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Simulations of Discrete Quantum Systems in Continuous Euclidean Time
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We propose a new method to study path integrals for discrete quantum systems in which we
work directly in the Euclidean time continuum. The method is of general interest. Here it is
applied to the Heisenberg quantum antiferromagnet using a continuous-time version of a loop
cluster algorithm. This algorithm is exploited to confirm the predictions of chiral perturbation
theory in the extreme low temperature regime, downTto= 0.01J. A fit of the low-energy
parameters of chiral perturbation theory gives excellent agreement with previous results and with
experiments. [S0031-9007(96)01873-X]

PACS numbers: 75.10.Jm, 02.70.Lq, 31.15.Kb, 71.10.Fd

The path integral for a general quantum system isn the u direction. For an antiferromagnet the coupling
usually implemented in discrete time. Farhi and Gutmanrtonstant/ is positive. Since this Hamiltonian comprises
showed how to build a path integral in continuous time fornoncommuting terms, the explicit evaluation of the asso-
quantum systems ingiscrete basi§l]. The paths consist ciated partition function is problematical. Suzuki is cred-
of segments for which the system is in a basis state foited with showing how the Trotter formula can be applied
a finite time, with sporadic discrete transitions betweerto segregate these noncommuting terms into separate time
basis states. This insight can be applied, for example, tslices, with the approximation becoming exact in the con-
quantum spin systems, lattice fermions, and lattice gaugénuum limit [2]. For example, the Hamiltonian of a 1D
theories with a compact gauge group. The work describequantum spin chain can be decomposed into two terms,
here is the first application of this technique to a problemH = H; + H,, each of which comprises only commut-

of practical interest. ing terms
In the continuous-time formulation a path is charac-
terized by transition times and information about which g, — Z S, -S4, Hy, =J Z S, - S.ii.
states are connected at the transitions. This picture al- x=2m x=2m+1
lows the path integral to be sampled numerically without (2)

having to store information about individual time slices. than for the partition function one writes
In the discrete-time approximation one must always exer-

cise care in extrapolating the results to the time-continuum Z = Trexp(—BH)
limit. The approach advocated here, where we operate di- o B _ N
rectly in this limit, completely eliminates the most severe - ,'V'DL Trexp—epH) exp—efH)T.  (3)

systematic error in these calculations. _ . , _
As an example we consider quantum spin systems""here'8 = 1/T is the inverse temperature ang =

Conventional approaches to handling these systems reg/N is the lattice spacing in Elfchdear; time. Inserting
on a discrete-time formalism. Consider the Hamiltonianc@mplete sets of eigenstatés- ;) of ;' between the

for the quantum antiferromagnetic Heisenberg modefactors exp—eBH,) one converts the partition function
(AFHM) into a (d + 1)-dimensional path integral of Ising-like

variables
H=7YS. -S.,, (1)
)% o z=T] S exp-s). )

2 L : . , Xt s(rn)=*1/2
whereS, = %a’x is a spln% operator associated with the -

site x of a d-dimensional hypercubic lattice. The inter- The action is a sum of plaquette couplings in a “checker-
action is between nearest neighbogsjs the unit vector| board” pattern

S= > Skstxo)st + Doste,r + 1,50+ 1,0 + 1)]
x=2m,t=2p

+ > S[s(x, 1), s(x + 1), sCe, 2 + 1), s(x + 1, + 1],
x=2m+1,t=2p+1
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and the plaquette Boltzmann factors are given dy>a 4  TABLE I. Summary of plaquette flow rules. Solid circles and
transfer matrix lines indicate spin up sites; open circles and dotted lines are

_ spin down. The time direction is horizontal. Flow rules for
exp(—S[s1, 52, 53,54])

inverse plaguettes are analogous.
= (s1s2] exp(—&BJS, - Si+p)ls354).

For the spin% AFHM, only 6 of the 16 elements of the
transfer matrix are nonzero, namely, those that leave th
three-component of spin unchanged.

