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Quantum Action-Angle Variables for the Harmonic Oscillator
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Operators conjugate to the Hamiltonian are constructed explicitly for the quantum harmonic oscillator
by two approaches in the space spanned by the eigenstatgsaofl the eigenstates gf. The
operators are quantum analogs of a classical angle variable divided by the oscillator frequency. Matrix
elements have been evaluated in the coherent state representation. Either conjugate operator can be
used to construct an explicitly time-dependent operator invariant. It can be used as the starting point
in a new perturbative procedure for constructing invariant operators for nonlinear, nonautonomous
Hamiltonians. [S0031-9007(96)01905-9]

PACS numbers: 03.65.Fd, 02.30.Tb

The asymmetry between space and time in quanturstates is a subspace. In the larger space we derive two
theory runs deeper in quantum mechanics than in classicélermitian quantum time operators in analogy to the clas-
mechanics. Time is simply a parameter in both cases, bugical time function; the two operators differ by at most
position coordinates are operators in quantum mechanica. function of the Hamiltonian. From either time opera-
For any autonomous classical HamiltoniAtig, p), time  tor we derive a Hermitian invariant operator in addition
along the phase-space trajectory that represents a solutitmthe Hamiltonian. The Hamiltonian along with this in-
of Hamilton’s equations can be expressed in terms ofariant operator constitutes a pair of quantum action-angle
the canonical variabledq, p). That “time function” variables for the harmonic oscillator.
is canonically conjugate to the Hamiltonian [1]. (See The motivation for seeking a quantum action-angle
Appendices B and C of Ref. [1].) In connection with representation was to provide the required starting point
a consideration of the role of time and the energy-timefor the extension to quantum systems of a new classical
uncertainty relation in quantum theory, Aharonov andtime-dependent perturbation theory for the construction of
Bohm [2] used the operator that is analogous to thenvariants of Hamiltonian systems [6]. The quantum per-
classical time function for a free particle. The presenturbation theory [7], which is based on the Heisenberg
paper concerns an operator analog of the classical timgicture of quantum mechanics, determines operator in-
function for the case of a quantum harmonic oscillatorvariants perturbatively, the eigenstates and eigenvalues
(The time function for the harmonic oscillator i8/2  of which can be used according to the general theory
minus the frequently discussed phase function divided bpf Lewis and Riesenfeld [8] to construct the solution of
the oscillator frequency.) the time dependent Schrddinger equation explicitly. This

Much work has been carried out in pursuit of appro-general theory has been used to construct exact invari-
priate quantum operators analogous to the classical timants for time-dependent Hamiltonian systems [8,9]. The
function for the harmonic oscillator, particularly in regard introduction of canonically conjugate angular momentum
to its relevance to the quantum treatment of the electroand angle variables, which are in some respects analogous
magnetic field. A recent review has been published byo the action-angle variables considered here, has proven
Lynch [3]. The focus of the work has been on the exis-useful [see Egs. (105) and (106) of Ref. [8]].
tence and definition of a quantum time operator defined The definition of the time operatoy is that it be
in the Hilbert space of energy eigenstates of the oscillaconjugate to the Hamiltonian:
tor. Susskind and Glogower [4] showed that the quantum [y.H] = il )
time operator does not exist in this Hilbert space, and they X v
proposed the use of a pair of alternate operators. Thenshere y = y(g, p) is explicitly time independent with
have been proposals to enlarge the Hilbert space of emespect to the operatofg, p). That y is appropriately
ergy eigenstates in order to remedy the nonexistence afalled a time operator is seen as follows. The total time
the time operator in that space; an analysis of these aglerivative of any operatok (g, p,t) with respect to the
proaches has been given by Luis and Sdnchez-Soto [5]. operatordq, p) is

We consider the quantum harmonic oscillator, de-

scribed by the Hamiltonian dx _ X + L[X,H]. 3
. : dt at ih
H = %Pz + Emwzqz, [g.p]1=ih, (1) Thus

in the space spanned by the eigenstates; aind the dx _ 1= & . -1 4
eigenstates ofp. The Hilbert space of energy eigen- dt Ma@®.p)] = xlg(0), pOT =11, (4)
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where 1 is the identity operator. From the conjugate F(Q) = 0 'tan '(mwQ), (12)
operator y, we can construct an operator invariadmt

which is defined by which is the correct classical result. The functighsnd

x = F(Q) are a pair of action-angle variables for the

a=al(qg,p,t)=—11+ x(q.p). (5) classical oscillator. The crucial point in this derivation
From (3) if follows immediately that the operataris an  ©f F(Q) is that the Hamiltonian expressed as a function
invariant operator; that is, its total time derivative van-of (Q.P) is a linear function of. _ _
ishes. For the classical harmonic oscillator, the func- The total time derivative of any classical function
tion analogous toy(q, p) is @ 'tan"!(mwq/p); when  X(g. p. 1) with respect to the phase-space variallgsp)
evaluated along a solution trajectory of Hamilton's equaJS
tions, it equals the time elapsed singeassumed the dX  oX
value zero. — = — +[X,Hlps. (13)

