSF is the formation entropy andEF the formation
energy of the defect (at atmospheric pressure we again
not distinguish between energy and enthalpy). Combin
Eqs. (1)–(3), it becomes obvious that the diffusivi
Ddefect of the single defect is also given by an exponent
temperature dependence, which is written as

Ddefect ­ D0
defect exps2EMykBT d (4)

with the migration energyEM and the preexponentia
factorD0

defect, which are defined operationally via Eq. (4
Obviously, for a defect mechanism the activation ener
ESD is given by

ESD ­ EF 1 EM . (5)

The objective of a theory of self-diffusion is to calcu
late the self-diffusion parametersESD, EF , EM , SF , and
D0

defect for various possible mechanisms and to check
consistency with experimental data.

For Li the formation energiesEF
I of various self-

interstitial configurations as calculated [6] by theab initio
pseudopotential method are at least 40% larger than
experimentally obtained activation energyESD , so that
the self-interstitial mechanism could be excluded as
dominant mechanism. The direct exchange mechan
could also be excluded because theab initio pseudopoten-
tial calculations yielded [7] an activation energy whic
was a factor of about 2.5 larger than the experimen
value. Ab initio calculations for extended ring mecha
nisms are lacking. In this Letter we representab initio
calculations of the above discussed self-diffusion pa
meters for the monovacancy mechanism (index 1V) in
To our knowledge, these are the first parameter-free c
culations of the absolute thermal monovacancy concen
tion and of the self-diffusion constant for monovacanci
in a metal. It will be shown that ourab initio data agree
well with the experimental self-diffusion data in Li at hig
temperatures.
© 1996 The American Physical Society
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The calculations were performed within the superc
formalism and in local-density approximation. A no
local, nonlinear [8], optimally smooth norm-conservin
pseudopotential [9] was used. All results were tes
for convergence with respect to the number of pla
waves in the basis set and the number ofk points
used for the sampling of the Brillouin zone. In o
ab initio calculations all quantities are evaluated f
the fixed theoretical zero-temperature lattice constan
6.34 a.u. for the ideal Li crystal (superscript flc), where
experiments refer to the quantities for constant press
appearing in Eqs. (1)–(5). Neglecting the explicit te
perature dependence ofE

F,flc
1V due to the excitation of

phonons (which according to our calculations is neg
gibly small) as well as the temperature dependence
bpV0≠E

F,flc
1V y≠V0 (bp is the thermal volume expansio

coefficient at constant pressure,V0 is the atomic volume),
and assuming≠S

F,flc
1V y≠V0 ­ 0 (this might be risky ac-

cording to Harding [10]), the following relations hol
at zero pressure [10,11]:EF

1V sT d ­ E
F,flc
1V sT ­ 0d and

SF
1V sT d ­ S

F,flc
1V sTd 1 bpDVykT , whereDV is the local

relaxation volume of the vacancy andkT denotes the com
pressibility at constantT . For bp we inserted the experi
mental value of168 3 1026yK (obtained as an averag
value between 293 and 368 K), and forkT and DV we
used or ownab initio results [6] for zero temperature. Fo
the migration quantities, analogous equations hold w
the relaxation volume replaced by the migration volum
Because the vacancy migration volume is generally
sumed to be very small, we haveEM

1V sTd ­ E
M,flc
1V s0d and

SM
1V sT d ø S

M,flc
1V sT d. The approximate conversion from

fixed lattice constant to fixed pressure has a big influe
on the results, as shown in Figs. 2 and 3 below.

Vacancy concentration.—The vacancy formation en
ergy was calculated along the lines described in Ref.
for a supercell containing 54 sites, yielding a value
EF

1V ­ 0.54 eV. Concerning the convergence with r
spect to the supercell size, it is generally assumed
that, for simple metals and reasonably large supercells
part of the vacancy formation energy that depends on
supercell sizes originates almost exclusively from ela
interactions between the vacancies. We have corre
for these elastic interactions [13], arriving at a final val
of EF

1V ­ 0.52 eV.
The formation entropySF

1V results from the modifica-
tion of the vibrational entropy when a vacancy is intr
duced in the crystal. Within the supercell approach it
calculated according to

S
F,flc
1V ­ SsN 2 1, 1d 2

N 2 1
N

SsN , 0d , (6)

where SsN 2 1, 1d and SsN, 0d are the vibrational en-
tropies for the supercell withN 2 1 ­ 53 atoms (and one
vacancy) and for the perfect supercell, respectively.
harmonic approximation the vibrational entropy there
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is given by

