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Determining the tt and ZZ Couplings of a Neutral Higgs Boson of Arbitrary CP Nature
at the Next Linear Collider
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The optimal procedure for extracting the coefficients of different components of an observable which
takes the form of unknown coefficients times functions of known form is developed. When applied to
e1e2 ! tt1 Higgs production at

p
s ­ 1 TeV and integrated luminosity times efficiency of50 fb21,

we find that thett ! Higgs CP-even andCP-odd couplings and, to a lesser extent, theZZ ! Higgs
(CP-even) coupling can be extracted with reasonable errors. Typically, a standard-model-likeCP-even
Higgs boson can be distinguished from a purelyCP-odd Higgs boson at a high level of statistical
significance, and vice versa. [S0031-9007(96)01889-3]

PACS numbers: 14.80.Cp, 11.30.Er, 13.65.+i, 14.80.Bn
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In this Letter, we present a powerful technique [1] f
determining the coefficientsci appearing in an observ
able that can be written in the generic formO sfd ­P

i cifisfd, wheref denotes (precisely measurable) va
ables upon whichO depends and thefisfd are known
functions. Variational calculus implies that the tec
nique presented is the optimal one in the limit of Gau
ian statistics. We apply this procedure to the extrem
important task in elementary particle physics of determ
ing the magnitude and theCP nature of the couplings o
a Higgs boson (generically denoted ash). In particular,
we focus on thee1e2 ! tth production process at a nex
lineare1e2 collider (NLC), in which caseO is the differ-
ential cross section,dsydf, f denotes the kinematica
variables specifying the final state phase space config
tion, and theci are functions of the Higgs couplings. B
extracting theci we can determine all the Higgs coupling
and, thence, itsCPnature. Since our procedure makes f
use of the information contained in the final state distrib
tions, it can significantly improve the statistical precisi
with which the couplings/CP nature of a Higgs boson ca
be determined relative to procedures that have been s
ied in the past (see Ref. [2] for a review). Techniques
plored previously include photon polarization asymmetr
in gg ! h [3], momentum correlations among the fin
statet or t decay products appearing ine1e2 ! Zh and
m1m2 ! h with h ! t1t2 or tt, respectively [4,5], and
single-variable-weighted cross section integrals inpp !

tth at the LHC [6] and ine1e2 ! tth at the NLC [7].
(These latter analyses did not take full advantage of
detailed functional form ofdsydf.) At the very least, ap-
plication of the optimal analysis procedure toe1e2 ! tth
will result in coupling determinations that can be combin
with those from other types of analyses to greatly impro
overall errors. To illustrate the power of the technique,
note that if we accumulateL ­ 500 fb21 at

p
s ­ 1 TeV

and if the final state reconstruction efficiency is of ord
e ­ 0.1, a standard-model (SM)-likeCP-even Higgs bo-
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son can be distinguished from a pureCP-odd Higgs boson
at roughly the 9.5s statistical level, a result substantial
superior to that achieved using any of the other techniq
listed above.

General technique—We assume that

O sfd ­
X

i

cifisfd , (1)

where thefisfd are known functions of the variable
f, and theci are model-dependent coefficients (taken
be dimensionless in our convention). The coefficientsci

can be extracted by using appropriate weighting functi
wisfd such that

R
wisfdO sfddf ­ ci . In general, dif-

ferent choices for thewisfd are possible. However, ther
is a unique choice such that the statistical error in the
termination of theci is minimized in the sense that th
entire covariance matrix is at a stationary point in ter
of varying the functional forms for thewisfd while main-
taining

R
wisfdfjsfd df ­ dij. Thus, we require

dVij ~
Z

dfwisfdwjsfdgO sfd df ­ 0, (2a)Z
dwisfdfjsfd ­ 0 , (2b)

where a given entryVij in the covariance matrix is
~

R
wisfdwjsfdO sfd df. The weighting functions

which satisfy these conditions are

wisfd ­

P
j Xijfjsfd
O sfd

, with Xij ­ M21
ij ,

whereMik ;
Z fisfdfksfd

O sfd
df , (3)

since, for thewisfd so defined, the constraint (2b) implie
the minimization condition (2a).

