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We introduce a self-organized surface growth model2ir- 1 dimensions with an anisotropic
avalanche process, which is expected to be in the universality class of the anisotropic quenched Kardar-
Parisi-Zhang (KPZ) equation with alternative signs of the nonlinear KPZ terms. It turns out that the
surface height correlation function in each direction scales distinctively. The anisotropic behavior is
attributed to the asymmetric behavior of the quenched KPZ equationtinl dimensions with respect
to the sign of the nonlinear KPZ term. [S0031-9007(96)01888-1]

PACS numbers: 68.35.Fx, 05.40.+], 64.60.Ht

The subject of the pinning-depinning (PD) transitionterm is induced under coarse graining of the quenched
by an external driving force has been of much interestandom force with amplitudeﬁ}f and AY? in the

recently. The problems of the interface growth in porousgirection and in ther direction, respectively, whet, >
media under external pressure [1], the dynamics of & .. On the other hand, one may consider the case in
domain wall under random field [2], the dynamics of2 + | dimensions that the amplitudes of random force
a charge density wave under external field [3], and theyre anisotropic on a substrate, that A, > A in one
vortex motion in superconductors under external currengjirection of the substrate anl, < A, in the other. In
[4,5] are typical examples. In the PD transition, theresych a case, following [8], the coarse-grained Langevin
exists a critical valuer. of the driving forceF, such  equation is expected to take the form of the anisotropic

that whenF < F,, interface (or charge, or vortex) is QKPZ (AQKPZ) equation given by
pinned by disorder, while fof" > F., it moves with

constant velocity. The velocityv plays the role of order ah = 1/||(?2h + v, 02h + ﬂ(a”h)z + A—L(alh)z
parameter in the PD transition, which behaves as I + 2 2
v~ (F—F). (1) + F + q(r,h), 3)
Recently, several stochastic models for the PD transi;, .
. o Lo . with Ay > 0andi; < 0.
tion of interface growth in disordered media have been I -

introduced [6,7]. It is believed that the modelslint+ 1 In this Letter, we study the surface of Eq. (3) by

. ; . _introducing a self-organized stochastic model. The
dimensions are desc_rlbed by the quenched Kardar'Par'%'niversalig class of ﬂ?e stochastic model is checked by
Zhang (QKPZ) equation comparing surface properties with those obtained from
a,h = va’h + i(axh)z +F + n(x,h), @) di_rect numerical integration of Eq. (3). As shown in
2 Fig. 1, the surface of Eq. (3) &. forms the shape of a
where noisen depends on position and heightr with  mountain range with a steep inclination in one direction,
the properties ofn(x,h)) = 0 and(n(x,h)n(x’,h')) =  whereas it is gently sloping in the other direction. Ac-
2D6&(x — x")8(h — K'). The QKPZ equation exhibits cordingly, the roughness exponents of the height-height
the PD transition atF.. The surface atF. can be correlation functions in each direction scale distinctively,
described by the directed percolation (DP) cluster spanneghich leads to a new universality class. This result is
perpendicularly to the surface growth directionlint 1~ remarkable as compared with the case of the thermal
dimensions. The roughness exponendf the interface noise. For the thermal case, the height-height corre-
is given as the ratio of the correlation length exponentdation function is isotropic, and the anisotropic KPZ
of the DP cluster in perpendicular and parallel directionsgquation in2 + 1 dimensions renormalizes into the
thatis,a = v, /v = 0.63. Edwards-Wilkinson equation [9]. This is because for
The origin of the nonlinear term in the QKPZ equationthe case described by the KPZ equation with thermal
is different from that of the thermal KPZ equation with the noise, the sign of the nonlinear terms is irrelevant in
noise n(x, r) [8]. For the quenched case, the nonlineardetermining the universality class [10], and the two
term is induced by the anisotropic nature of disorderedhonlinear terms with different signs are canceled out
media, while for the thermal case, it is induced byeffectively [11]. However, for the quenched case, the
lateral growth, and thus the coefficieatis proportional anisotropic surface morphologies of Fig. 1 imply that
to the velocity of the interface, which vanishes at thesuch cancellation does not occur and the QKPZ equation
threshold of the PD transition. For surfaces belongings asymmetric with respect to the sign of the nonlinear
to the DP universality class, the positive nonlinear KPZKPZ terms. Accordingly, in this Letter, we also study
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FIG. 1. A typical surface configuration of the AQKPZ equation generated by (a) the stochastic model and (b) direct numerical
integration at the transition point.

the QKPZ equation with negativa in 1 + 1 dimen- First, we study the QKPZ equation with < 0 in
sions, which enables one to understand the anisotropit + 1 dimensions by direct numerical integration with the
nature of the AQKPZ equation i + 1 dimensions. discretized version,

h(x,t + At) = h(x,t) + At{h(x — 1,0t) + h(x + 1,7) — 2h(x,1) + %[h(x + 1,t) — h(x — 1, + F}

+ (AP E(x, [h(x, 1)]) 4)

where [--] denotes the integer part ar@is uniformly | examined the noise distribution on perimeter sites. It re-
distributed in [—%, %]_ The prefactor(Ar)?3 of the veals that the pinning is caused by relatively large pinning
noise term arises from approximately coarse graining thetrengths around the site where the height is minimum.
noise n(x, ) during the time intervalAz. Numerical The flatness on the inclination makes the tefnh)?
integration using Eq. (4) foh = 1 andAr = 0.01 yields, large, which with the large pinning strengths compensates
even for a modest system sizelof= 103, the roughness the external driving force. Thus the growth velocity be-
exponenta = 0.63, which is consistent with the value comes zero, and the surface is pinned. Since the surface
of the DP universality. Note that the use of the usualpinning is caused mainly by the barrier of the pinning
prefactor (Ar) requires a much larger computational strengths around the site of minimum height, the growth
cost to obtain the DP value ofr [12,13]. Details Velocity exhibits a sudden jump as the barrier is overcome
for the derivations of Eq. (4) and the result of the
direct numerical integration fox > 0 will be published
elsewhere [14].

