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Exact Shape of the Lowest Landau Level in a Double-Layer System
and a Superlattice with Uncorrelated Disorder
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We extend Wegner’s exact solution for the 2D density of states at the lowest Landau leve
a short-range disorder to the cases of a double-layer system and a superlattice. For the dou
system, an analytical expression for the density of states, illustrating the interplay between the
splitting of Landau levels and the disorder-induced broadening, is obtained. For the supe
we derive an integral equation, the eigenvalue of which determines the exact density of
By solving this equation numerically, we trace the disappearance of the miniband with incr
disorder. [S0031-9007(96)01846-7]

PACS numbers: 73.20.Dx, 73.40.Hm
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The shape of the Landau levels (LL) in a 2D syst
in the presence of a disorder has been studied intens
during the last two decades [1–17]. The complexity of
problem arises from the fact that in the absence of the
order the energy spectrum is discrete. As a result, the
energy of an electron appears to be real in any finite o
of the perturbation theory. Therefore obtaining a finite
width requires summation of the entire diagram expans
It was demonstrated [9,14] that such a summation is
sible when the LL number is large. The simplifications
this limit are different for a short-range and a smooth d
order. In the former case only a subsequence of diagr
without self-intersections contributes to the self-ener
or, in other words, the self-consistent Born approximat
[1,3] becomes asymptotically exact [10], resulting in
semielliptical shape of the LL. For a smooth disorder, w
correlation length larger than the magnetic length, all d
grams are of the same order of magnitude, but magn
phases, caused by self-intersections, become small.
origin of these phases lies in an uncertainty in the posi
of the center of the Larmour orbit. With phases dropp
the entire perturbation series can be summed up, lea
to the Gaussian shape of the LL [14].

For low LL numbers and short-range disorder,
magnetic phases in diagrams are of the order of unity
small parameter appears in the problem only if the ene
´ is much larger than the LL widthG, making possible
a calculation of the density of states (DOS) in the
tails. Such calculations were carried out in the framew
of the instanton approach [4,5,8,10–12,17], and the
were shown to be Gaussian. In the domain´ , G the
problem has no small parameter and no simplificati
are possible. However, for the lowest LL the exact D
was found by Wegner [6] for arbitrarýyG. Wegner
has shown that diagrammatic expansion of the disor
averaged Green functionGs´d can be mapped onto th
of the zero-dimensional complexw4 model with partition
functionZ

s1d
0 given by a simple integral
0031-9007y96y77(25)y5106(4)$10.00
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Z
s1d
0 s´, Gd ­

Z
dwpdw exp

∑
i´wpw 2

G2

4
swpwd2

∏
.

(1)
The crucial observation made by Wegner was that
number of diagrams for the disordered system, wh
are mapped onto a single graph of thew4 model, is
proportional to the inverse value of the diagram itse
The electron Green function is then given byG ­
2s2pl2d21≠ ln Z

s1d
0 y≠´ (l is the magnetic length) in the

sense that coefficients in front ofGn in each side of this
equation coincide. Having a closed expression forGs´d,
Wegner obtained the following formula for the DOS
the lowest LL:

gsed ­
1

2p2l2

2
p

p

e´2yG2

fs2y
p

p d
R´yG

0 dxex2 g2 1 1
. (2)

The magnetic field dependence of the widthG is G ~
p

B.
More precisely, for the correlator of the random potent
V srd of the form kV srdV sr0dl ­ gdsr 2 r0d, one has
G ­ sgy2pl2d1y2. An alternative derivation of Wegner’s
result was given by Brézin, Gross, and Itzykson [7] in t
framework of functional-integral approach.

Consider now a system consisting of two parallel 2
layers. In the absence of a disorder and magnetic fiel
tunnel coupling between the layers would cause a splitt
of size quantization levels by an amount of2t, t being
the tunnel integral. In a perpendicular field, the spectr
of the system represents two staircases of LL shifted
energy by2t. Assume that the field is strong, so th
the cyclotron energy is much larger thant. If a disorder
is present in the layers, the shape of two adjacent L
depends on the ratioGyt. If this ratio is large, then
the tunneling does not play any role, so that the DOS
twice the DOS in an individual layer (2). In the opposi
case, t ¿ G, the peaks in the DOS, corresponding
the symmetric and antisymmetric states, are broade
independently; they are distanced by2t and their shape
is described by (2) with the widthGy

p
2 [18]. Factor
© 1996 The American Physical Society
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2 appears because the effective random potential
the symmetric (antisymmetric) state isfV1srd 6 V2srdgy2,
where V1srd and V2srd are the potentials in the layers
If kV1srdV2sr0dl ­ 0, the correlator for each effectiv
potential appears to be twice as small as that for
individual layer.

