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Quantum Action-Angle Variables for the Harmonic Oscillator
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Operators conjugate to the Hamiltonian are constructed explicitly for the quantum harmonic osc
by two approaches in the space spanned by the eigenstates ofq and the eigenstates ofp. The
operators are quantum analogs of a classical angle variable divided by the oscillator frequency.
elements have been evaluated in the coherent state representation. Either conjugate operato
used to construct an explicitly time-dependent operator invariant. It can be used as the starting
in a new perturbative procedure for constructing invariant operators for nonlinear, nonautono
Hamiltonians. [S0031-9007(96)01905-9]

PACS numbers: 03.65.Fd, 02.30.Tb
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The asymmetry between space and time in quan
theory runs deeper in quantum mechanics than in clas
mechanics. Time is simply a parameter in both cases
position coordinates are operators in quantum mecha
For any autonomous classical HamiltonianHsq, pd, time
along the phase-space trajectory that represents a sol
of Hamilton’s equations can be expressed in terms
the canonical variablessq, pd. That “time function”
is canonically conjugate to the Hamiltonian [1]. (S
Appendices B and C of Ref. [1].) In connection wi
a consideration of the role of time and the energy-ti
uncertainty relation in quantum theory, Aharonov a
Bohm [2] used the operator that is analogous to
classical time function for a free particle. The pres
paper concerns an operator analog of the classical
function for the case of a quantum harmonic oscillat
(The time function for the harmonic oscillator ispy2
minus the frequently discussed phase function divided
the oscillator frequency.)

Much work has been carried out in pursuit of app
priate quantum operators analogous to the classical
function for the harmonic oscillator, particularly in rega
to its relevance to the quantum treatment of the elec
magnetic field. A recent review has been published
Lynch [3]. The focus of the work has been on the ex
tence and definition of a quantum time operator defi
in the Hilbert space of energy eigenstates of the osc
tor. Susskind and Glogower [4] showed that the quan
time operator does not exist in this Hilbert space, and t
proposed the use of a pair of alternate operators. T
have been proposals to enlarge the Hilbert space of
ergy eigenstates in order to remedy the nonexistenc
the time operator in that space; an analysis of these
proaches has been given by Luis and Sánchez-Soto [5

We consider the quantum harmonic oscillator, d
scribed by the Hamiltonian

H ­
1

2m
p2 1

1
2

mv2q2, fq, pg ­ ih̄ , (1)

in the space spanned by the eigenstates ofq and the
eigenstates ofp. The Hilbert space of energy eige
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states is a subspace. In the larger space we derive
Hermitian quantum time operators in analogy to the cla
sical time function; the two operators differ by at mo
a function of the Hamiltonian. From either time opera
tor we derive a Hermitian invariant operator in additio
to the Hamiltonian. The Hamiltonian along with this in
variant operator constitutes a pair of quantum action-an
variables for the harmonic oscillator.

The motivation for seeking a quantum action-ang
representation was to provide the required starting po
for the extension to quantum systems of a new classi
time-dependent perturbation theory for the construction
invariants of Hamiltonian systems [6]. The quantum pe
turbation theory [7], which is based on the Heisenbe
picture of quantum mechanics, determines operator
variants perturbatively, the eigenstates and eigenval
of which can be used according to the general theo
of Lewis and Riesenfeld [8] to construct the solution o
the time dependent Schrödinger equation explicitly. Th
general theory has been used to construct exact inv
ants for time-dependent Hamiltonian systems [8,9]. T
introduction of canonically conjugate angular momentu
and angle variables, which are in some respects analog
to the action-angle variables considered here, has pro
useful [see Eqs. (105) and (106) of Ref. [8]].

The definition of the time operatorx is that it be
conjugate to the Hamiltonian:

fx , Hg ­ ih̄ , (2)

where x ­ x̃sq, pd is explicitly time independent with
respect to the operatorssq, pd. That x is appropriately
called a time operator is seen as follows. The total tim
derivative of any operatorXsq, p, td with respect to the
operatorssq, pd is

dX
dt

­
≠X
≠t

1
1
ih̄

fX, Hg . (3)

Thus

dx

dt
­ 1 ! x̃fqstd, pstdg 2 x̃fqs0d, ps0dg ­ t1 , (4)
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where 1 is the identity operator. From the conjuga
operatorx , we can construct an operator invarianta,
which is defined by

a ­ ãsq, p, td ­ 2t1 1 x̃sq, pd . (5)

From (3) if follows immediately that the operatora is an
invariant operator; that is, its total time derivative va
ishes. For the classical harmonic oscillator, the fu
tion analogous tox̃sq, pd is v21 tan21smvqypd; when
evaluated along a solution trajectory of Hamilton’s equ
tions, it equals the time elapsed sinceq assumed the
value zero.