. . . dt at
In order to derive the action-angle representation for L ) ) ) N

the quantum oscillator, we will postulate in Sec. 2 that! "€ Hamiltonian# is obviously an invariant; it does not
the angle operatory be a function of somesingle depend explicitly orr and its Poisson bracket with itself
operator 0: y = F(Q). Then we will chooseQ and Vanishes. A second invariantis
the functian §uch that[,\/,H] = jh. This will require a = alg,p,t) = —t + F(Q) = —t + F[Q(q, p)].
a formulation in which the commutatdry, H] can be (14)
evaluated explicitly before the functiaf(Q) is specified.
We will achieve this in analogy to a simple and elegant L . .
way of obtaining the corresponding Poisson bracket resu m Hamlltolrlladn f(_l) da?,d the canonical transformation
(F(Q), Hlps = 1) for the classical oscillator. In Sec. 1 (4-7) = (Q.P) defined by 1
we explain the classical procedure; and we extend it to 0 =A+ {(P), P = 7]72, (15)
the quantum case in Sec. 2. That approach may alloyhere
generalization to more complicated quantum systems 1 .
than the harmonic oscillator. In Sec. 3 we present a A=7(p g +aqp ) (16)
derivation of a time operator for the harmonic oscillatoris the symmetrized version of (8). (It will turn out that
in terms of annihilation and creation operators, and we1 could have been taken to e 'q or gp~!, but that
give the matrix elements of the operator in the coherenivould not have been the intuitively natural choice at this

2. The gquantum case-We now consider the quan-

state representat.ion. ' _ point.) The operatorg) and P satisfy[Q, P] = i for
1. The classical case-Consider the classical har- any function{(P). That function can be chosen such that
monic oscillator described by the Hamiltonian the Hamiltonian expressed as a function(¢f, P) is a
. 1, 1 5 5 (0. p] | ©) linear function ofP. In order to do that, we can first use
=_—p"t mwq, q,ples = 1. P - - -
2m 2 A=z lqp g+ p PP +ap g

We seek to represeny as a functionF(Q) of a new +aplqp ™ =pl@p T + 2 RpTH (17)

generalized coordinat® = Q(q, p): to evaluatep? as

[x.Hlpg =[F(Q),Hlpg = 1. (7) 0’ = plp ! + %th—zt + A+ AD) + 2
We choose (18)

Q=alp, ®)  then use this expression and
which we know to be appropriate in the classical case. R
With this choice we can deriveF(Q) by a simple _ [A’f(p)]' ihp f(l?)’ (19)
procedure that is directly generalizable to the quantunwheref(p) is any function ofp, to write

case, despite the noncommutability of the operagoasid PO? = %qz — ihgp~' + %ﬁzp72 + p2A
p. Take the new generalized momentum to be 1 1
! + 5 pA L]+ 5 PP, (20)
P=5p>=[0,Plps =1. 9)
y 0P =%q* +ilip g+ 3 Pp > + ALp
Written in terms of(Q, P), the Hamiltonian is a linear 2 ql 5 4 . 82 )
function of P, + 5 [{.Alp”™ + 5 p° L7, (21)
H=m"'P(1 + m*0?Q?), (10)  and obtain
and its Poisson bracket with(Q) is easily evaluated: PO> + Q2P = ¢* — v W2p % + (p2CA + ALpY)
[F(Q), Hles = F'(Q)[Q,Plesm ™' (1 + m*»>Q?) + p*e?
= F(@m (1 + m0?0Y).  (11) =q* — p 7+ pQ -~ 0)
Thus the solution of (7) is +(Q — Op*¢ + p*t. (22)
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From (22) we see thaj?, expressed in terms ¢, P), S mw? 5 »
will be a linear function of? if /(P) is chosen as ih =[x, Pl + ——{x.PlQ" + Q°[x. P}

((P) = =*i %,ﬂ =+ %P*l, (23) = iﬁF’(Q)l(l + m?w?0?), (25)
m

in which case the Hamiltonian will also be a linear Where /(Q) is the derivative ofF with respect to its

function of P: argument. The solution of (25) is
1 F(Q) = o 'tan '(mwQ), (26)

me
H=—P+ T[(PQ2 + Q°P) ¥ iQ]. (24) exactly as in the classical case. The two choices of sign in
(23) give results forF’(Q) that are Hermitian conjugates
It is now easy to find an operatgy = F(Q) that is of one another. Therefore a Hermitian operggocan be
conjugate taH. The conditioni/i = [y, H] reduces to | constructed by taking the average:

Y- itan—l{mw[%(p_lq +qp )+ i%p_z:“ + itan_l{mw[%@_lq +qp") - i%[)”“-
(27)

It is interesting to note that the arguments of the arctan- ¢ = i (Ina — Inat). (34)
gent functions are simply expressed in terms of the un- 2i
symmetrized versions of the classigalp: Because this operator is a function®oplus a function
| | of at, its coherent state representation may be evaluated
x = —tan '(mwplq) + N tan '(mwgp ™). easily. Coherent states are defined by
w

2w
(28) alB) = BIB). (35)
If we write the eigenvalue a8 = pe'¢, wherep and ¢
The operatord? and y = F(Q) are quantum analogs of are real, then the matrix elements ¢fcan be expressed
the corresponding action-angle variables for the classicals
oscillator. The invariant operatar is given by (5). / — i ip
3. An angle variable as a function of and at.— (Blo1B) = (ple|lpe™®)

Making the transformation to the usual annihilation and | /
creation operatorg anda', = E‘(go + @) + iln(p—>]
P
_ [me ;P t = ")
a= (q-i—z ), la,a’] =1, (29) X exp(B” B
2 me odlgl + gm0
we can rewrite the Hamiltonian (1) as Thus the expectation value ¢f in the coherent statg8)
H = ho(ata + %) (30) Is just args:
BlolB) = ¢. (37)

When H is written in this way, it is common to speak of
a phase operatap that satisfies the commutation relation
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