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Eulerian Walkers as a Model of Self-Organized Criticality
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We propose a new model of self-organized criticality. A particle is dropped at random on a lattice
and moves along directions specified by arrows at each site. As it moves, it changes the direction
of the arrows according to fixed rules. On closed graphs these walks generate Euler circuits. On
open graphs, the particle eventually leaves the system, and a new patrticle is then added. The operators
corresponding to particle addition generate an Abelian group, same as the group for the Abelian sandpile
model on the graph. We determine the critical steady state and some critical exponents exactly, using
this equivalence. [S0031-9007(96)01899-6]

PACS numbers: 64.60.Lx, 05.40.+j, 05.70.Ln

In recent years, there has been much interest in they integers froml to 7;. We associate with each point
study of systems showing self-organized criticality (SOC)an arrow which can point along one of the outgoing
[1] and different models have been proposed for manyonds (Fig. 1). Lew; (1 = n; = 7;) denote the current
systems such as sandpiles [1], earthquakes [2], foreslirection of the arrow that is the label of the bond along
fires [3], and biological evolution [4]. All these models which the arrow points. The sét;} specifies the arrow
involve a slowly driven system, in which the externally directions at all points and provides a complete description
introduced disturbance propagates in a random mediurmf the arrow configuration of the medium.
using deterministic or stochastic rules. In the process it We now put a walker at some point on the graph. At
modifies the medium so that after many such disturbancesach time step: (i) the walker after arriving at a sjte
the medium develops long-range spatial correlations [5]. changes the arrow direction fromy to n; + 1(mod 7;),

The most analytically tractable of all these models hagii) the walker moves one step frojralong the new arrow
been the Abelian sandpile model (ASM) [6,7]. In this direction at;.

Letter we introduce a new model of SOC called the Thus the motion of the walker is deterministic, is
Eulerian walkers model (EWM). This model is quite affected by the medium, and in turn affects the medium.
different from the ASM in some ways, but shares with it We can interpret the rules (i) and (ii) as an intention of the
the Abelian group property. This allows a determinationwalker to maximize intervals between successive visits of
of the steady state and exact calculation of some criticahe same bond each time the walker leaves a given site.
exponents. In fact, we define a general Abelian model offhe current position of the walker along with the value
which both the EWM and ASM are special cases. of the variablen; at every sitej specifies completely the

In the EWM self-organization occurs due to activity state of the system [8].
of a walker which moves deterministically in a medium In the absence of sinks the walker continues to walk
while also modifying it. We show that on closed graphs,forever. Since the system (walker medium) has a
the walker finally settles into a limit cycle which is a finite number of possible states, it eventually settles into
Euler circuit visiting each directed bond exactly oncea limit cycle. In general, one would expect the size of
in one cycle. On open graphs, the particle eventually
leaves the system. We then add at a randomly chosen
site another particle, which then moves, and so on. We
define particle addition operators which act on the set of
recurrent configurations of the system. These operators
generate an Abelian group, and satisfy the same closure
relations between themselves as in the ASM on the same
graph. We show that recurrent configurations of the
system are in one to one correspondence with spanning
trees on the lattice.

The model is defined for a general graph as follows: ) )
consider a connected oriented graphconsisting ofv  F!G- 1. (a) A directed graph. The outgoing bonds at each

S S . site are labeled by integerk2,.... An initial state with a
pointsi = 1,2,...,N. Apointj hasr; outgoing bonds, configuration of arrows as in (b) and a walker starting at the

and an equal number of incoming bonds, connecting itite « moves along the pathbcb ... which eventually settles
to other points. The outgoing bonds atare labeled to the Euler circuitabcdcbaca.
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these cycles to be of the order of Poincaré recurrenc <> () <> <> @_@_@@_@_@
times for the system, and grow exponentially with : 1 : : : : : : 1 :

