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Exact Shape of the Lowest Landau Level in a Double-Layer System
and a Superlattice with Uncorrelated Disorder
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We extend Wegner's exact solution for the 2D density of states at the lowest Landau level with
a short-range disorder to the cases of a double-layer system and a superlattice. For the double-layer
system, an analytical expression for the density of states, illustrating the interplay between the tunnel
splitting of Landau levels and the disorder-induced broadening, is obtained. For the superlattice,
we derive an integral equation, the eigenvalue of which determines the exact density of states.
By solving this equation numerically, we trace the disappearance of the miniband with increasing
disorder. [S0031-9007(96)01846-7]

PACS numbers: 73.20.Dx, 73.40.Hm

The shape of the Landau levels (LL) in a 2D system Z(()l)(s I = f do*de ex;{isga*go _ r_z(go*go)z]
in the presence of a disorder has been studied intensively ’ 4
during the last two decades [1-17]. The complexity of the 1)

problem arises from the fact that in the absence of the disthe crucial observation made by Wegner was that the
order the energy spectrum is discrete. As aresult, the selfy,mper of diagrams for the disordered system, which
energy of an electron appears to be real in any finite ordeg, mapped onto a single graph of thd model, is

of the perturbation theory. Therefore obtaining afinite LL ronortional to the inverse value of the diagram itself.
width requires summation of the entire diagram expansionthe electron Green function is then given ly =

It was demonstrated [9,14] that such a summation is posi(zwlz)*lalnz(l)/as (/ is the magnetic length) in the
sible when the LL number is large. The simplifications in 0 9 9

this limit are different for a short-range and a smooth dis_sense that coefficients in front &F" in each side of this

. equation coincide. Having a closed expressiondos
order. In the former case only a subsequence of diagra J g P ace).

without self-intersections contributes to the self-energnweglner obtained the following formula for the DOS in

y .
or, in other words, the self-consistent Born approximationthe lowest L"l' ’ /T

[1,3] becomes asymptotically exact [10], resulting in the g(e) = = i . 2
semielliptical shape of the LL. For a smooth disorder, with 2w 7 [2/y7) [ dxe” P + 1
correlation length larger than the magnetic length, all diaThe magnetic field dependence of the widitlis I' o /B.
grams are of the same order of magnitude, but magnetigiore precisely, for the correlator of the random potential
phases, caused by self-intersections, become small. Theyr) of the form (V(r)V(r))) = y&(r — r'), one has
origin of these phases lies in an uncertainty in the positio = (y/27/2)!/2. An alternative derivation of Wegner’s
of the center of the Larmour orbit. With phases droppedresult was given by Brézin, Gross, and Itzykson [7] in the
the entire perturbation series can be summed up, leadifgamework of functional-integral approach.
to the Gaussian shape of the LL [14]. Consider now a system consisting of two parallel 2D
For low LL numbers and short-range disorder, thejayers. In the absence of a disorder and magnetic field, a
magnetic phases in diagrams are of the order of unity. Aunnel coupling between the layers would cause a splitting
small parameter appears in the problem only if the energyf size quantization levels by an amount 2f  being
& is much larger than the LL width’, making possible the tunnel integral. In a perpendicular field, the spectrum
a calculation of the density of states (DOS) in the LLof the system represents two staircases of LL shifted in
tails. Such calculations were carried out in the frameworkenergy by2:. Assume that the field is strong, so that
of the instanton approach [4,5,8,10-12,17], and the tailthe cyclotron energy is much larger than If a disorder
were shown to be Gaussian. In the domain- I' the s present in the layers, the shape of two adjacent LL's
problem has no small parameter and no simplificationglepends on the ratid'/z. If this ratio is large, then
are possible. However, for the lowest LL the exact DOSihe tunneling does not play any role, so that the DOS is
was found by Wegner [6] for arbitrarg/I. Wegner twice the DOS in an individual layer (2). In the opposite
has shown that diagrammatic expansion of the disordecase,s > I, the peaks in the DOS, corresponding to
averaged Green functio@(e) can be mapped onto that the symmetric and antisymmetric states, are broadened
of the zero-dimensional complex! model with partition  jndependently; they are distanced By and their shape
function Z(()l) given by a simple integral is described by (2) with the widti"/+/2 [18]. Factor
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the symmetric (antisymmetric) state]ig,(r) = V,(r)]/2, RAEEERN
where Vi(r) and V,(r) are the potentials in the layers. s )
If (Vi(r)Va(r')) = 0, the correlator for each effective iJi ji ok i Ji k
potential appears to be twice as small as that for an (@) ©
individual layer. e -
For I' ~ ¢, calculation of the DOS in a double-layer N I
system seems to pose an even harder problem than for = L
a single layer, since here the DOS represents a two- ' 7/ K& Ji Kkl
parametric functiongq(e/T",¢/T"), with both arguments ) )
of the order of unity. Nevertheless, as we demonstrate ‘
below, for the lowest LL the exact DOS can be obtained™!G. 1. First (a) and second (b) order diagrams for the Green
in a closed form by generalizing Wegner's approach unction mapped on graphs (c) and (d), respectively.
Moreover, such a generalization can be carried out for an
arbitrary number of layers, and, in particular, we consider
the case when the number of layers is infinite (superlattice)s that all F") areexactly the same as those for a single-
In the absence of a disorder, each LL in a superlattice givelgyer.
rise to a miniband of a widtz. Gradual switching on ~ The mapping is carried out following Wegner's pre-
a disorder first smears out the singularities in DOS at th&cription: One identifies pairs of points in a diagram con-
edges of the miniband and then,Jagxceeds, transforms  nhected by dashed lines, and one gets a graph with four
the DOS into a single peak corresponding to an individualines entering each vertex [see Figs. 1(c) and 1(d)]. In
layer. We derive an integral equation the eigenvalue ofloing so, one obtains, in general, a set of diagrams yield-
which determines the DOS in a superlattice, and trace thi§)g the same graph. It is clear, however, that since as-
transformation by solving it numerically. signing indices to the lines does not alter in any way the
Consider first a double-layer system. The free Greefiopology of diagrams or graphs, the number of diagrams
function represents 2 X 2 matrix which, after projecting in a setis the same for both single- and double-layer cases.