In order to derive the action-angle representation
the quantum oscillator, we will postulate in Sec. 2 th
the angle operatorx be a function of somesingle
operator Q: x ­ FsQd. Then we will chooseQ and
the functionF such thatfx , Hg ­ ih̄. This will require
a formulation in which the commutatorfx , Hg can be
evaluated explicitly before the functionFsQd is specified.
We will achieve this in analogy to a simple and elega
way of obtaining the corresponding Poisson bracket re
sfFsQd, HgPB ­ 1d for the classical oscillator. In Sec.
we explain the classical procedure; and we extend i
the quantum case in Sec. 2. That approach may a
generalization to more complicated quantum syste
than the harmonic oscillator. In Sec. 3 we presen
derivation of a time operator for the harmonic oscillat
in terms of annihilation and creation operators, and
give the matrix elements of the operator in the coher
state representation.

1. The classical case.—Consider the classical har
monic oscillator described by the Hamiltonian

H ­
1

2m
p2 1

1
2

mv2q2, fq, pgPB ­ 1 . (6)

We seek to representx as a functionFsQd of a new
generalized coordinateQ ­ Q̃sq, pd:

fx , HgPB ­ fFsQd, HgPB ­ 1 . (7)

We choose

Q ­ qyp , (8)

which we know to be appropriate in the classical ca
With this choice we can deriveFsQd by a simple
procedure that is directly generalizable to the quant
case, despite the noncommutability of the operatorsq and
p. Take the new generalized momentum to be

P ­
1
2 p2 ) fQ, PgPB ­ 1 . (9)

Written in terms ofsQ, Pd, the Hamiltonian is a linear
function ofP,

H ­ m21Ps1 1 m2v2Q2d , (10)

and its Poisson bracket withFsQd is easily evaluated:

fFsQd, HgPB ­ F0sQdfQ, PgPBm21s1 1 m2v2Q2d

­ F0sQdm21s1 1 m2v2Q2d . (11)

Thus the solution of (7) is
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FsQd ­ v21 tan21smvQd , (12)

which is the correct classical result. The functionsH and
x ­ FsQd are a pair of action-angle variables for th
classical oscillator. The crucial point in this derivatio
of FsQd is that the Hamiltonian expressed as a functi
of sQ, Pd is a linear function ofP.

The total time derivative of any classical functio
Xsq, p, td with respect to the phase-space variablessq, pd
is

dX
dt

­
≠X
≠t

1 fX, HgPB . (13)

The HamiltonianH is obviously an invariant; it does no
depend explicitly ont and its Poisson bracket with itse
vanishes. A second invariant is

a ­ ãsq, p, td ­ 2t 1 FsQd ­ 2t 1 FfQ̃sq, pdg .
(14)

2. The quantum case.—We now consider the quan
tum Hamiltonian (1) and the canonical transformati
sq, pd ! sQ, Pd defined by

Q ­ A 1 z sPd, P ­
1
2 p2 , (15)

where

A ­
1
2 sp21q 1 qp21d (16)

is the symmetrized version of (8). (It will turn out tha
A could have been taken to bep21q or qp21, but that
would not have been the intuitively natural choice at th
point.) The operatorsQ and P satisfy fQ, Pg ­ ih̄ for
any functionz sPd. That function can be chosen such th
the Hamiltonian expressed as a function ofsQ, Pd is a
linear function ofP. In order to do that, we can first use