The surprising fact is that all the cycles are very short
and, in fact, are of the same Ieng,ﬁﬁjy:1 7j. In each
such cycle, all bonds are visited exactly once (Fig. 1).
Such walks are known as Euler circuits [9], and their ‘ : ‘ : : : : ;
study has been an important problem in lattice statistic: | § | § | | | D
(if the circuit visits all sitesexactly once, it is called a ( |
Hamilton circuit). There is a one to one correspondence
between Euler circuits and spanning trees on the samc
graph. Clearly for any Euler walk ending at a sjtethe  FIG. 2. A random initial state of a lattice in one dimension
last exit bonds from all sites other tharform a spanning and the motion of a walker on this lattice. The medium is
tree rooted afj. Kasteleyn also showed that each rootedg{f’e%?i'gﬁd into a state in which all arrows point in the same
spanning tree corresponds to a unique Euler circuit [10]. '

The number of all possible trees is known to be given in

terms of the determinant of the adjacency matrix by thd'©W reverses its direption and retraces its path entirely,
well known matrix tree theorem [10] passing over all the sites traversed since the last reversal

We now show that every limit cycle is a Euler circuit of its direction. Then it continues to move ahead until

We start from some arbitrary initial state of the medium't again encounters an arrow pointing in the d_irection of
with the walker at some point The walker leaves the motion and so on. Thus the arrows in the region already

pointi along some bond;. We evolve it until after time visiteq get organized info an al'most.E'uIeri'an circuit so
T when it returns tab; for the first time. Let the bond Fhat, if at t|.met the n_umber of sites visited S(Z).' then
traversed at thgth step of path be:, so that the path is in the pr¢V|ouSZS(t) time steps, mos.t_of these sites have
biby by With bysy = b, We ca]n show that no other Peen visited exactly 2 times. In addition, the boundary of
bond in this path is visited twice. Proof: Assume thelN€ cluster advances by a finite amountas some new

contrary and suppose that during thesteps the bond, sites aredyisited. '?OL comﬂ?ct fcluste?]rer) - R(t)’ the
originating from the poinj, is the first bond that is visited average distance of the walker irom the origin, at time

twice. Each successive exit fropnis along a different 11US We get
direction so there will ber; + 1 exits. But the number dR() A (1)
of visits to j equals the number of exits. Hence there must dt R’

exist some bond going intp which is also passed more which implies thatR ~ ¢!/2 for large r. The average
than once. This contradicts the fact thatvas taken to  number of sites visited till time, S(¢), goes agl/2.

be the first bond to be passed twice. Thushalli = 1 to In higher dimensions, the motion of the EW is not so
T are distinct and hencg = >.7, 7;. If every bond in  simple. In Fig. 3 we show the results of a simulation
G is visited we have a Euler circuit with = Y™ 7;. If  of the model on a square lattice with random initial
not, consider the pathybs---bri1br+2. If breo = by configuration of arrows. Before each step the arrow is
we have another circuit of length. We keep shifting the turned clockwise by0°. The sites visited at least once
path thus until we reach asuch thatbr, # b,. Such by the walker form a cluster with few holes, whose radius
at < T exists so long as there are pointon the path  R(r) increases with timer. In the region visited by
which have not been visited; number of times. Lef’  the walker, all arrows are not aligned parallel, but are
be the first time wheiy., = b,. ClearlyT < T'. Now  organized into an almost Euler circuit so that in the time
define the new circuit formed by tH€ steps starting with betweenT andT — 4S5(T), only a very small fraction of
the rth step. lIterating this we get circuits of increasingsites isnot visited exactly 4 times (herer; = 4 for all

lengthsT < T’ < T"..., where each is= 3, 7; and sitesj). Arguing as in the one dimensional case we get
so finally we will get a Euler circuit whefl = Z‘,N:l .. R ~ /3 for larger. We have carried out Monte Carlo
All the configurations which the system goes throughsimulations and verified this to very good accuracy.
before it enters the cycle are transients. However, ford > 2, a random walker does not return

