
VOLUME 77, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER1996

4-5506

y

5102
Phase String Effect in a Doped Antiferromagnet
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Based on thet-J model, it is shown that a hole moving on an antiferromagnetic spin background
always induces a phase-string effect. Such a previously unnoticed phase string is revealed by explicitl
tracking the Marshall sign and can be rigorously shown to be nonrepairable at low energy. Its quantum
interference can drastically modify the long-wavelength behavior of the doped hole, leading to a
vanishing spectral weightZ at the ground-state energy. Implication for finite doping is also discussed.
[S0031-9007(96)01864-9]

PACS numbers: 71.27.+a, 74.20.Mn, 75.10.Jm
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A hole injected into a two-dimensional (2D) antiferro
magnet has been studied extensively [1–3] based on
t-J model. It is well known that a string of spin mis
matches left by the hopping of the injected hole on t
spin background can be repaired through the spin fl
process. Consequently the hole is believed to be m
bile without a confining potential linearly proportiona
to the length of the path. However, whether such
mobile hole can be described as a quasiparticle is s
controversial.

The key issue [4] involves the spectral weightZ at
the ground-state energyEG . ZsEGd fi 0 means a finite
overlap of the “bare” hole state with the true ground sta
It implies that the real hole in the ground state behav
like a spin polaron with the bare hole carrying a sp
distortion around it. IfZsEGd ­ 0, then each injected
hole will cause a global adjustment in the original groun
state with a breakdown of the perturbatively treatab
quasiparticle picture. The main difficulty in this problem
arises from the fact that as different from the usu
phonon-polaron picture, SU(2) spins are involved he
and a U(1) phase plays an important role in shaping
long-distance part of a spin polaron withlittle energy cost.
The spectral weightZsEGd at the ground-state energy
is particularly sensitive to such long-wavelength, low
energy correlations in the system. Even though ex
diagonalization calculations on small lattices [2,3] hav
indicated a quasiparticle peak at the energy bottom of
spectral function, when the lattice size goes to infinity
is hard to tell whether such a quasiparticle peak wou
still stay at the lower end of the spectra or there cou
be some weight (e.g., a tail) emerging below the pe
which vanishes at the ground-state energy [such t
ZsEGd ­ 0]. Therefore, a more accurate approach wou
be desirable in order to get access to this long-distan
regime. In this Letter, by explicitly tracking the Marsha
sign, we show that the injected hole always has to pi
up a sequence of signs (phases) from the quantum s
background. In contrast to the well-known repairab
string defect of spin mismatches, we find that the pha
string revealed herecannotbe dynamically “eliminated”
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through the low-lying spin dynamics. Consequently,
dramatically modifies the long-wavelength behaviors
the doped hole. In particular, the spectral weightZsEGd
has to vanish due to such a nonrepairable phase-st
effect.

Let us start with the undoped case. It is described
the superexchange Hamiltonian

HJ ­ J
X
kijl

∑
Si ? Sj 2

ninj

4

∏
, (1)

which is equivalent to the Heisenberg model as t
electron occupation numberni ­ nj ­ 1. According
to Marshall [5], the ground-state wave function of th
Heisenberg Hamiltonian for a bipartite lattice is real an
satisfies a sign rule. This sign rule requires that a
flips of two antiparallel spins at nearest-neighboring sit
are always accompanied by a sign change in the wa
function: i.e.,"#! s21d #". Such a Marshall sign rule may
be easily understood as below. Suppose that one ha
complete set of spin baseshjflj with the built-in Marshall
sign. It is straightforward to verify that matrix element
of HJ become negative definite:kf0jHJ jfl # 0. Then,
for the ground statejc0l ­

P
f xfjfl one finds that the

coefficientxf should be always real and positive (exce
for a trivial global phase) in order to reach the lowe
energy. It means that the Marshall sign is indeed the o
sign showing up in the ground state.

There can be many ways to incorporate the Marsh
sign into theSz-spin representation. We may divide
bipartite lattice into even (A) and odd (B) sublattices and
assign an extra sign21 to each down spin atA site.
In this way, flips of two nearest-neighboring antiparall
spins always involve a down spin changing sublattice
and thus a sign change. Of course, this is not a uniq
way to incorporate the Marshall sign in the spin bas
but it will be quite useful bookkeeping once a hole
introduced into the system. Such a spin basis with o
hole can be defined as

jf; sndl ­ s21dN
#
A j " . . . #" ±. . . #l , (2)
© 1996 The American Physical Society
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with n denoting the hole site andN
#
A as the total number

of down spins atA sublattice. It is easy to check that

kf0; sndjHJ jf; sndl # 0 . (3)

It means that the Marshall sign rule would be still satisfie
if the hole is fixed at a given siten.