For G , t, calculation of the DOS in a double-laye
system seems to pose an even harder problem than
a single layer, since here the DOS represents a t
parametric function,gdls´yG, tyGd, with both arguments
of the order of unity. Nevertheless, as we demonstr
below, for the lowest LL the exact DOS can be obtain
in a closed form by generalizing Wegner’s approa
Moreover, such a generalization can be carried out for
arbitrary number of layers, and, in particular, we consid
the case when the number of layers is infinite (superlatti
In the absence of a disorder, each LL in a superlattice g
rise to a miniband of a width2t. Gradual switching on
a disorder first smears out the singularities in DOS at
edges of the miniband and then, asG exceedst, transforms
the DOS into a single peak corresponding to an individ
layer. We derive an integral equation the eigenvalue
which determines the DOS in a superlattice, and trace
transformation by solving it numerically.

Consider first a double-layer system. The free Gre
function represents a2 3 2 matrix which, after projecting
onto the lowest LL, takes the form

Ĝ0sr, r0d ­
Q̂

2pl2
exp

∑
2

sr 2 r0d2

4l2
1

i
2l2

sr 3 r0d
∏

,

(3)

Q̂ ­ s´ 2 t̂d21, t̂ ­

µ
0 t
t 0

∂
. (4)

The perturbation expansion for̂G, averaged overV1 and
V2, has the same diagrammatic representation as f
single layer. Lowest order diagrams are shown
Figs. 1(a) and 1(b). Solid lines correspond toĜ0 and
dashed lines correspond to the correlator of the rand
potential. Solid lines carry indices, reflecting the fact th
an electron can tunnel from one layer to another betw
two successive scattering acts. Since the scattering re
an electron in the same layer, the indices at the e
of each dashed line coincide. Introducing projecti
operatorŝti as

t̂1 ­

µ
1 0
0 0

∂
, t̂2 ­

µ
0 0
0 1

∂
, (5)

the expressions corresponding to diagrams (a) and (b)
be written in the form

Ĝs1d ­ Fs1dG2
X

i

sQ̂t̂iQ̂t̂iQ̂d ,

Ĝs2d ­ Fs2dG4
X
ij

sQ̂t̂iQ̂t̂jQ̂t̂iQ̂t̂jQ̂d ,
(6)

whereFs1d andFs2d are spatial integrals. Similarly, spatia
integrals in higher order diagrams are separated ou
factors in front of products of matriceŝQ andt̂i . Important
for
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FIG. 1. First (a) and second (b) order diagrams for the Gr
function mapped on graphs (c) and (d), respectively.

is that allFsnd areexactly the same as those for a sing
layer.

The mapping is carried out following Wegner’s pr
scription: One identifies pairs of points in a diagram co
nected by dashed lines, and one gets a graph with
lines entering each vertex [see Figs. 1(c) and 1(d)].
doing so, one obtains, in general, a set of diagrams yi
ing the same graph. It is clear, however, that since
signing indices to the lines does not alter in any way
topology of diagrams or graphs, the number of diagra
in a set is the same for both single- and double-layer ca
Moreover, one observes that the contractions of matr
t̂i precisely follow the identification of points [as it ca
be seen, e.g., in Figs. 1(b) and 1(d)], so that all diagra
in such a set are equal. The fundamental relation, es
lished by Wegner, is that for each diagram in the set
hasFsnd ­ 1yN s, whereN is the number of diagram
in the set and1ys is the symmetry factor of the graph (s is
the number of permutations leaving graph invariant). T
factor is also unchanged by assigning indices to the gra
for example, permutation of upper and lower lines lea
graph 1(d) invariant in both cases. Thus the contribut
of the set, being proportional toN Fsnd, is N indepen-
dent, and the problem again reduces to a zero-dimensi
field theory. The remaining question is whether mat
products of type (6) can be generated in the perturba
expansion of some generalizedw4 model. Our main ob-
servation is that the model with the partition function

