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We propose a new method to study path integrals for discrete quantum systems in whi
work directly in the Euclidean time continuum. The method is of general interest. Here
applied to the Heisenberg quantum antiferromagnet using a continuous-time version of a
cluster algorithm. This algorithm is exploited to confirm the predictions of chiral perturba
theory in the extreme low temperature regime, down toT ­ 0.01J. A fit of the low-energy
parameters of chiral perturbation theory gives excellent agreement with previous results an
experiments. [S0031-9007(96)01873-X]
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The path integral for a general quantum system
usually implemented in discrete time. Farhi and Gutma
showed how to build a path integral in continuous time
quantum systems in adiscrete basis[1]. The paths consis
of segments for which the system is in a basis state
a finite time, with sporadic discrete transitions betwe
basis states. This insight can be applied, for example
quantum spin systems, lattice fermions, and lattice ga
theories with a compact gauge group. The work descri
here is the first application of this technique to a probl
of practical interest.

In the continuous-time formulation a path is chara
terized by transition times and information about wh
states are connected at the transitions. This picture
lows the path integral to be sampled numerically with
having to store information about individual time slice
In the discrete-time approximation one must always ex
cise care in extrapolating the results to the time-continu
limit. The approach advocated here, where we operate
rectly in this limit, completely eliminates the most seve
systematic error in these calculations.

As an example we consider quantum spin syste
Conventional approaches to handling these systems
on a discrete-time formalism. Consider the Hamilton
for the quantum antiferromagnetic Heisenberg mo
(AFHM)

H ­ J
X
x,m

$Sx ? $Sx1m̂ , (1)

where $Sx ­
1
2 $sx is a spin 1

2 operator associated with th
site x of a d-dimensional hypercubic lattice. The inte
action is between nearest neighbors;m̂ is the unit vector
0031-9007y96y77(25)y5130(4)$10.00
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in the m direction. For an antiferromagnet the couplin
constantJ is positive. Since this Hamiltonian comprise
noncommuting terms, the explicit evaluation of the as
ciated partition function is problematical. Suzuki is cre
ited with showing how the Trotter formula can be applie
to segregate these noncommuting terms into separate
slices, with the approximation becoming exact in the co
tinuum limit [2]. For example, the Hamiltonian of a 1D
quantum spin chain can be decomposed into two ter
H ­ H1 1 H2, each of which comprises only commu
ing terms

H1 ­ J
X

x­2m

$Sx ? $Sx11̂, H2 ­ J
X

x­2m11

$Sx ? $Sx11̂ .

(2)
Then for the partition function one writes

Z ­ Tr exps2bHd

­ lim
N!`

Trfexps2´bH1d exps2´bH2dgN , (3)

where b ­ 1yT is the inverse temperature and́b ­
byN is the lattice spacing in Euclidean time. Insertin
complete sets of eigenstatesj 6

1
2 l of S3

x between the
factors exps2´bHid one converts the partition function
into a sd 1 1d-dimensional path integral of Ising-like
variables

Z ­
Y
x,t

X
ssx,td­61y2

exps2Sd . (4)

The action is a sum of plaquette couplings in a “check
board” pattern
S ­
X

x­2m,t­2p

Sfssx, td, ssx 1 1̂d, ssx, t 1 1d, ssx 1 1̂, t 1 1dg

1
X

x­2m11,t­2p11

Sfssx, td, ssx 1 1̂d, ssx, t 1 1d, ssx 1 1̂, t 1 1dg ,
© 1996 The American Physical Society
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and the plaquette Boltzmann factors are given by a4 3 4
transfer matrix
exps2Sfs1, s2, s3,s4gd

­ ks1s2j exps2´bJ $Sx ? $Sx1m̂djs3s4l .

For the spin1
2 AFHM, only 6 of the 16 elements of th

transfer matrix are nonzero, namely, those that leave
three-component of spin unchanged.