The 2D Heisenberg model is of interest because it de Forced continuation
scribes the undoped precursor insulators of high temperi
ture superconductors. It has been studied with variou
Monte Carlo techniques [3], including a very efficient
loop cluster algorithm [4,5]. The cluster algorithm has
led to a very precise determination of the low energy gorced transition
parameters of the Heisenberg model [5], consistent witl
the chiral perturbation theory treatment of Hasenfratz an
Niedermayer [6]. These parameters are consistent wit
experimental data on precursor insulators of high tempere

Discrete time Continuous time

= ym

ture superconductors [7,8]. Optional decay, QO cesepeses
The loop cluster algorithm in two spatial dimensions -p A

and discrete time is implemented on a lattice witha)> ~ ?= 2/l +exp(e8)] 1 HH ;|§

spatial points andN time slices, so the total number of .4 \ = j/2 L fa —_—

sites isN; = 4N(L/a)*>. Each lattice site is assigned a
spin with ai% spin state. Periodic boundary conditions
are applied in space and time. As described above, an
action is defined for each of ti#" lattice configurations . . "
by working with plaquettes that span nearest neighbors i[clesultlng from th_e Trottgr—ngukl decomposmon. A loop
space and time, in a pattern that resembles a checkerbodrd SNOWn entering this diagram ai. It is forced

in (2 + 1)-dimensional space. The basic idea is to build™© proceed forwa_lrd n tlmg for two plaquettes, then'
closed loops of spin sites and then flip all the spins on thgneounters a series of optional _decay pIaqueFt_es. Itis
loop. The rules for building loops are designed to provideShO.Wn succumbing to the temptation to move to &ite 1
ergodicity and detailed balance [4]. at time;. Note that if it had rf—.\ached timey, it would

To build a loop, it is necessary to decide how it will have been forced to move to sitet 1.

flow through each of the different types of plaquettes that ITO. %0 t?. the_conlt'inuum. Iimitl Of. the cIl];j_ster—b_uiIdiqgh
have finite action. Table | displays the three types o gorithm, first visualize a given lattice configuration wit

finite-action plaquettes for the spib AFHM, together successively finer granularity in time. The time variation

with flow patterns that have been determined to providé)f the spin state at a given site Is seen to comprise
detailed balance. Segments for which the system is in a state for a finite

The first pattern in Table I, with “like” spins on all time, with sporadic discrete transitions between states.

four corners of the plaquette, forces the flow to procee(yve build loops in the same way: Loop movement from

in the time direction. The second pattern, with alternatin one spin site to a neighbor is sporadic and most of the

. . o now infinitesimal) plaguettes are continuations in time.
spins, forces the flow to move to the adjacent spin site a . . ; :
. ) e The essential difference between the discrete-time
constant time. The third pattern, with “unlike” spins at

adjacent spin sites, is probabilistic. The first time a Ioopand continuous-time implementation is that the former

encounters such a plaquette, the flow is sent in the time
direction with probabilityp. If the flow happens to revisit
the plaquette, it is forced to conform to the flow direction 1+ 1
that was chosen at the initial visit. These three types of
plaguettes are referred to as “forced continuation,” “forced 7
transition,” and “optional decay,” respectively.
The loop is constructed piecewise until it closes. The i —
Ioop-bundlng rules ensure thqt thg qups alway_s plose. ty ty t5 tg ts te 17 ts to tioti1t1o
Figure 1 shows a typical situation in the building of a

loop in (1 + 1) dimensions with discrete time. Here we F!G- 1. Typical situation in the building of a path in discrete
time and one spatial dimension. Time is in the horizontal

show the neighborhood of sitg for a number of time direction; the immediate neighborhood of spin site depicted