Z
s2d
0 ­

Z
dFpdF exp

∑
iFpQ̂21F 2

G2

4

X
i

sFptiFd2

∏
(7)

accomplishes this task. HerêQ and t̂i are matrices
defined by (4) andF is a two-componentcomplex field
F ­ sw1, w2d. Indeed thenth order term in the expansio
of exponent (7) in terms ofG2 represents a product of2n
matricest̂i (with all pairwise contractions) separated b
2n products of the formFFp. Then the Gaussian integra
over F inserts the “Green function”̂Q ­ 2ikFFpl in
place of each pair of fieldsF and Fp, with all possible
contractions between them yielding all thenth order
graphs with appropriate symmetry factors.
5107
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Having the mapping established, the DOS in a doub
layer system can be calculated directly from (7). It is a
instructive to rewriteZ

s2d
0 in a different form. First, we

decouple the quartic term in the exponent of (7),

iS ­
X

j

∑
i´wp

j wj 2
G2

4
swp

j wjd2

∏
2 itswp

1w2 1 wp
2w1d ,

(8)
with the help of the Gaussian integral over a pair
auxiliary variables. Performing the remaining integ
overwi we then obtain

Z
s2d
0 ­

sipd2

pG2

Z `

2`

Z `

2`

dl1 dl2e2sl2
11l2

2dyG2

s´ 1 l1d s´ 1 l2d 2 t2
. (9)

From the form (9) both limiting cases of large and smat
are evident. For smallt, the partition function factorizes
Z

s2d
0 ­ sZs1d

0 d2, yielding twice the DOS (2). Fort ¿ G

the characteristic values ofl1, l2 in (9), being of the
order of G, are much smaller thant. This allows one
to neglect the productl1l2 in the denominator;Z

s2d
0 is

not small only ifs´ 6 td , G. Introducing new variables
m6 ­ l1 6 l2, the integral overm2 contributes a factorp

2pG, and the integral overm1 reproduces Wegner’
result with the widthGy

p
2, as discussed above. Evolutio

of the DOS between two limits is shown in Fig. 2(a).
Let us now turn to a superlattice. The partition functi

(7) can be straightforwardly generalized ton layers with
nearest-neighbor tunneling

Z
snd
0 ­

Z nY
i­1

d2wi exp

∑
i´

nX
j­1

wp
j wj 2

G2

4

nX
j­1

swp
j wjd2

2 it
n21X
j­1

swp
j wj11 1 wp

j11wjd
∏

.

(10)

We are interested in the asymptotic behavior ofZ
snd
0 s´, Gd

asn ! `. For this purpose we employ a method similar
the transfer-matrix method in the theory of 1D spin chai
Note that the expression (10) forZ

snd
0 can be rewritten as

Z
snd
0 ­

Z
d2w exp

∑
i´wpw 2

G2

4
swpwd2

∏
Inswp, wd ,

(11)
where I1 ­ 1 and the functionsInswp, wd satisfy the
following recurrence relation

In11swp, wd ­ T̂´,GIn

;
Z

d2w1 exp

∑
i´wp

1 w1 2
G2

4
swp

1w1d2

2 itswpw1 1 wp
1wd

∏
Inswp

1 , w1d . (12)

Consider now the eigenvaluesl
skd
´,G and eigenfunctions

V
skd
´,Gswp, wd of the operatorT̂´,G: T̂´,GVskd ­ lskdVskd.

Assume thatls0d has the maximal absolute value. Th
in the limit n ! `, Z

snd
0 will behave assls0ddn. Hence the
5108
e-
o

f
l

n

o
s.

n

FIG. 2. (a) DOS per layer for a double-layer system in un
of g1 ­ s2pl2d21G21 for values oftyG ­ 0.0 (highest curve),
0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2
and 3.0, respectively. (b) DOS per layer for a superlattice
units ofg2 ­ s2pl2d21s2td21 for values ofGy2t ­ 0.1 (highest
curve), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1
and 2.0, respectively.