1/+/2 appears because the effective random potential for @

onto the lowest LL, takes the form Moreover, one observes that the contractions of matrices
o 0 (r — r') i #; precisely follow the identification of points [as it can
G(r,r') = Sy ex;{— 2t (r X l")] be seen, e.g., in Figs. 1(b) and 1(d)], so that all diagrams

in such a set are equal. The fundamental relation, estab-
(3)  lished by Wegner, is that for each diagram in the set one
A a1 A 0 ¢ hasF™ = 1/N s, where N is the number of diagrams
Q=(—-10", r= <t O)' (4) in the set and /s is the symmetry factor of the graphi§

The perturbation expansion fd, averaged ovel; and the number of permutations Ieaying grqph_ invariant). This.
V,, has the same diagrammatic representation as forf ctor is also unchanggd by assigning indices to the graph;
single layer. Lowest order diagrams are shown in'©" examplg, permutation of upper and lower lines 'Iea\_/es
Figs. 1(a) and 1(b). Solid lines correspond &8 and graph 1(d) invariant in both cases. Thus the contribution

/ i i () i -
dashed lines correspond to the correlator of the rando ftrt'e St(ejt,thbemg g)lroportlo_nal tg\fF nt’ is N mgllepen ional
potential. Solid lines carry indices, reflecting the fact that.el'zj’tﬁn € Pl'f €m again re UC?.S oa zehrot-hlmens'lqna
an electron can tunnel from one layer to another betweeﬂe eory. € remaining question 1S whether matrix

two successive scattering acts. Since the scattering retaiﬁg)dmtS of type (6) can be generated in the perturbation

an electron in the same layer, the indices at the endgXpPansion of some generalized model. Our main ob-

of each dashed line coincide. Introducing projectingservation is that the model with the partition function
torss; , A 2 ,

OPeratorsr as 7y = [ do*dd ex;{i(l)*Q_l(I) B Z(@*T,-@)Z}

. _ (1 0) N =<O 0 (5) 4 4

T1 0 0/ 72 0o 1)’ (7)

the expressions corresponding to diagrams (a) and (b) Caeﬂ:complishes this task. Herd and 77 are matrices

be written in the form defined by (4) andb is atwo-componentomplex field
G = g2 Z(Q’ﬂ@ﬂ@), @ = (¢1. ¢2). Indeed thesth order term in the expansion
7 of exponent (7) in terms of? represents a product af
£ _ 2)pa N A A A A (6) matrices?; (with all pairwise contractions) separated by
GY =F7T Z(QTiQTj 710%;0), 2n products of the fornbd*. Then the Gaussian integral
H over @ inserts the “Green function) = —i(®®*) in
whereF") andF are spatial integrals. Similarly, spatial place of each pair of field® and ®*, with all possible
integrals in higher order diagrams are separated out antractions between them yielding all thgh order
factors in front of products of matricésand#,. Important  graphs with appropriate symmetry factors.
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Having the mapping established, the DOS in a double-
layer system can be calculated directly from (7). Itis also