The 2D Heisenberg model is of interest because it
scribes the undoped precursor insulators of high temp
ture superconductors. It has been studied with vari
Monte Carlo techniques [3], including a very efficie
loop cluster algorithm [4,5]. The cluster algorithm h
led to a very precise determination of the low ene
parameters of the Heisenberg model [5], consistent w
the chiral perturbation theory treatment of Hasenfratz
Niedermayer [6]. These parameters are consistent
experimental data on precursor insulators of high temp
ture superconductors [7,8].

The loop cluster algorithm in two spatial dimensio
and discrete time is implemented on a lattice withsLyad2

spatial points and4N time slices, so the total number o
sites isNl ­ 4NsLyad2. Each lattice site is assigned
spin with a6

1
2 spin state. Periodic boundary conditio

are applied in space and time. As described above
action is defined for each of the2Nl lattice configurations
by working with plaquettes that span nearest neighbor
space and time, in a pattern that resembles a checkerb
in s2 1 1d-dimensional space. The basic idea is to bu
closed loops of spin sites and then flip all the spins on
loop. The rules for building loops are designed to prov
ergodicity and detailed balance [4].

To build a loop, it is necessary to decide how it w
flow through each of the different types of plaquettes t
have finite action. Table I displays the three types
finite-action plaquettes for the spin12 AFHM, together
with flow patterns that have been determined to prov
detailed balance.

The first pattern in Table I, with “like” spins on a
four corners of the plaquette, forces the flow to proce
in the time direction. The second pattern, with alternat
spins, forces the flow to move to the adjacent spin sit
constant time. The third pattern, with “unlike” spins
adjacent spin sites, is probabilistic. The first time a lo
encounters such a plaquette, the flow is sent in the t
direction with probabilityp. If the flow happens to revisi
the plaquette, it is forced to conform to the flow directi
that was chosen at the initial visit. These three types
plaquettes are referred to as “forced continuation,” “forc
transition,” and “optional decay,” respectively.

The loop is constructed piecewise until it closes. T
loop-building rules ensure that the loops always close.

Figure 1 shows a typical situation in the building of
loop in s1 1 1d dimensions with discrete time. Here w
show the neighborhood of sitei, for a number of time
slices. Filled circles indicate spin up sites; open circ
spin down. The hatched rectangles are the plaque
he
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TABLE I. Summary of plaquette flow rules. Solid circles an
lines indicate spin up sites; open circles and dotted lines
spin down. The time direction is horizontal. Flow rules f
inverse plaquettes are analogous.

resulting from the Trotter-Suzuki decomposition. A loo
is shown entering this diagram att1. It is forced
to proceed forward in time for two plaquettes, th
encounters a series of optional decay plaquettes.
shown succumbing to the temptation to move to sitei 2 1
at time t7. Note that if it had reached timet10, it would
have been forced to move to sitei 1 1.

To go to the continuum limit of the cluster-buildin
algorithm, first visualize a given lattice configuration wi
successively finer granularity in time. The time variati
of the spin state at a given site is seen to comp
segments for which the system is in a state for a fin
time, with sporadic discrete transitions between sta
We build loops in the same way: Loop movement fro
one spin site to a neighbor is sporadic and most of
(now infinitesimal) plaquettes are continuations in time

The essential difference between the discrete-t
and continuous-time implementation is that the form

FIG. 1. Typical situation in the building of a path in discre
time and one spatial dimension. Time is in the horizon
direction; the immediate neighborhood of spin sitei is depicted
in the vertical direction. Solid circles denote spin-up sites; op
circles denote spin down.
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requires us to store spin state information for each of
points of the space-time lattice, while the latter requi
us only to store the transition times for each spin site (p
an extra bit to record the state att ­ 0). As discussed
below, the time evolution of the path is also handl
differently; instead of a point-by-point crawl through th
lattice, we race through time because we know the de
times are exponentially distributed.