Now we consider the hopping of the hole. The hoppin
process is governed byHt in the t-J model which is
defined by

Ht ­ 2t
X
kijl

c
y
iscjs 1 H.c., (4)

where the Hilbert space is restricted by the no-doubl
occupancy constraint

P
s c

y
iscis # 1. Suppose that the

hole initially sitting at site n hops onto a nearest-
neighboring sitem. The corresponding matrix elemen
under the basis (2) can be easily found to be

kf0; smdjHtjf; sndl ­ 2t 3 sm , (5)

where sm is the site-m spin index in the statejf; sndl
and f0 is different fromf by an exchanging of the spin
sm with the hole at siten. Sincesm ­ 61, the hopping
matrix element is not sign definite. In other words, th
hopping process will lead to the violation of the Marsha
sign rule in the ground state. In the following, we sha
explore this phase “frustration” effect in detail.

We define a bare hole to be described bycisjc0l.
One can track its evolution by studying the propagat
G1ss j, i; Ed ­ kc0jc

y
jssE 2 Ht-J 1 ihd21cisjc0l, with

Ht-J ­ Ht 1 HJ andh ­ 01. To separate the hopping
and superexchange processes, one may expandG1s in
terms ofHt as follows:

G1ss j, i; Ed ­ kc0jc
y
jssGJ 1 GJHtGJ 1 . . .dcisjc0l ,

(6)

where GJ ; sE 2 HJ 1 ihd21. The bare hole state
can be written ascis jc0l ­ ssdi

P
f xfsisdjf; sidl where

fsisd refers to any possible spin configurations with
fixed spins at site i, and if s ­ 21, ssdi ­ s21di ­
21 at A-sublattice site and11 at B-sublattice site.
Then, by inserting the complete set of the basis (2)
intermediate states, one obtains

G1ss j, i; Ed ­ ssdj2i
X

sall pathsd

X
sall statesd

xf0s jsdxfsisd

3 Tijshfjd
KijY
s­0

kfs11; smsdjGJ sEd jfs; smsdl ,

(7)

where jfs; smsdl and jfs11; smsdl describe two different
spin configurationshfsj and hfs11j with the hole sitting
at sitems on a given path connecting sitesi andj: m0 ­
i, m1, . . . , mKij

­ j [hereKij is the total number of links
for the given path, andf0 ; fsisd, fKij11 ; f0s jsd].
d

g

-

e
l
l

r

s

Tij is a product of matrices ofHt which connectshjfs11
smsdlj

with hjfs11
sms11dlj for such a path:

Tijshfjd ­
KijY

k­1

s2tdsmk , (8)

wheresmk
denotes the instant spin state at sitemk right

before the hole hops to it.
We may further writeG1ss j, i; Ed in a more compact

form, namely,

G1ss j, i; Ed ­ 2 ssdj2i
X

sall pathsd

3
X
hfj

Wpathfhfjg

√ KijY
k­1

smk

!
, (9)

where the summation overhfj means summing over al
the possible spin configurations in the initial and final
well as intermediate states. HereWpathfhfjg is defined by

Wpathfhfjg ­
1
t

xf0s jsdxfsisd

KijY
s­0

s2td

3 kfs11; smsdjGJsEd jfs; smsdl . (10)

In the following, we prove thatWpathfhfjg is always
positive definite near the ground-state energy. To de
mine the sign ofkfs11; smsdjGJ sEd jfs; smsdl, one may
expandGJ as follows:

GJsEd ­
1
E

X
k

Hk
J

Ek . (11)

Note that kfs11; smsdjHk
J jfs; smsdl ­ s21dkjkfs11;

smsdjHk
J jfs; smsdlj [one may easily show it by writing

Hk
J ­ HJ ? HJ ? . . . and inserting the complete set of (2

in between and using the condition (3)]. Then one find

kfs11; smsdjGJsEd jfs; smsdl

­
1
E

X
k

jkfs11smsdjHk
J jfs11; smsdlj

s2Edk
, 0 , (12)

if E , 0. Of course one still needs to determine th
convergence range of the expansion. By inserting
complete set of eigenstates as intermediate states
is easy to see thatkfs11; smsdjGJ sEd jfs; smsdl is an
analytic function ofE except for a branch cut on the
real axis covered by the eigenvalues ofHJ (with a hole
fixed at sitems). This analytic property will guarantee
the convergence of the expansion (12) in the whole reg
of E , E0

G , 0 on the real axis, whereE0
G is the lowest

energy of the eigenvalues ofHJ with the hole fixed on
a lattice site. We note thatE0

G is always higher than
the true ground-state energyEG of Ht2J , where the hole
is allowed to move around to gain its kinetic energ
Thus, near the ground-state energyEG, one always has
Wpathfhfjg $ 0.
5103
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Therefore, we see in (9) that the hole has pick
up a sequence of signs

QKij

k­1 smk
­ s61d 3 s61d 3

. . . 3 s61d from the spin background. A sign-defini
Wpathfhfjg in the propagator (9) means that the sp
background cannot produce any phases to “compens
such a phase string. This subtle phase-string effect
been overlooked before, but is expected to play a cru
role in determining the long-wavelength behavior of t
hole, due to its nonrepairable nature.