slices. Filled circles indicate spin up sites; open circlesin the vertical direction. Solid circles denote spin-up sites; open
spin down. The hatched rectangles are the plaquettesrcles denote spin down.
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requires us to store spin state information for each of thehown here, the flow survives up to some point between
points of the space-time lattice, while the latter requiregimesr, andts, when it decays to site — 1. Note that if
us only to store the transition times for each spin site (plushe flow had reached timg, it would have been forced to
an extra bit to record the state at= 0). As discussed traverse the bond and move to site- 1. Path building
below, the time evolution of the path is also handledproceeds in this way until the loop closes.
differently; instead of a point-by-point crawl through the A significant advantage of the loop cluster algorithm
lattice, we race through time because we know the decaig that it allows for the implementation of improved
times are exponentially distributed. estimators. Reference [9] discusses the development of
The last column of Table | shows the continuum-timeimproved estimators for cluster algorithms. We found
flow rules. Solid lines represent continuously spin-upthat the improved estimators for susceptibility, staggered
states; dotted lines, spin down. The flow rule for thesusceptibility, and internal energy density all have easily
forced continuation plaquettes has, in the continuum limitdetermined continuum limits.
become a rule that the flow cannot move to a neighbor Results of the continuous-time algorithm [10] were
that is in the same spin state. It is the forced transitiorverified against exact solutions for the two- and four-
plaguettes which represent the discontinuous change spin cases, as well as for previous results for the 1D and
spin state; we call the resulting jumps “bonds” because th@D Heisenberg antiferromagnets and the 1D Heisenberg
changes in state at a given site are always accompanied Bsrromagnet [5,11]. In all cases the results were consistent
complementary changes in a neighbor. The continuumwith previously established results.
limit of the flow rule for the forced transition plaguettes is  The continuum-time method completely eliminates the
the rule that, if the flow reaches a bond, it must follow it most severe systematic error in this type of calculation. It
to the neighbor and reverse direction. also obviates the need to conduct the several runs of suc-
The rule for the optional decay plaquettes, which iscessively finer time granularity needed for extrapolation
probabilistic, becomes a rule that the flow will jump to to the continuum limit, thus eliminating a costly dimen-
a neighbor in an opposite state with a fixed probabilitysion in the simulation procedure.
per unit time. The resulting exponential distribution of In the ground state of the 2D AFHM the staggered mag-
segment lengths is identical to the familiar distribution ofnetization develops an expectation value, and hence the
the lifetime of a radioactive nucleus. The decay constan®(3) spin rotational symmetry gets spontaneously broken
is simply A = limc_o(1 — p)/eB = J/2. down to O(2). The low energy excitations of the system
Figure 2 shows a typical situation in the building of aare spin waves (so-called magnons) which are the Gold-
loop in (1 + 1) dimensions with continuous time. Again stone bosons of the spontaneously broken O(3) symmetry.
we show the neighborhood of site Solid lines indicate Chiral perturbation theory (CPT) provides a powerful
spin-up sites; dotted lines, spin down. A loop is shownset of tools for analyzing such systems. CPT starts with
entering the diagram at. The probability per unit time the most general effective local action which respects all
that it will move to a neighboring site is proportional to the symmetries of the system. In this case CPT predicts
the number of neighbors that are of opposite spin. Thenagnon dynamics at low temperatures with three parame-
total decay constamt is shown varying with time in the ters as unknown constants: the staggered magnetization
graph in Fig. 2. For example, between and ¢; there M, the spin wave velocity, and the spin stiffnesg;.
are no available “decay channels” and the flow is forcedThe predictions of CPT at extremely low temperatures
to move forward in time in that interval. In the situation are investigated using a range of square volumes with
side lengthL = 6,8,...,20 and a range of inverse tem-
peratures 8J = 1,2,5, 10,20, 30,40, 50,80,100. Note

) that the very small temperatures = 0.01J are inac-

i Leerereee e — cessible to the discrete-time code, largely due to storage
i X > — Lo limitations.

. l Several of the key predictions of CPT were directly

i1 R verified with this code. In particular, the energy spectrum

is that of an O(3) rotor, with energy levels characterized
A by an integer spinj, having degeneracg; + 1 and

energy proportional tg(;j + 1). Finite volume effects

are computed as expansions #r/p,L. The energy
spectrum is computed in Ref. [6] to be

2
FIG. 2. Typical situation in the building of a path in continu- E; = j(j + 1) (ﬁc)2[1 - e M
ous time and one spatial dimension. Solid lines denote spin-up 2psL psL 4w
sites in continuous time; dotted lines, spin down. is the  The |eading term of the uniform susceptibility is
probability per unit time that the path will jump to an adjacent )

site, and is proportional to the number of neighboring sites that - 6 exd — (fic) (5)
have opposite spin. Au 7—0 L2T psL2T )’