For the case ofi < 0, we performed the numerical in-
tegration withA = —1 and Ar = 0.01 for convenience.
Figure 2 shows typical surface configurations evolved
temporally at the PD transition poink,. = 1.98, which
exhibits the shape of a mountain with a flat inclination in
the pinned state. The surface in the pinned state looks |
similar to that of model A by Sneppen [15], and the shape
of the surface determines the roughness exponent to be [
a = 1. Note that the RSOS restriction before deposi-
tion in model A of Sneppen does not allow the particle
to deposit in every site, which makes the growth veloc-

ity reduced, and results ih < 0 [16]. Accordingly, it is , .
FIG. 2. Temporally evolved surface configurations of the
reasonable to have the surface morphology as shown BKPZ equation withA <0 in 1+ 1 dimensions at the

Fig. 2 for the QKPZ equation with negativg which is  pinning-depinning transition point. Successive height profiles
different from the one forA > 0. In addition, we also are shown at constant time intervals.
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FIG. 3. The growth velocity versus force for the QKPZ 0 0 0 0
equation with negativa in 1 + 1 dimensions.

by Increasmg'the' external driving fordé AcgorQIngly, FIG. 4. The configuration of a substrate with one step along
the PD transition is of first order as depicted in Fig. 3. Ony 1oy for linear sizeL = 4. The avalanche process occurs in
the other hand, fon > 0, pinned sites are not localized, the ] direction.
but scattered, so that the PD transition is continuous.
Therefore the surface of the QKPZ equation lint+ 1 X
dimensions is asymmetric with respect to the sign of thelirection) is3 [8]. Using the tilt argument, it can be shown
nonlinear term. that our model includes alternative signs of the nonlinear
Next, we study the AQKPZ equation, Eq. (3),dm+ 1 terms, that isA) > 0 andA; <0 [17]. A typical sur-
dimensions by introducing a stochastic model. It is a natuface morphology is shown in Fig. 1(a). We measured the
ral extension of the RSOS model introduced previously byoughness exponents for the height-height correlation func-
the current authors to study the anisotropic thermal KPZions, Cj(r)) = (% > [h(x) — h(x + r||)]2> ~ rﬁ”‘” and
equa_tion [17]. The stochastic model is based on a coMe () ~ rivu_ The roughness exponents for each di-
bination of Sneppen’s model A fok < 0 and model B rection are obtained asj = 0.25(1) and &, = 0.75(1)
for A > 0, which is realized by assigning an anisotropic 55 shown in Fig. 5. We also measured the height fluc-
avalanch_e process. The .aqlvantage _of studying sqch tfation width, w2 = ﬁzr(hr CRR ~ L2 for > L
stochastic model is twofold: first, there is no need for fine-; |4 28 ¢, ; « L=, where the exponents, 8, andz
tuning of F to get the crltlcal state, and second, asyMbyre the roughness, the growth, and the dynamic exponents,
totic states can b_e readily reached for small system SIZ(?espectively, and. is the system size. It is obtained that
The model is defined on the checkerboard lattice, square _ 0.87(1), B = 0.80(1), andz is given asz = a/B.

lattice rotated by 45 Initially, we begin with a flat SU™  The values of the exponents are different from those of
face characterized by the height 0 on one sublattice anﬁl]e isotropic case i + 1 dimensions, wherer = 0.48
1 on the other (see Fig. 4). Random numbers are as- ’ '

signed to each site. At each time step, selected is the

site with the minimum random number among the sites 1509
.o . . | 1

(i, j) of which the two nearest neighbors(at+ 5,; — 3)

and(i — %,] - %) are higher. The site is updated by in-
creasing the height by 2. Next, the anisotropic avalanch 100 |k ]
process may occur on the neighboring sifés %,j + . ]

%) and(i — %,j + %). If their height is lower by 3 than X
that of (i, j), the height is increased by 2. The avalancheZ 10| X i
rule is then applied successively to the next rows in the© T L,

J direction until there is no change. The sites with in- T

creased height are updated by new random numbers. TI T
avalanche direction; direction, corresponds to thg
direction in Eq. (3). The anisotropic avalanche proces:
along the positivej direction is an interesting aspect of 0.1 L .
our model, which is a generalization of the model by "9 10 100
Maslov and Zhang [18] int@ + 1 dimensions. Such r

an anisotropic avalanche process is to be d'Stmgu'SheﬁG. 5. The height-height correlation functions in parallel

from the iSOtI’OpiC avalanche pI’OCGSS on tilted SUbStrateS, i(lbwer data) and perpendicu]ar (upper Ones) directions for the
which the roughness exponent along the tilt direction ( AQKPZ stochastic model ia + 1 dimensions.
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1.2 . ; behavior, which is due to the asymmetric behavior of the
I QKPZ equation with respect to the sign of the nonlinear
B e term. The QKPZ equation with < 0 in 1 + 1 dimen-
sions has also been studied. We have obtained that the
surface forms the shape of a mountain with a flat incli-
L - nation and the PD transition is of first order. Since the

A anisotropic KPZ equation with thermal noise has been ap-
. plied to the flux line dynamics [21], the AQKPZ equation
A considered in this Letter may also be relevant to the flux
i / i line depinning problem in disordered media. Further de-
0 et tails will be published elsewhere.
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FIG. 6. The growth velocity versus force for the AQKPZ
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