We may then computeci as

ci ­
X

k

XikIk ­
X

k

M21
ik Ik ,

whereIk ;
Z

fksfd df . (4)
© 1996 The American Physical Society
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It can then be demonstrated that the covariance matrix

Vij ; kDciDcjl ­
M21

ij sT

N
, (5)

where sT ­
R

O sfd df and N is the total number o
events integrating over allf. (For O ­ dsydf, sT

would be the integrated cross section andN ­ LeffsT ,
with Leff being the luminosity times efficiency.) Th
result of Eq. (5) applies only for the optimal weightin
functions.

We note that the above procedure is the optimal
regardless of the relative magnitudes of theci . Various
limits of the optimal weighting functions for selected e
mentary particle cross sections have previously appe
in the literature, see, e.g., Refs. [4,5,8].

Our procedure is not altered if cuts are imposed on
portion of f space over which one integrates. Althou
such cuts may be required in the actual experime
analysis, we have not included cuts in our model co
putations to follow, other than through the inclusion of
efficiency factor.

Extracting Higgs couplings ine1e2 ! tth.—We now
apply the above procedure to the extraction of Hig
couplings using the processe1e2 ! tth. In order to
fully define a point in phase space we must distingu
between thet and t and require that only one hav
invisible energy in its decay (together implying that o
t must decay leptonically and the other hadronical
further, the h must decay to a fully reconstructib
final state such asbb or ZZ ! 4j, 4, or W1W2 !

4j [9]. The overall efficiency for the mixed leptonic
hadronic final state decays and reconstruction of b
t’s and theh will be denoted bye, the maximum value
for which is2

P
,­e,m,t Bst ! jjbdBst ! ,1n,bd , 0.44

times the appropriate Higgs branching ratio. The effec
luminosity is given byLeff ­ eL, whereL is the total
integrated luminosity. We shall takeLeff ­ 50 fb21, as
could be achieved forL ­ 500 fb21 (2 1

2 years of running
at L ­ 200 fb21 per yr) ande ­ 0.1 [10].

We could also apply our technique toe1e2 ! tth
in the double-hadronictt decay mode; we only los
sensitivity to theCP-odd dsydf component. Formally
if f is the subset of the kinematical variablesf that cannot
be determined, we would use the variables,f̂, thatcanbe
observed and the functionsf̂isf̂d ;

R
fisfd df (implying

f̂5 ­ 0 below). Including these modes would impro
the statistical significance with which the Higgs couplin
could be measured beyond the results obtained below u
only the mixed hadronic/leptonictt decay channel.

The Higgs couplings are defined via the Feynman ru

tth : 2tsa 1 ibg5dt
gmt

2mW
, ZZh : c

gmZ

cossuW d
gmn ,

(6)

whereg is the usual electroweak coupling constant. Th
a, b, andc are defined relative to couplings of SM ma
nitude. The SM Higgs boson hasa ­ c ­ 1 and b ­
0. A purely CP-odd Higgs boson hasa ­ c ­ 0 and
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b fi 0; the magnitude ofb depends upon the model—
we will display results forb ­ 1, which would corre-
spond to tanb ­ 1 in a two-Higgs-doublet model of typ
II (see Refs. [2,12] for details). In our illustrative ca
culations, we shall assume that there is only one lighh
in the model. In this case, the only contributing Fey
man diagrams involve radiation of theh from the t, t,
or Z lines.

The tth cross section then contains five distinct term
dssfdydf ­

P5
i­1 cifisfd, where

c1 ­ a2; c2 ­ b2; c3 ­ c2; c4 ­ ac; c5 ­ bc .

(7)

Of these, the only term indssfdydf that is actually
CP violating is that proportional tobc; this is the term
upon which Ref. [7] focused. Our approach makes
of the fact that the full cross section contains additio
information regarding bothb andc.

We have considered three distinct Higgs coupl
cases:

(I) The standard model Higgs boson, witha ­ c ­
1, b ­ 0.

(II) A pure CP-odd Higgs boson, witha ­ c ­
0, b ­ 1.

(III) A CP-mixed Higgs boson, witha ­ b ­ c ­
1y

p
2.