S ­ kB

X
i

Ω
h̄vi

kBT fexpsh̄viykBT d 2 1g

2 lnf1 2 exps2h̄viykBTdg
æ

, (7)

where the sum runs over all phonon states. The pho
states were calculated by theab initio force-constant
method along the lines described in Ref. [14]. There
the force-constant matrix is obtained from theab ini-
tio forces exerted by single displaced atoms on all
other undisplaced atoms in the supercell. Although
used rather small displacements of 0.015 elementary
tice constant, the calculations yielded slight anharmon
ities, which are corrected for along the lines given
Ref. [15]. Because of symmetry the displacement of
central atom of the supercell yields all elements of
force-constant matrix for a perfect bcc crystal [14].
contrast, for a supercell containing a vacancy, 20 differ
calculations are required to obtain the full force-const
matrix, including the correction for anharmonicities. W
determined the couplings up to the fifth nearest-neigh
couplings, which was sufficient to reproduce [14] ve
accurately [16] the experimentally observed phonon d
persion curves for the perfect crystal. An extensive d
cussion of the finite-size effects is given in Ref. [14
From the force-constant matrix the dynamical matrix
determined by a Fourier transformation, and the pho
frequencies for arbitrary wave vectors are evaluated b
diagonalization of the matrix. For the calculation ofSF

1V
in Si, a similar approach has been used by Biernacket
al. [17], whereas Blöchlet al. [5] applied the so-called
local harmonic approximation, and Smargiassi and M
den [18] used for Na a thermodynamic integration meth
based on anab initio molecular dynamics simulation.

Figure 1 shows the temperature dependence ofS
F,flc
1V

together with the results obtained from a very simp
model (dashed line), where we describe the introduct
of the vacancy just by cutting the couplings betwe
the removed atom and all other atoms while keep
the couplings among the remaining atoms unchanged
reality, these latter couplings will be modified due to t
change of the electronic structure induced by the vaca
It becomes clear from Fig. 1 that this simple model do
not suffice. The formation entropy increases strongly w
increasing temperature at lowT but varies only slightly
with temperature forT . 200 K.

The absolute concentrations of vacancies in ther
equilibrium as calculated from Eq. (3) are shown
Fig. 2. They are considerably smaller than those giv
by theDlyl 2 Daya experiment of Feder and Charbna
[19]. This experiment yielded a very low formation e
ergy of EF

1V ­ 0.34 eV, which is in strong disagreemen
with all available theoretical predictions [6]. It is highl
imperative to repeat this very difficult experiment.
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FIG. 1. Temperature dependence of the vacancy forma
entropy at fixed lattice constant for Li (solid line). For th
meaning of the dashed line, see text.

Diffusivity.—The diffusivity Ddefect may, in principle,
be calculated by anab initio molecular dynamics study
as it was done for the vacancy in Si by Blöchlet al.
[5]. To achieve reasonable statistical accuracy, t
method requires an enormous computational effort.
determinedDdefect within the framework of the transition-
state theory (TST) [20]. In this theory, the migratio
energy EM

1V is given by the energy difference betwee
two static, fully relaxed configurations, the saddle-po
configuration with the moving atom halfway in th
k111l direction to the vacant lattice site and the initi
configuration before the jump of the atom. We obtain
a value ofEM

1V ­ 0.055 eV (yielding ESD ­ 0.575 eV).

FIG. 2. Temperature dependence of the concentration
thermal monovacancies in Li. Full line (dashed line) for fixe
pressure (fixed lattice constant).
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Usually it is assumed [1] that the TST theory is strictly
valid only if EM

1V is larger than at least3kBT . Because
this is not fulfilled in the present case, we have teste
[21] the TST for Na (which exhibits, according to our
calculations, about the same value ofEM

1V ) by anab initio
molecular dynamics study based on the semiempiric
potentials of Rasolt and Taylor [22]. It turned out that
the migration energy obtained dynamically via the mean
square displacement of the vacancy agreed very well wi
the value according to the TST. ForD0

defect the TST
yields for nearest-neighbor jumps of a vacancy in a cubi
crystal

D0
defect ­ n0a2 expsSM

1V ykBd , (8)

wherea is the lattice constant,n0 the attempt frequency,
andSM

1V the migration entropy which is related to the har-
monic vibrations around the saddle-point configuration
BecauseSM

1V is generally assumed to be much smalle
than SF

1V , we insert SM
1V ­ 0kB. For the attempt fre-

quency we use Flynn’s [23] value ofn0 ­
p

3y5 nDebye ­
6.8 THz.

The values forDT sT d at high temperatures as obtained
from Eq. (2) are shown in Fig. 3, together with experi-
mental data from mass spectroscopy [24] and from pulse
field-gradient NMR experiments [25]. The experimen-
tal data are between the theoretical results obtained f
fixed zero-temperature lattice constant and for fixed pre
sure. It should be noted that the slopes of the theore
ical and experimental curve [25] agree almost perfectly
We think that the agreement is also astonishingly goo
for the absolute values, especially in view of the uncer
tainties involved in the conversion between fixed lattice

FIG. 3. Temperature dependence of the tracer self-diffusio
constant in Li;shd pulsed field-gradient NMR [25],s3d mass
spectroscopy [24]. Full line (dashed line) for fixed pressure
(fixed lattice constant).
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constant and fixed pressure. Altogether, this demonstr
that the experimental data for the tracer self-diffusion
Li at high temperatures [26] are compatible with the n
tion of a monovacancy mechanism.

The authors are indebted to A. Seeger and V. Schott
many stimulating discussions.
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