A2 ­
1
4 sp21qp21q 1 p21q2p21 1 qp22q

1 qp21qp21d ­ p21q2p21 1
3
4 h̄2p24 (17)

to evaluateQ2 as

Q2 ­ p21q2p21 1
3
4 h̄2p24 1 sz A 1 Az d 1 z 2 ,

(18)

then use this expression and

fA, fspdg ­ ih̄p21f 0spd , (19)

wherefspd is any function ofp, to write

PQ2 ­
1
2 q2 2 ih̄qp21 1

3
8 h̄2p22 1 p2zA

1
1
2 p2fA, z g 1

1
2 p2z 2 , (20)

Q2P ­
1
2 q2 1 ih̄p21q 1

3
8 h̄2p22 1 Azp2

1
1
2 fz , Agp2 1

1
2 p2z 2 , (21)

and obtain

PQ2 1 Q2P ­ q2 2
1
4 h̄2p22 1 sp2z A 1 Azp2d

1 p2z 2

­ q2 2
1
4 h̄2p22 1 p2z sQ 2 z d

1 sQ 2 z dp2z 1 p2z 2 . (22)
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From (22) we see thatq2, expressed in terms ofsQ, Pd,
will be a linear function ofP if z sPd is chosen as

z sPd ­ 6i
h̄
2

p22 ­ 6i
h̄
4

P21 , (23)

in which case the Hamiltonian will also be a line
function ofP:

H ­
1
m

P 1
mv2

2
fsPQ2 1 Q2Pd 7 ih̄Qg . (24)

It is now easy to find an operatorx ­ FsQd that is
conjugate toH. The conditionih̄ ­ fx , Hg reduces to
a
u

i

n

h

o

r

ih̄ ­
1
m

fx , Pg 1
mv2

2
hfx , PgQ2 1 Q2fx , Pgj

­ ih̄F 0sQd
1
m

s1 1 m2v2Q2d , (25)

where F0sQd is the derivative ofF with respect to its
argument. The solution of (25) is

FsQd ­ v21 tan21smvQd , (26)

exactly as in the classical case. The two choices of sig
(23) give results forF0sQd that are Hermitian conjugate
of one another. Therefore a Hermitian operatorx can be
constructed by taking the average:
x ­
1

2v
tan21

(
mv

"
1
2

sp21q 1 qp21d 1 i
h̄
2

p22

#)
1

1
2v

tan21

(
mv

"
1
2

sp21q 1 qp21d 2 i
h̄
2

p22

#)
.

(27)
n
n

f
c

d

f
n

a
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It is interesting to note that the arguments of the arct
gent functions are simply expressed in terms of the
symmetrized versions of the classicalqyp:

x ­
1

2v
tan21smvp21qd 1

1
2v

tan21smvqp21d .

(28)

The operatorsH andx ­ FsQd are quantum analogs o
the corresponding action-angle variables for the class
oscillator. The invariant operatora is given by (5).

3. An angle variable as a function ofa and ay.—
Making the transformation to the usual annihilation a
creation operatorsa anday,

a ­

r
mv

2h̄

√
q 1 i

p
mv

!
, fa, ayg ­ 1 , (29)

we can rewrite the Hamiltonian (1) as

H ­ h̄vsaya 1
1
2 d . (30)

WhenH is written in this way, it is common to speak o
a phase operatorf that satisfies the commutation relatio

fN , fg ­ faya, fg ­ i (31)

with the number operatorN ­ aya. The time operator is
related to the phase operator by

vx ­
p

2
1 2 f 1 GsHd , (32)

where GsHd is some function of the Hamiltonian. A
solution of (31) can be found with the simple ansatz t
f is some function ofa by using the relation

ffsad, ayg ­ f 0sad , (33)

wheref 0 is the derivative with respect to its argument
any functionf. A solution is
-
-

al

t

f ­
1
2i

sln a 2 ln ayd . (34)

Because this operator is a function ofa plus a function
of ay, its coherent state representation may be evalua
easily. Coherent states are defined by

ajbl ­ bjbl . (35)

If we write the eigenvalue asb ­ reiw , wherer andw

are real, then the matrix elements off can be expressed
as

kb0jfjbl ­ kr0eiw 0

jfjreiwl

­
1
2

(
sw 1 w0d 1 i ln

√
r0

r

!)
3

expsb0pbd
expfsjb0j2 1 jbj2dy2g

. (36)

Thus the expectation value off in the coherent statejbl
is just argb:

kbjfjbl ­ w . (37)
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