Since Wpathfhfjg is sign definite, one may intro
duce the following weight functional:rpathfhfjg ­
Wpathfhfjgy

P
sall pathsd

P
hfj Wpathfhfjg, which satisfies

the condition
P

sall pathsd
P

hfj rpathfhfjg ­ 1. Then the
propagatorG1s can be expressed in the following form:

G1ss j, i; Ed ­ G̃1ss j, i; Ed

* KijY
k­1

smk

+
, (13)

where

G̃1ss j, i; Ed ; 2ssdj2i
X

sall pathsd

X
hfj

Wpathfhfjg , (14)

and* KijY
k­1

smk

+
;

X
sall pathsd

X
hfj

rpathfhfjg

√ KijY
k­1

smk

!
. (15)

G̃1ss j, i; Ed defined in (14) may be regarded as the sing
hole propagator under a new HamiltonianH̃t-J obtained
by replacing the hopping termHt in the t-J model
with H̃t , whose matrix element is negative definite (2t)
without the extra sign problem shown in (5).

Thus the nonrepairable signs picked up by the h
are sorted out in (13) and the real hole propaga
is modulated by a superposition of phase strings fr
different paths under all possible spin configurations.
the following we give a general argument thatk

QKij

k­1 smk l
has to vanish atji 2 jj ! `.

We may reexpress the phase-string factor for a gi
path as follows:

KijY
k­1

smk ­ s21dN
#

path , (16)

where N
#
path denotes the total number of# spins “ex-

changed” with the hole as it moves fromi to j. Notice
thats21dN

#

path1N
"

path ; s21dj2i which is independent of th
path and thus the system is symmetric about" and# spins.
Such a phase-string factor defined in (16) is quite sin
lar as it changes a sign each time when the total num
of N

#
path increases or decreases by one, no matter

long the path is. Therefore, its average crucially depe
on the total number fluctuating ofDN

#
path ­ 2DN

"
path

(DNs
path ; Ns

path 2 N
s
path). Here the number fluctuatin

is due to different spin configurations encountered by
hole (each spin flip gives rise toDN # ­ 61). Even in
the presence of the long-range spin order in the ther
5104
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dynamic limit zero-point fluctuations are always prese
which means that the hole still gets to see a large fluct
tion of N

#
path along a sufficiently long path.

One may distinguish two cases regarding the fluct
tion of DN

#
path at the limit of ji 2 jj ! `. One is that

kjDN
#
pathjl ! `, and the other is thatkjDN

#
pathjl , Os1d.

Generally one expects to seekjDN
#
pathjl ! ` as the result

that the “randomness” of spin flips on the path is accum
lated in this limit. On the other hand, one could not ru
out the possibility thatkjDN

#
pathjl , Os1d if there exists

a hidden symmetry in the system which guarantees
DN

#
path does not grow up with the distance of the pa

namely, if " and # spins are paired up atshort distance
within the same path. In this way, the fluctuations due to
flips of those spin pairs will not changeDN

#
path, since a

down flip of an" spin is always accompanied by an up fl
of a # spin on the same path, even though the numbe
those “flips” can still increase indefinitely atji 2 jj ! `.
Then the total fluctuating numberDN

#
path could maintain

predominantly to be finite even in an infinite-long path.
this case,ks21dN

#

path l can remain finite: e.g.,ks21dN
#

path l ­

RekeipN
#

path l ø ReseipkN #

pathlde2 p2

2
ksDN

#

pathd2l , finite at
ji 2 jj ! `. This could happen in a one-dimension
case with anisotropic superexchange spin coupling
where there is only one nonrepeatable path connec
i and j and, at the same time," and # spins are all
short-ranged paired. In the 1D isotropic case, the s
excitation gap vanishes and the spin(on) pairs beco
quasilong ranged (power-law decay) [7] such that o
still finds kjDN

#
pathjl ! ` at ji 2 jj ! `. At two or

higher dimensions, even if spins are short-ranged pai
each pair cannot always be presentsimultaneouslywithin
the same path. Thus one generally finds that the ave
fluctuating ofN

#
path relative toN

#
path increases indefinitely

at long distances. AskjDN
#
pathjl ! `, the probabilities

for a N
#
path andN

#
path ! N

#
path 6 1 become indistinguish-

able in this “thermodynamic” limit. Consequently, th
averageks21dN

#

path l has to vanish atji 2 jj ! `.
Therefore, in a general caseG1ss j, i; Ed will always

decay, at least, in the speed thatk
QKij

k­1 smk l decays at
large distance (note that̃G1ss j, i; Ed as a propagator may
either decay to zero or become stationary atji 2 jj !

