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Anisotropic Surface Growth Model in Disordered Media
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We introduce a self-organized surface growth model in2 1 1 dimensions with an anisotropic
avalanche process, which is expected to be in the universality class of the anisotropic quenched Kardar
Parisi-Zhang (KPZ) equation with alternative signs of the nonlinear KPZ terms. It turns out that the
surface height correlation function in each direction scales distinctively. The anisotropic behavior is
attributed to the asymmetric behavior of the quenched KPZ equation in1 1 1 dimensions with respect
to the sign of the nonlinear KPZ term. [S0031-9007(96)01888-1]

PACS numbers: 68.35.Fx, 05.40.+ j, 64.60.Ht
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The subject of the pinning-depinning (PD) transiti
by an external driving force has been of much inter
recently. The problems of the interface growth in poro
media under external pressure [1], the dynamics o
domain wall under random field [2], the dynamics
a charge density wave under external field [3], and
vortex motion in superconductors under external curr
[4,5] are typical examples. In the PD transition, the
exists a critical valueFc of the driving forceF, such
that when F , Fc, interface (or charge, or vortex)
pinned by disorder, while forF . Fc, it moves with
constant velocityy. The velocityy plays the role of orde
parameter in the PD transition, which behaves as

y , sF 2 Fcdu . (1)

Recently, several stochastic models for the PD tra
tion of interface growth in disordered media have be
introduced [6,7]. It is believed that the models in1 1 1
dimensions are described by the quenched Kardar-Pa
Zhang (QKPZ) equation

≠th ­ n≠2
xh 1

l

2
s≠xhd2 1 F 1 hsx, hd , (2)

where noiseh depends on positionx and heighth with
the properties ofkhsx, hdl ­ 0 and khsx, hdhsx0, h0dl ­
2Ddsx 2 x0ddsh 2 h0d. The QKPZ equation exhibit
the PD transition atFc. The surface atFc can be
described by the directed percolation (DP) cluster span
perpendicularly to the surface growth direction in1 1 1
dimensions. The roughness exponenta of the interface
is given as the ratio of the correlation length expone
of the DP cluster in perpendicular and parallel directio
that is,a ­ n'ynk ø 0.63.

The origin of the nonlinear term in the QKPZ equati
is different from that of the thermal KPZ equation with t
noise hsx, td [8]. For the quenched case, the nonline
term is induced by the anisotropic nature of disorde
media, while for the thermal case, it is induced
lateral growth, and thus the coefficientl is proportional
to the velocity of the interface, which vanishes at t
threshold of the PD transition. For surfaces belong
to the DP universality class, the positive nonlinear K
0031-9007y96y77(25)y5094(4)$10.00
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term is induced under coarse graining of the quenc
random force with amplitudesD

1y2
h and D

1y2
x in the h

direction and in thex direction, respectively, whenDh .

Dx . On the other hand, one may consider the case
2 1 1 dimensions that the amplitudes of random for
are anisotropic on a substrate, that is,Dh . Dk in one
direction of the substrate andDh , D' in the other. In
such a case, following [8], the coarse-grained Lange
equation is expected to take the form of the anisotro
QKPZ (AQKPZ) equation given by

≠th ­ nk≠
2
kh 1 n'≠2

'h 1
lk

2
s≠khd2 1

l'

2
s≠'hd2

1 F 1 hsr, hd , (3)

with lk . 0 andl' , 0.
In this Letter, we study the surface of Eq. (3) b

introducing a self-organized stochastic model. T
universality class of the stochastic model is checked
comparing surface properties with those obtained fr
direct numerical integration of Eq. (3). As shown
Fig. 1, the surface of Eq. (3) atFc forms the shape of a
mountain range with a steep inclination in one directio
whereas it is gently sloping in the other direction. A
cordingly, the roughness exponents of the height-he
correlation functions in each direction scale distinctive
which leads to a new universality class. This result
remarkable as compared with the case of the ther
noise. For the thermal case, the height-height co
lation function is isotropic, and the anisotropic KP
equation in 2 1 1 dimensions renormalizes into th
Edwards-Wilkinson equation [9]. This is because
the case described by the KPZ equation with therm
noise, the sign of the nonlinear terms is irrelevant
determining the universality class [10], and the tw
nonlinear terms with different signs are canceled
effectively [11]. However, for the quenched case, t
anisotropic surface morphologies of Fig. 1 imply th
such cancellation does not occur and the QKPZ equa
is asymmetric with respect to the sign of the nonline
KPZ terms. Accordingly, in this Letter, we also stud
© 1996 The American Physical Society
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umerical
FIG. 1. A typical surface configuration of the AQKPZ equation generated by (a) the stochastic model and (b) direct n
integration at the transition point.
o e

the QKPZ equation with negativel in 1 1 1 dimen-
sions, which enables one to understand the anisotr
nature of the AQKPZ equation in2 1 1 dimensions.
t

e
ua
a

he

-

e

i
o
p

o
s

cl
oc

n

pic
First, we study the QKPZ equation withl , 0 in

1 1 1 dimensions by direct numerical integration with th
discretized version,
hsx, t 1 Dtd ­ hsx, td 1 Dt