ty t; t3 14 tsts

+ 0(L‘2)]
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TABLE Il. Comparison of fitted parameters. 1.0000 l_
Ref. [5] Current e
0.1000 |
Spin stiffnessp, 0.186(4) 0.185(2) g
Spin wave velocityhc 1.68(1) 1.68(1) =]
Staggered magnetizatiaiv, 0.3074(4) 0.3083(2) g 00100 -
Quadratic coefficient: energy 0.068(1) &
Quadratic coefficienty, 0.338(7) E 0.0010
5
0.0001
and the staggered susceptibility goes to the temperature- 0
independent form
2M2p; 4[ fic 3.900265 . 10000
Xs — =L+ 3— ——— + O(L )]
Y10 (he)? psL 4w 20 (b)l::
(6) 2 1000 18*, ]
_ _ o _ £ S e )
These functional forms in the largg limit, including 2 — 12
both volume and temperature dependence, were verified g 100 | 8
for uniform and staggered susceptibility. 2 La=6
An independent fit for the CPT parametefd,, #c, §
and p, gives excellent agreement with the results of [5], g 1w
as shown in Table II. This fit required that the partition @
function of the O(3) rotor be included in its entirety, in- . I
stead of including just the leading term, as the limiting o 2 0 60 80 100

forms in Egs. (5) and (6) employ. In addition, only in- Inverse Temperature (BJ)

- . o
vetrsedtempe;f':\tur.@x] ﬂj 10 :N?re used in th”etflt’ Smc‘i the FIG. 3. (a) Uniform susceptibility and (b) staggered suscep-
rotor aescription is valid only Tor very small tempera ures"tibility versus inverse temperature for various volumes. Solid

In order to reproduc_:e th? accuracy of the fit in R_ef'. [5], itiines are predictions from chiral perturbation theory with fitted
was necessary to find fitted values for the coefficients oparameters; circles with error bars are lattice simulations with

the quadratic terms in the expressions for energy and stagontinuous time. The fit is very good fgJ/ = 10.
gered susceptibility, that is, the coefficients of the terms

> . '
(hic/psL)” in the expressions above. Note that the agrees, helpful discussions. This material is based upon work

ment between the current work and Ref. [5] is particularly . : .
remarkable because they are based on different vqum%—jpported under a National Science Foundation Graduate

temperature regimes. Reference [5] was concerned wit ellj)v:/lsh)lp 'E’i'if\'/v%r)kar?:sa}slrllsélgggnPs.,uS|O(?rrt]e|;eilrl10W§rrt1IE
the “cubical’regimel'L/Ac = 1, while the current study DA PP b y

w el Arinal” ran : funds provided by the U.S. Department of Energy (DOE)
focuses on the “cylindrical” regiméL /fc << 1. The five .
parameter values in Table Il resulted in a goodness-of-fi nder Cooperative Research Agreement No. DE-FCO2-

x?%/d.o.f.= 1.5. Figures 3(a) and 3(b) show the fit for 4ER40818.
uniform and staggered susceptibility, respectively. Solid
lines represent the fitte(_j CPT.resuIt_. Circles.a_nd error bars[l] E. Farhi and S. Gutmann, Ann. Phys. (N.Y213 182
are displayed at each simulation point. The fitis very good (1992).
for gJ = 10. _ _ _ [2] M. Suzuki, Prog. Theor. Phy&6, 1454 (1976).

In conclusion, we find that the continuous-time formu- [3] M.S. Makivic and H.-Q. Ding, Phys. Rev. B3, 3562
lation discussed here provides a superior method for eval-  (1991).
uating path integrals that arise in the study of discrete[4] H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. L&Q,
guantum systems. The continuum-time implementation 875 (1993).
of path integrals can be applied to a wide variety of prob- [5] U.-J. Wiese and H.-P. Ying, Z. Phys. 8, 147 (1994).
lems. For example, it can be applied to a loop cluster [6] P. Hasenfratz and F. Niedermayer, Z. Phys.98 91
algorithm that has been constructed for lattice fermions 1993).
[12]. It works in principle for any quantum system in g} f/l gr]g\?enr?eei le"';hfﬁ Ze‘é'gléeggg’ (11%19‘;(1987)'
a discrete basis, even if a cluster algorithm may not be ' B L TS ; '

) . . [9] U. Wolff, Phys. Rev. Lett62, 361 (1989); U. Wolff, Nucl.
available. For example, for a lattice gauge theory with a Phys.B334, 581 (1990).

compact gauge group one can work in the discrete basigo] This code will be made available via the World Wide
of representations. Web. Check http://ctpa02.mit.edinbbeard/ for details.
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