instructive to rewriteZ(()z) in a different form. First, we
decouple the quartic term in the exponent of (7),

is =

.. r ., . .
[lsqo}qoj - 7(90}90,-)2} — it(pTe2 + @r01),
J

(8)

with the help of the Gaussian integral over a pair of

auxiliary variables. Performing the remaining integral
over ¢; we then obtain

@ Gm)? (7 (7 dAdie N/
ZO ) — 5 ] ] 1 2 —. (9)
7TF -0 J—mw (8 + )\1) (8 + /\2) t

From the form (9) both limiting cases of large and small
are evident. For small, the partition function factorizes,
7P = (Z\"y2, yielding twice the DOS (2). For > T
the characteristic values of;, A, in (9), being of the
order of I', are much smaller than This allows one
to neglect the produch; A, in the denominatorz(()z) is
not small only if(e = r) ~ I'. Introducing new variables
m+ = A £ Ay, the integral ovep - contributes a factor
V27T, and the integral ovep, reproduces Wegner's
result with the width" /+/2, as discussed above. Evolution
of the DOS between two limits is shown in Fig. 2(a).

Let us now turn to a superlattice. The partition function

(7) can be straightforwardly generalized idayers with
nearest-neighbor tunneling

n n 2 n
(n) . . r .
Z()’Z :] l_!d2g0i eXF{lSZ‘iQDjQDj - T Z‘i(gojgoj)z
i= j= j=

n—1
— it Z(gojgojﬂ + GD;HGDJ‘)]
j=1
(10)

We are interested in the asymptotic behaviofzéﬁ)(s, I

asn — . For this purpose we employ a method similar toof g,
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FIG. 2. (a) DOS per layer for a double-layer system in units

(2 ?)~'T'"! for values oft/T" = 0.0 (highest curve),

the transfer-matrix method in the theory of 1D spin chains9.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8,

Note that the expression (10) fZ(()") can be rewritten as
(n) . * I? % %
Zy = [ d*¢ eXP[lSéo - (e 40)2}1”(90 . 9),

(11)
where I = 1 and the functionsl,(¢”, ¢) satisfy the
following recurrence relation

In+1(<P*s QD) = Aa,FIn

o r
fdzgolexﬁ{w%% - 7(901%)2

oo + o) el e, (2
Consider now the eigenvalues(:)r and eigenfunctions
fo)r(go*,go) of the operatori,r: T,rQ® = AWQ®,
Assume thati© has Ehe maximal absolute value. Then
in the limitn — o, Z"~ will behave agA®)". Hence the
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and 3.0, respectively. (b) DOS per layer for a superlattice in
units ofg, = (271?)~'(2¢)~! for values ofl"'/2¢t = 0.1 (highest
curve), 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.4,1.6, 1.8,
and 2.0, respectively.

DOS per layerin a superlattice can be expressed through
AE,O)F as follows:g (e, T) = 2721%) 19In A%/ de.

Consider first the case of a vyeak disordler—» 0. One
can check that eigenfunctions 6f, have the form

eima—(is+x/4t2—sz)R2/2(R2\/4t2 — g2 )m/Z

x L2(RW4 = ¢2), (13)

whereR anda are, respectively, the absolute value and the
phase ofp, and L} (x) is the Laguerre polynomial. The

corresponding eigenvaluas’y™ equal

(pm)
e,0 -

Q

(pm) _ ﬂ( 2it >2p+m+1 (14)
#0 t \ig — 412 — g2 ’
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where square root is defined &s' sgr(e) V&2 — 4¢2 for  exact in both limits. The numerical results for the DOS,
le] > 2¢. Outside the intervale| < 2r, the phases of obtained with the use of® (19), are shown in Fig. 2(b).
eigenvalues (14) have no energy dependence, supportivge see that the miniband is completely destroyed’ 4s

the obvious observation that the DOS is zero outside thexceedd .4.