The last column of Table I shows the continuum-tim
flow rules. Solid lines represent continuously spin-
states; dotted lines, spin down. The flow rule for t
forced continuation plaquettes has, in the continuum lim
become a rule that the flow cannot move to a neigh
that is in the same spin state. It is the forced transit
plaquettes which represent the discontinuous chang
spin state; we call the resulting jumps “bonds” because
changes in state at a given site are always accompanie
complementary changes in a neighbor. The continu
limit of the flow rule for the forced transition plaquettes
the rule that, if the flow reaches a bond, it must follow
to the neighbor and reverse direction.

The rule for the optional decay plaquettes, which
probabilistic, becomes a rule that the flow will jump
a neighbor in an opposite state with a fixed probabi
per unit time. The resulting exponential distribution
segment lengths is identical to the familiar distribution
the lifetime of a radioactive nucleus. The decay const
is simplyl ­ lime!0s1 2 pdyeb ­ Jy2.

Figure 2 shows a typical situation in the building of
loop in s1 1 1d dimensions with continuous time. Agai
we show the neighborhood of sitei. Solid lines indicate
spin-up sites; dotted lines, spin down. A loop is sho
entering the diagram att1. The probability per unit time
that it will move to a neighboring site is proportional
the number of neighbors that are of opposite spin. T
total decay constantl is shown varying with time in the
graph in Fig. 2. For example, betweent2 and t3 there
are no available “decay channels” and the flow is forc
to move forward in time in that interval. In the situatio

FIG. 2. Typical situation in the building of a path in continu
ous time and one spatial dimension. Solid lines denote spin
sites in continuous time; dotted lines, spin down.l is the
probability per unit time that the path will jump to an adjace
site, and is proportional to the number of neighboring sites t
have opposite spin.
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shown here, the flow survives up to some point betwe
timest4 andt5, when it decays to sitei 2 1. Note that if
the flow had reached timet6, it would have been forced to
traverse the bond and move to sitei 1 1. Path building
proceeds in this way until the loop closes.

A significant advantage of the loop cluster algorith
is that it allows for the implementation of improve
estimators. Reference [9] discusses the developmen
improved estimators for cluster algorithms. We fou
that the improved estimators for susceptibility, stagge
susceptibility, and internal energy density all have eas
determined continuum limits.

Results of the continuous-time algorithm [10] we
verified against exact solutions for the two- and fou
spin cases, as well as for previous results for the 1D
2D Heisenberg antiferromagnets and the 1D Heisenb
ferromagnet [5,11]. In all cases the results were consis
with previously established results.

The continuum-time method completely eliminates t
most severe systematic error in this type of calculation
also obviates the need to conduct the several runs of
cessively finer time granularity needed for extrapolat
to the continuum limit, thus eliminating a costly dime
sion in the simulation procedure.

In the ground state of the 2D AFHM the staggered m
netization develops an expectation value, and hence
O(3) spin rotational symmetry gets spontaneously bro
down to O(2). The low energy excitations of the syste
are spin waves (so-called magnons) which are the G
stone bosons of the spontaneously broken O(3) symm
Chiral perturbation theory (CPT) provides a power
set of tools for analyzing such systems. CPT starts w
the most general effective local action which respects
the symmetries of the system. In this case CPT pred
magnon dynamics at low temperatures with three para
ters as unknown constants: the staggered magnetiza
Ms, the spin wave velocityc, and the spin stiffnessrs.
The predictions of CPT at extremely low temperatu
are investigated using a range of square volumes w
side lengthL ­ 6, 8, . . . , 20 and a range of inverse tem
peratures bJ ­ 1, 2, 5, 10, 20, 30, 40, 50, 80, 100. Note
that the very small temperaturesT ø 0.01J are inac-
cessible to the discrete-time code, largely due to stor
limitations.

Several of the key predictions of CPT were direc
verified with this code. In particular, the energy spectru
is that of an O(3) rotor, with energy levels characteriz
by an integer spinj, having degeneracy2j 1 1 and
energy proportional tojs j 1 1d. Finite volume effects
are computed as expansions in"cyrsL. The energy
spectrum is computed in Ref. [6] to be

Ej ­ js j 1 1d
s"cd2

2rsL2

∑
1 2

"c
rsL

3.900265
4p

1 OsL22d
∏

.