For unpolarized beams,
p

s ­ 1 TeV, mh ­ 100 GeV,
andmt ­ 176 GeV, the integrated cross sections in ca
I, II, and III are sT ­ 2.71, 0.53, and1.62 fb, respec-
tively. AdoptingLeff ­ 50 fb21, we then computed

x2 ­
5X

i,j­1

sc1 2 c0
i d scj 2 c0

j dV 21
ij , with V 21

ij ­
MijN

sT

(8)

[see Eq. (5)] as a function of location ina, b, c parameter
space, where thec0

i for a given case are compute
from the model input values ofa, b, c (given above)
using Eq. (7). Surfaces of constantx2 ­ 1 and 36 are
displayed in Fig. 1 for each of the three cases. We h
indicated the parameter space location of models I, II,
III by a solid circle, square, and star, respectively. T
x2 ­ 36 (or 6s) surfaces will be useful as a reference
assessing the level at which we can distinguish the ab
three model cases from one another.

Because of the fact that the fiveci are functions of
only the three parameters,a, b, c, the x2 ­ 1 surfaces
in Fig. 1 are not perfect ellipsoids. Nonetheless,
follow the usual procedure of defining the61s errors
in any one of thea, b, c parameters by the largest an
smallest values that the given parameter takes as
moves about thex2 ­ 1 surface. (These extrema defin
the locations of the two planes of constant param
value that are tangent to thex2 ­ 1 surface.) The
resulting 1s errors are tabulated in Table I. (The upp
and lower limits for a, b, c employed for thex2 ­ 1
surface plots of Fig. 1 are onlyjust beyond the extrema
5173
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FIG. 1. Surfaces of constantx2 ­ 1 and 36 are displayed
for (I) a ­ c ­ 1, b ­ 0; (II) a ­ c ­ 0, b ­ 1; and (III)
a ­ b ­ c ­ 1y

p
2. The parameter space locations for

II, and III are indicated by a solid bullet, square, and st
respectively. Results are for unpolarized beams,

p
s ­ 1 TeV,

mh ­ 100 GeV, mt ­ 176 GeV, andLeff ­ 50 fb21.

values.) We observe thata is well determined in all cases
but especially for thea fi 0 cases I and III. Similarly,b
is well determined in theb fi 0 cases II and III. The
magnitude of the error inc is similar for all three cases
and is never especially small. Of course, a much be
measurement (e.g.,65% for a SM-like h) of or bound
on c will be available from inclusiveZh production;
however, this does not lead to reduced errors fora and
b. Some improvement in the errors is possible if t
electron beam can be negatively polarized without loss
luminosity.

Most important is the ability to distinguish differen
HiggsCP mixtures from one another. Referring to Fig.
we observe the following [13]:

(i) If the Higgs is theCP-even SM Higgs boson, then
the pureCP-odd case is well beyond even thex2 ­ 36
5174
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surface, and, in fact, lies on roughly thex2 , 90 surface,
corresponding to discrimination at the 9.5s statistical
level. Even the equalCP mixture case III (the paramete
location of which appears behind thex2 ­ 36 surface in
the figure) is ruled out at the 4.8s level.

(ii) If the Higgs is pureCP odd, with SM tt coupling
magnitude, then theCP-mixed andCP-even cases lie 17s
and 34s away, respectively.

(iii) If the Higgs is an equal mixture ofCP even and
CP odd, with coupling strengths specified bya ­ b ­
c ­ 1y

p
2, then the SMCP-even and pureCP-odd cases

I and II are both about 6.3s away, i.e., just a bit further
away than thex2 ­ 36 surfaces plotted.
These results improve if thee2 beam has negative
polarization. The discrimination abilities are summariz
in Table II.

The errors and discrimination abilities slowly worse
as the Higgs mass increases and thetth cross section,
i.e. event rate, declines. Asmh increases, it could also
happen that the fraction of the decays of theh that are
fully reconstructible decreases, causing a decline ine.
Results formh ­ 200 and 300 GeV, usings· · ·d andf· · ·g
notation (respectively), appear in Tables I and II alo
with the mh ­ 100 GeV results discussed above. F
Leff ­ 50 fb21 and unpolarized beams, discriminatio
between our three models declines to, 8ss, 2sd in
the best (worst) case atmh ­ 300 GeV, compared to
, 34s s, 5sd at mh ­ 100 GeV.