miniband. Within the miniband, alk(?»"")(g, 0) have the Note in conclusion, that a decade ago there was a
same absolute value. This is a manifestation of the facsignificant interest in transport in multilayer systems in a
that for a large but finite number of layers the DOS instrong magnetic field [19,20]. Recently, this interest was
the absence of disorder represents a set of delta peakenewed [18,21]. The focus of the study is a transition
However, with arbitrary weak disorder present, only thefrom a purely 2D to the 3D behavior of the conductivity
eigenvalueA®9 (g, 0) will survive in the limit n — o,  with increasings. As was shown in [22], the structure

yielding the familiar result of electronic states in a multilayer system can be tuned by
910 200 | tilting magnetic field. For the lowest LL, the role Bf (the
272 1%g4(e,0) = Im &0 - - (15) parallel component oB) reduces to the renormalization
de Varr — g2 of . The renormalized tunneling differs from r by
Assume now that the disorder is finite bit< 7. Itis the overlap integral of two oscillator wave functions with
convenient to formally present the operafqr as the centers displaced by an amount proportionaBfo
Concerning our results, one can check that they apply in
A200 = 7,009 = d_Eef(E—s)z/FfE QY the presence a8y after replacing by 7.
5 5 > 5 \/EI‘ B 5
(16)
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1978)].
generates the first approximation for the funct(()ﬁ))r, [3] '(I' Anélo, A.B. Fowler, and F. Stern, Rev. Mod. Phye,
0 | e (00 (00) 437 (1982).
Q.r = — 0 f dEe (E—e//T Apo Qpo . (17) [4] L.B. loffe and A.l. Larkin, Zh. Eksp. Teor. Fi81, 1048
JTlAgr (1981) [Sov. Phys. JETB4, 556 (1981)].
o _ _ _ _ [5] I. Affleck, J. Phys. C16, 5839 (1983).
Substituting this function back into (16), we obtain [6] F. Wegner, Z. Phys. B51, 279 (1983).
.~ 1 [7] E. Brézin, D. Gross, and C. Itzykson, Nucl. Ph§235
TerQer = ——r f dE [ dE' 24 (1984).
Ll [8] 1. Affleck, J. Phys. C17, 2323 (1984).
CE a2 T2 (2 /T2« (0.0) A 0.0 [9] K.A. Benedict and J.T. Chalker, J. Phys. 18 3981
X e (EeR T RO, L0 (18) (1985):ibid. 19, 3587 (1986).

) L 10] K. A. Benedict, Nucl. PhysB280, 549 (1987).
Note now thath)[%) as a function of£’ changes signifi- {11} W. Apel, J. Phys. 0, L§77 (1987). (1987)

cantly on the scal&’ ~ . On the other hand, exponential [12] K. B. Efetov and V. G. Marikhin, Phys. Rev. 80, 12126
factors in (18) enforce the difference betwegemndE’ to (1989).

be of the order of". This allows one to replacﬁg:g) by [13] V.A. Geiler and V.A. Margulis, Zh. Eksp. Teor. Fi25,

(0,0) : : : 1134 (1989) [Sov. Phys. JET#B, 654 (1989)].
Qg under the integral. Then we immediately observeTM] M.E. é(aikh)a[nd TV )éhahbazyan P(hys. I%]e\AB 1522

that the right-hand side takes the foﬁﬁ)rﬂf)r with (1993).
0 2 w o (E—e)?/T? [15] S.A.ZGredggslzuggg.)Avishai, and M. Ya Azbel’, Europhys.
Aoy = E — . (19) Lett. 21, 489 (1993).
€ JrlU ) a2 — E2 — iE [16] Y. Avishai, M.Ya. Azbel’, and S.A. Gredeskul, Phys.

T Rev. B48, 17280 (1993).
In other words, for small’ the function{), satisfies [17] M. Zusman, Y. Avishai, and S.A. Gredeskul, Phys.

(16) yielding the eigenvalue (19). In principle, to assess  Rev. B48, 17 922 (1993).

the region of largd™ one should keep iterating Eq. (16). [18] E.S. Serensen and A.H. MacDonald, Phys. Rev543
However, as we have established numerically, the function =~ 10675 (1996); T. Ohtsuki, B. Kramer, and Y. Ono,
0O is already a very good approximation f6¥© and J. Phys. Soc. Jpii2, 224 (1993).

19 is a very good approximation fox® not only for a [19] H.L. Stormeret al., Phys. Rev. Lett56, 85 (1986).

small, but also for amrbitrary ratio T'/7. Indeed, ad’/; 1201 S-E. Ulloa and G. Kirczenow, Phys. Rev. L&, 2991

increases, one should reproduce Wegner’s result, Whicﬁl] \(]13862:}1alker and A. Dohmen, Phys. Rev. Lat5, 4496

corresponds ta = 0 and Q© = const. On the other (1995)
hand, it is easy to see tht® tums to constantas— 0,  [22] J. Hu and A.H. MacDonald, Phys. Rev 86, 12554
and that in this limitA® turns toZy. Thus Eq. (19) is (1992).

5109