Ω
hsx 2 1, td 1 hsx 1 1, td 2 2hsx, td 1

l

8
fhsx 1 1, td 2 hsx 2 1, tdg2 1 F

æ
1 sDtd2y3jsssx, fhsx, tdgddd , (4)
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where [· · ·] denotes the integer part andj is uniformly
distributed in [2 1

2 , 1
2 ]. The prefactor sDtd2y3 of the

noise term arises from approximately coarse graining
noise hsx, hd during the time intervalDt. Numerical
integration using Eq. (4) forl ­ 1 andDt ­ 0.01 yields,
even for a modest system size ofL ­ 103, the roughness
exponenta ø 0.63, which is consistent with the valu
of the DP universality. Note that the use of the us
prefactor sDtd requires a much larger computation
cost to obtain the DP value ofa [12,13]. Details
for the derivations of Eq. (4) and the result of t
direct numerical integration forl . 0 will be published
elsewhere [14].

For the case ofl , 0, we performed the numerical in
tegration withl ­ 21 and Dt ­ 0.01 for convenience.
Figure 2 shows typical surface configurations evolv
temporally at the PD transition point,Fc ø 1.98, which
exhibits the shape of a mountain with a flat inclination
the pinned state. The surface in the pinned state lo
similar to that of model A by Sneppen [15], and the sha
of the surface determines the roughness exponent t
a ­ 1. Note that the RSOS restriction before depo
tion in model A of Sneppen does not allow the parti
to deposit in every site, which makes the growth vel
ity reduced, and results inl , 0 [16]. Accordingly, it is
reasonable to have the surface morphology as show
Fig. 2 for the QKPZ equation with negativel, which is
different from the one forl . 0. In addition, we also
he
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examined the noise distribution on perimeter sites. It
veals that the pinning is caused by relatively large pinn
strengths around the site where the height is minimu
The flatness on the inclination makes the terms≠xhd2

large, which with the large pinning strengths compensa
the external driving force. Thus the growth velocity b
comes zero, and the surface is pinned. Since the sur
pinning is caused mainly by the barrier of the pinni
strengths around the site of minimum height, the grow
velocity exhibits a sudden jump as the barrier is overco

FIG. 2. Temporally evolved surface configurations of t
QKPZ equation with l , 0 in 1 1 1 dimensions at the
pinning-depinning transition point. Successive height profi
are shown at constant time intervals.
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FIG. 3. The growth velocity versus force for the QKP
equation with negativel in 1 1 1 dimensions.

by increasing the external driving forceF. Accordingly,
the PD transition is of first order as depicted in Fig. 3. O
the other hand, forl . 0, pinned sites are not localized
but scattered, so that the PD transition is continuo
Therefore the surface of the QKPZ equation in1 1 1
dimensions is asymmetric with respect to the sign of
nonlinear term.

Next, we study the AQKPZ equation, Eq. (3), in2 1 1
dimensions by introducing a stochastic model. It is a na
ral extension of the RSOS model introduced previously
the current authors to study the anisotropic thermal K
equation [17]. The stochastic model is based on a c
bination of Sneppen’s model A forl , 0 and model B
for l . 0, which is realized by assigning an anisotrop
avalanche process. The advantage of studying suc
stochastic model is twofold: first, there is no need for fin
tuning of F to get the critical state, and second, asym
totic states can be readily reached for small system s
The model is defined on the checkerboard lattice, squ
lattice rotated by 45±. Initially, we begin with a flat sur-
face characterized by the height 0 on one sublattice
1 on the other (see Fig. 4). Random numbers are
signed to each site. At each time step, selected is
site with the minimum random number among the si
si, jd of which the two nearest neighbors atsi 1

1
2 , j 2

1
2 d

andsi 2
1
2 , j 2

1
2 d are higher. The site is updated by in

creasing the height by 2. Next, the anisotropic avalan
process may occur on the neighboring sites,si 1