The leading term of the uniform susceptibility is

xu !
T!0

6
L2T

exp

µ
2

s"cd2

rsL2T

∂
, (5)
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TABLE II. Comparison of fitted parameters.

Ref. [5] Current

Spin stiffnessrs 0.186(4) 0.185(2)
Spin wave velocity"c 1.68(1) 1.68(1)
Staggered magnetizationMs 0.3074(4) 0.3083(2)
Quadratic coefficient: energy · · · 0.068(1)
Quadratic coefficient:xs · · · 0.338(7)

and the staggered susceptibility goes to the tempera
independent form

xs !
T!0

2M2
s rs

s"cd2
L4

∑
1 1 3

"c
rsL

3.900265
4p

1 OsL22d
∏

.

(6)
These functional forms in the largeb limit, including
both volume and temperature dependence, were ver
for uniform and staggered susceptibility.

An independent fit for the CPT parametersMs, "c,
and rs gives excellent agreement with the results of [
as shown in Table II. This fit required that the partiti
function of the O(3) rotor be included in its entirety, i
stead of including just the leading term, as the limiti
forms in Eqs. (5) and (6) employ. In addition, only i
verse temperaturesbJ $ 10 were used in the fit, since th
rotor description is valid only for very small temperature
In order to reproduce the accuracy of the fit in Ref. [5]
was necessary to find fitted values for the coefficients
the quadratic terms in the expressions for energy and s
gered susceptibility, that is, the coefficients of the ter
s"cyrsLd2 in the expressions above. Note that the agr
ment between the current work and Ref. [5] is particula
remarkable because they are based on different volu
temperature regimes. Reference [5] was concerned
the “cubical” regimeTLy"c > 1, while the current study
focuses on the “cylindrical” regimeTLy"c ø 1. The five
parameter values in Table II resulted in a goodness-o
x2yd.o.f. ­ 1.5. Figures 3(a) and 3(b) show the fit fo
uniform and staggered susceptibility, respectively. So
lines represent the fitted CPT result. Circles and error b
are displayed at each simulation point. The fit is very go
for bJ $ 10.

In conclusion, we find that the continuous-time form
lation discussed here provides a superior method for e
uating path integrals that arise in the study of discr
quantum systems. The continuum-time implementa
of path integrals can be applied to a wide variety of pr
lems. For example, it can be applied to a loop clus
algorithm that has been constructed for lattice fermi
[12]. It works in principle for any quantum system
a discrete basis, even if a cluster algorithm may not
available. For example, for a lattice gauge theory wit
compact gauge group one can work in the discrete b
of representations.
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FIG. 3. (a) Uniform susceptibility and (b) staggered susce
tibility versus inverse temperature for various volumes. So
lines are predictions from chiral perturbation theory with fitte
parameters; circles with error bars are lattice simulations w
continuous time. The fit is very good forbJ $ 10.
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[3] M. S. Makivić and H.-Q. Ding, Phys. Rev. B43, 3562

(1991).
[4] H. G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett.70,

875 (1993).
[5] U.-J. Wiese and H.-P. Ying, Z. Phys. B93, 147 (1994).
[6] P. Hasenfratz and F. Niedermayer, Z. Phys. B92, 91

(1993).
[7] G. Shiraneet al., Phys. Rev. Lett.59, 1613 (1987).
[8] M. Grevenet al., Z. Phys. B96, 465 (1995).
[9] U. Wolff, Phys. Rev. Lett.62, 361 (1989); U. Wolff, Nucl.

Phys.B334, 581 (1990).
[10] This code will be made available via the World Wid

Web. Check http://ctpa02.mit.edu/,bbbeard/ for details.
[11] U.-J. Wiese and H.-P. Ying, Phys. Lett. A168, 143 (1992).
[12] U.-J. Wiese, Phys. Lett. B311, 235 (1993).
5133