`). In particular,G1ss j, i; Ed decays at the ground-stat
energyE ­ EG . It meansZsEd ­ 0 at E ! EG . To
see it, let us consider the imaginary part ofG1ssk, Ed in
momentum space, which is given by

Im G1ssk, Ed ­ 2p
X
M

ZksEMddsE 2 EMd , (17)

where the spectral weightZk is defined as

ZksEMd ­ jkcM jcks jc0lj2, (18)

with jcMl andEM denoting the eigenstate and energy
Ht-J in the one hole case. The corresponding real-sp
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form of (17) may be rewritten as

G00
1ss j, i; Ed ­ 2p

X
k

e2ik?sxj2xidZksEdrsEd , (19)

where rsEd ­
P

M dsE 2 EMd is the density of states
and hereZk is understood as being averaged overM at the
same energyE. The spectral weightZksEd describes the
overlap of the bare-hole statecksjc0l with real eigenstates
at energyE. One may defineEk as the lower-bound
energy for nonzeroZksEd at each momentumk. In
particular, if the overlap of the bare-hole state with t
ground state is finite,Ek reaches its minimum at th
ground-state energyEG at k0 determined byEk0 ­ EG. If
low-lying excitations can be classified as quasiparticleli
one must have a finite spectral weight at the grou
state and its vicinity. In this case,G00

1s should become
extended (without decay) at large scale ofjxj 2 xij when
E ­ EG , if only discrete k0’s are involved atEG (a
continuum of k0’s would mean a dispersionless of th
quasiparticle spectrum which implies an infinite effecti
mass and localization of the hole). Therefore, for
mobile quasiparticle case,G00

1s should become sufficiently
extended at largejxi 2 xj j if E is close enough toEG [8].

The nonperturbative nature of the present problem
clearly shown in the propagator (13) where each path
weighted by the phase string. The larger the dista
is, the longer the phase string is, and the latter can
be simply broken up into some disconnected “diagram
The conclusion thatZ ­ 0 at E ­ EG means that there
is no overlap between the bare hole statecisjc0l and the
true ground state. The doped hole will have to indu
a global adjustment of the spin background in ord
to reach the ground state. In other words, by start
from cisjc0l, one cannot get access to the ground st
perturbativelyas there is no zeroth-order overlapping.
is also noted that conditions (3) and (5) are crucia
responsible for the nonrepairable phase-string effec
(13). They are related to the intrinsic competitive effe
of the t-J model. On the other hand, the property
jc0l as the ground state of the undoped antiferromag
actually does not play a crucial role here. Hence,
whole argument aboutZsEGd ­ 0 should still remain
robust at least in the weakly doped case. At finite dopi
an additional phase due to the fermionic statistics am
holes will appear in the matrix (5), but such a sig
problem should not invalidate the afore-discussed pha
string effect at least in the small doping case. Thus
order to correctly understand the long-wavelength, lo
energy physics of thet-J model, a non-perturbative
minded approach should becomenecessary. Of course,
ZsEGd ­ 0 itself does not tell how the nonperturbativ
approach should be pursued. One has to go bac
the original source, i.e., the phase-string effect indu
by the hopping, which causesZsEGd ­ 0. In the one-
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dimensional case, the key role of the phase string
determining the correct Luttinger-liquid behaviors ha
already been shown [7]. In the 2D finite-doping case, t
phase string effect implies a nonlocal exotic interacti
between the charge and spin degrees of freedom.
shall explore the consequences of this effect elsewhere

In conclusion, we have demonstrated the existen
of a singular phase-string effect induced by hopping
the one hole case for a general dimensionality. Su
a string phase picked up by the hole from the sp
background is shown to be nonrepairable by the low-lyi
spin dynamics, and thus its quantum interference at lo
distance dramatically changes the single hole’s behav
We have found that the phase string generally leads
a vanishing spectral weight: i.e.,ZsEGd ­ 0, implying a
nonperturbative nature of the doped antiferromagnet.
also point out that the phase string is an intrinsic prope
of the t-J model which should be present as well at fini
doping.
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