1
2 , j 1

1
2 d andsi 2

1
2 , j 1

1
2 d. If their height is lower by 3 than

that of si, jd, the height is increased by 2. The avalanc
rule is then applied successively to the next rows in
ĵ direction until there is no change. The sites with i
creased height are updated by new random numbers.
avalanche direction,̂j direction, corresponds to therk

direction in Eq. (3). The anisotropic avalanche proc
along the positivêj direction is an interesting aspect o
our model, which is a generalization of the model
Maslov and Zhang [18] into2 1 1 dimensions. Such
an anisotropic avalanche process is to be distinguis
from the isotropic avalanche process on tilted substrate
which the roughness exponent along the tilt direction (r'
5096
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FIG. 4. The configuration of a substrate with one step alo
a row for linear sizeL ­ 4. The avalanche process occurs
the ĵ direction.

direction) is1
3 [8]. Using the tilt argument, it can be show

that our model includes alternative signs of the nonline
terms, that is,lk . 0 and l' , 0 [17]. A typical sur-
face morphology is shown in Fig. 1(a). We measured
roughness exponents for the height-height correlation fu
tions, Cksrkd ; k 1

L2

P
xfhsxd 2 hsx 1 rkdg2l , r

2ak

k and

C'sr'd , r
2a'

' . The roughness exponents for each d
rection are obtained asak ­ 0.25s1d and a' ­ 0.75s1d
as shown in Fig. 5. We also measured the height fl
tuation width,W2 ; 1

L2

P
r shr 2 h̄d2 , L2a for t ¿ Lz

and ,t2b for t ø Lz , where the exponentsa, b, andz
are the roughness, the growth, and the dynamic expone
respectively, andL is the system size. It is obtained tha
a ­ 0.87s1d, b ­ 0.80s1d, and z is given asz ­ ayb.
The values of the exponents are different from those
the isotropic case in2 1 1 dimensions, wherea ø 0.48

FIG. 5. The height-height correlation functions in parall
(lower data) and perpendicular (upper ones) directions for
AQKPZ stochastic model in2 1 1 dimensions.
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FIG. 6. The growth velocity versus force for the AQKP
equation in2 1 1 dimensions.

andb ø 0.41 [19]. We also measured the avalanche s
distribution,Pssd , s2t. The exponentt is obtained as
ø1.35s3d.

In order to check if the stochastic model reduces
the AQKPZ universality, we considered the surface
Eq. (3) by carrying out the direct numerical integrati
using the two-dimensional version of Eq. (4). We us
the numerical values ofDt ­ 0.01, lk ­ 1, and l' ­
21 for convenience. Figure 1(b) shows the surfa
morphology obtained by the direct numerical integrat
at the threshold of the PD transition,Fc ø 0.50, which
looks similar to the one in Fig. 1(a). However, w
could not measure the roughness exponentsak and a'

precisely, because their precise measurement requir
relatively large system size and huge computing tim
Nevertheless, since the morphologies of Figs. 1(a)
1(b) are similar to each other and that oflk . 0 and
l' , 0 can be proven using the tilt argument for t
stochastic model [17], we believe that the stocha
model belongs to the AQKPZ universality. The P
transition turns out to be continuous as depicted in Fig
The velocity exponentu defined in Eq. (1) is obtaine
as u ­ 0.9s1d, which is somewhat larger thanu ø
0.8 for the isotropic case [19]. The numerical resu
t ø 1.35, z ø 1.09, and u ø 0.9 seem to represent th
characteristics of the self-organized critical depinn
transition [18,20], but the relation of those exponents
the anisotropic roughness exponents in2 1 1 dimensions
is not clear yet. Further study is required about t
point. We have also examined the surface in a mov
state,F . Fc. In this regime, the surface is no long
anisotropic, and reduces to the AKPZ equation w
thermal noise forF ¿ Fc.

In summary, we have studied the AQKPZ equat
with alternative signs of the nonlinear terms in2 1 1
dimensions and have found that it leads to a new u
versality class. The surface exhibits anisotropic sca
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behavior, which is due to the asymmetric behavior of t
QKPZ equation with respect to the sign of the nonline
term. The QKPZ equation withl , 0 in 1 1 1 dimen-
sions has also been studied. We have obtained that
surface forms the shape of a mountain with a flat inc
nation and the PD transition is of first order. Since t
anisotropic KPZ equation with thermal noise has been
plied to the flux line dynamics [21], the AQKPZ equatio
considered in this Letter may also be relevant to the fl
line depinning problem in disordered media. Further d
tails will be published elsewhere.
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