DOS per layer in a superlattice can be expressed throu
l

s0d
´,G as follows:gsls´, Gd ­ s2p2l2d21≠ ln l0y≠´.
Consider first the case of a weak disorderG ! 0. One

can check that eigenfunctions ofT̂´,0 have the form

V
s p,md
´,0 ­ eima2si´1

p
4t22´2 dR2y2

≥
R2

p
4t2 2 ´2

¥my2

3 Lm
p

≥
R2

p
4t2 2 ´2

¥
, (13)

whereR anda are, respectively, the absolute value and t
phase ofw, andLm

p sxd is the Laguerre polynomial. The
corresponding eigenvaluesl

s p,md
´,0 equal

l
sp,md
´,0 ­

pi
t

µ
2it

i´ 2
p

4t2 2 ´2

∂2p1m11

, (14)
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where square root is defined asi21 sgns´d
p

´2 2 4t2 for
j´j . 2t. Outside the intervalj´j , 2t, the phases of
eigenvalues (14) have no energy dependence, suppo
the obvious observation that the DOS is zero outside
miniband. Within the miniband, allls p,mds´, 0d have the
same absolute value. This is a manifestation of the
that for a large but finite number of layers the DOS
the absence of disorder represents a set of delta pe
However, with arbitrary weak disorder present, only t
eigenvaluels0,0ds´, 0d will survive in the limit n ! `,
yielding the familiar result

2p2l2gsls´, 0d ­ Im
≠ ln l

s0,0d
´,0

≠´
­

1
p

4t2 2 ´2
. (15)

Assume now that the disorder is finite butG ø t. It is
convenient to formally present the operatorT̂´,G as

l
s0d
´,GV

s0d
´,G ­ T̂´,GV

s0d
´,G ­

Z dE
p

pG
e2sE2´d2yG2

T̂E,0V
s0d
´,G .

(16)
For smallG, only E close to´ contribute to the integra
(16). This suggests starting the iteration procedure
substituting, as a zero approximation, them ­ p ­ 0
eigenfunctionV

s0,0d
E,0 of T̂E,0 into the right-hand side. This

generates the first approximation for the functionV
s0d
´,G,

Ṽ
s0d
´,G ­

1
p

pGl
s0d
´,G

Z
dEe2sE2´d2yG2

l
s0,0d
E,0 V

s0,0d
E,0 . (17)

Substituting this function back into (16), we obtain

T̂´,GṼ
s0d
´,G ­

1

pG2l
s0d
´,G

Z
dE

Z
dE0

3 e2sE2´d2yG22sE 02´d2yG2

l
s0,0d
E0,0 T̂E,0V

s0,0d
E0,0 . (18)

Note now thatV
s0,0d
E0 ,0 as a function ofE0 changes signifi-

cantly on the scaleE0 , t. On the other hand, exponenti
factors in (18) enforce the difference betweenE andE0 to
be of the order ofG. This allows one to replaceV

s0,0d
E0,0 by

V
s0,0d
E,0 under the integral. Then we immediately obser

that the right-hand side takes the form̃l
s0d
´,GṼ

s0d
´,G with

l̃
s0d
´,G ­

2p
p

pG

Z `

2`

dE
e2sE2´d2yG2

p
4t2 2 E2 2 iE

. (19)

In other words, for smallG the functionṼ
s0d
´,G satisfies

(16) yielding the eigenvalue (19). In principle, to asse
the region of largeG one should keep iterating Eq. (16
However, as we have established numerically, the func
Ṽs0d is already a very good approximation forVs0d and
l̃s0d is a very good approximation forls0d not only for a
small, but also for anarbitrary ratio Gyt. Indeed, asGyt
increases, one should reproduce Wegner’s result, w
corresponds tot ­ 0 and Vs0d ­ const. On the other
hand, it is easy to see thatṼs0d turns to constant ast ! 0,
and that in this limitl̃s0d turns toZ

s1d
0 . Thus Eq. (19) is
ting
he

ct
n
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e

by

l
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.
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exact in both limits. The numerical results for the DO
obtained with the use of̃ls0d (19), are shown in Fig. 2(b)
We see that the miniband is completely destroyed asGyt
exceeds1.4.

Note in conclusion, that a decade ago there wa
significant interest in transport in multilayer systems in
strong magnetic field [19,20]. Recently, this interest w
renewed [18,21]. The focus of the study is a transit
from a purely 2D to the 3D behavior of the conductivi
with increasingt. As was shown in [22], the structur
of electronic states in a multilayer system can be tuned
tilting magnetic field. For the lowest LL, the role ofBk (the
parallel component ofB) reduces to the renormalizatio
of t. The renormalized tunneling̃t differs from t by
the overlap integral of two oscillator wave functions wi
the centers displaced by an amount proportional toBk.
Concerning our results, one can check that they appl
the presence ofBk after replacingt by t̃.
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