We can also analyze our ability to determine th
the CP-violating component ofdssfdydf, proportional
to c5 ; bc is nonzero. We consider model III (th
only one of our three models for whichbc fi 0). We
plot the x2 ­ 1 s1sd surface in a, b, and bc space
and look for the extrema ofbc. We find that these
extrema occur fora , b , 1y

p
2 and thatbc can range

from 20.05 to 10.91, assumingmh ­ 100 GeV, Leff ­
50 fb21 and unpolarized beams. Clearly, we are not
from establishing a nonzero signal at the 1s level For
twice as much effective luminosity,Leff , 100 fb21, the
extrema ofbc on the 1s surface are10.15 and 10.79,
and a nonzero value ofbc would have been established
better than the 1s level. At the 1s level,mh ­ 100 GeV,
TABLE I. We tabulate the 1s errors, as defined in the text, ina, b, andc for the three Higgs coupling cases I (a ­ c ­ 1, b ­
0), II (a ­ c ­ 0, b ­ 1), and III (a ­ b ­ c ­ 1y

p
2), assuming

p
s ­ 1 TeV, mh ­ 100 s200d f300g GeV (respectively),

mt ­ 176 GeV andLeff ­ 50 fb21. Results are for unpolarized beams; errors for 100% negativee2 polarization are typically
10%–15% smaller.

Case 6Da 6Db 6Dc

I 10.043
20.066

≥
10.07
20.14

¥h
10.12
20.32

i
10.76
20.76

≥
11.0
21.0

¥h
11.44
21.44

i
10.51
20.82

≥
10.56
21.04

¥h
10.72
21.76

i
II 10.19

20.19

≥
10.30
20.30

¥h
10.45
20.45

i
10.093
20.14

≥
10.12
20.28

¥h
10.20
22.16

i
10.58
20.58

≥
10.68
20.68

¥h
10.96
20.96

i
III 10.075

20.087

≥
10.12
20.21

¥h
10.17
20.53

i
10.31
20.62

≥
10.49
21.89

¥h
10.81
22.15

i
10.57
20.80

≥
10.63
21.44

¥h
10.77
22.15

i
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d
TABLE II. We tabulate the number of standard deviations,
p

x2, at which a given input model (I, II, or III) can be distinguishe
from the other two models, assuming

p
s ­ 1 TeV, mh ­ 100 (200) [300] GeV,mt ­ 176 GeV, andLeff ­ 50 fb21. Results for

unpolarized beams and for 100% negativee2 polarization are given.

Unpolarizede2 Pse2d ­ 21
Input Trial Model Trial Model
Model I II III I II III

I · · · 9.5 (5.6) [3.5] 4.8 (2.8) [1.8] · · · 11 (6.1) [4.0] 5.5 (3.2) [2.0]
II 34 (15) [8.3] · · · 17 (7.3) [4.2] 40 (17) [9.5] · · · 20 (8.4) [4.8]
III 6.3 (3.6) [2.3] 6.3 (3.6) [2.2] · · · 7.3 (4.2) [2.6] 7.3 (4.1) [2.6] · · ·
ve
es

ue
ob
nt
to
n

io
-

ve
e
ts

lly
ta

ro

,
os
si

of
the

-
ria
er
d

nd
h
k

ca

gly

ted
in

ort
e-
g

nd

d

the

d

-

d

on,
,

la-

ter
y
l-

,

Leff ­ 50 fb21 upper bounds onjc5j ­ jbcj in models
I and II are 0.65 and 0.55, respectively. The abo
results are all somewhat better than obtained for th
same models using either of the observables (O or Oropt)
employed in Ref. [7].

In this Letter, we have outlined the optimal techniq
for extracting the coefficients that appear in a general
servable which is a sum of model-dependent coefficie
times known functions. Application of this technique
e1e2 ! tth results in good prospects for pinning dow
the CP nature of theh at a 1 TeVe1e2 collider operat-
ing at an expected luminosity ofL ­ 200 fb21 per yr, pro-
vided that theh has a reasonable production cross sect
(roughly * 0.5 fb) and that thetth final state can be re
constructed with reasonable efficiency (roughlye * 0.1).
The precision with which both theCP-odd andCP-eventt
Higgs couplings can be determined is somewhat impro
for a negatively polarized electron beam, assuming ther
no loss of luminosity. Most importantly, the coefficien
of the various terms in thee1e2 ! tth cross section can
be determined well enough that HiggsCP mixtures that
are significantly different from one another can genera
be distinguished at a substantial (sometimes very subs
tial) level of statistical significance.

We have implicitly assumed that the systematic er
in the overall normalization of thetth cross section will
be relatively small, e.g.,& 65%. If this is not the case
then one can focus on the ratios of the different cr
section coefficients to one another. Our technique is ea
adapted to this situation.
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