To illustrate the process of self-organization, consideto previously visited sites often enough, and we expect the
the motion of a walker on an infinite line starting with a motion of a walker in an initially random medium to be
random initial configuration of the medium. This walk diffusive (R*> ~ ¢). Our numerical simulations show that
has a simple structure (Fig. 2). The walker turns thethis is indeed the case far = 3.
arrow at the origin and starts the motion along the new Now consider an open graph for which all the external
direction of this arrow reversing the arrows at all sites itperimeter sites are identified with a single sink sitg,
passes through. It moves on until it encounters a site witlat which the walker gets absorbed. We place a walker
an arrow pointing in the direction of motion. The walker at some pointi, with probability p; 3 p; = 1), and let
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as the particle addition operators in the ASM. In fact,
one can define commuting operaterge), which have a
phase factor proportional to the number of steps taken by
the walker in going fromC to C’ as in the case of the
ASM [11].

So, as in the ASM, the number of recurrent configu-
rations R = Det(A), and they occur with equal proba-
bility. The first result also follows from the one to one
correspondence between steady state configurations of the
EWM and spanning trees which is obtained by draw-
ing the last exit directions at all points. Since thgs
commute, they can be diagonalized simultaneously. Then
as for the ASM Eq. (3) determines all the eigenvalues
of a’'s. Thus one can diagonalize the evolution opera-
tor W = Y p,a;, where p; is the probability that a new
particle is added at site For a lattice of sizd. on ad-
dimensional lattice, this implies that the largest relaxation
time of the system varies ds'.

Let G;; be the expected number of full rotations of
the arrow at the sitg due to the addition of a walker
at the sitei. During the walk, the expected number of
FIG. 3. Simulation of the Euler walk on a square lattice with Steps leaving is G;;A;;, whereas— 3, .; Gy Ay; is the
random initial conditions. The whole cluster consists of sitesaverage flux intg.. Equating both fluxes one gets

covered by the walker aftei)’ steps. The white region shows
the cluster of approximately 12 500 sites visited exactly 4 times Z Gl = 8;; or
ik kj ij
k

in the last 50000 steps. The grey sites at the boundary of the
cluster are visited less than 4 times.

, , . . Gi; = [A™"];. (4)
it evolve according to the rules specified before, until it
leaves the system (the walker will not get into a cycleThe average number of stepstaken by the walker until
as every cycle would contain all points of the graphit leaves the system is given Hy) = z(s)asm, wheres
including ig). Now the system is specified only by the is the number of topplings in ASM avalanches, for regular
values ofn;, i = 1,N. We define operators; acting graphs with coordination numbes. Hence(n) ~ L?,
on the space of recurrent configurations of the EWM agvhereL is the length of the system.
follows: for any recurrent configuratiod, a;C = C’, It is quite straightforward to calculate the arrow-
where C’ is the resulting configuration of the medium arrow correlation function in the steady state using the
obtained by adding a particle at siten the configuration equivalence of the problem to spanning trees. For two
C, and evolving it until it leaves the system. given sitesR; and R, the probabilities that arrows at

It is easy to see that the operators at different siteshe sites are in the directiors and ¢,, respectively, is
commute. Treat the motion of each walker as a sequendbe ratio of spanning trees with these bonds occupied to
of elementary steps. Then if two particles (walkers) areghe number of all spanning trees. This is easily calculated.
added to the lattice at siteg and j/, the elementary For largeRr,, the leading term in the connected part of this
moves on two siteg # j/ commute. Ifj = j/, they also probability is given by

commute due to identity of particles. Therefore > L, I EE
C(Rip;e1,e2) ~ [e1 - Vo(R12)][€2.VP(R12)], (5)

lai,a;] = 0. (2) R _ _
Within the space of recurrent configurations the operatoré/nere ¢ (Ri2) = Gz, — Gg,g,- In d dimensions$(R)
a; will have unique inverses. If we define thé x N varies asR?~“, hence the correlation functiafi(R) varies

matrix, A, such thatA; gives the number of outgoing @sR>~>¢ for large separation® [12]. Thus the steady

bonds fromi and—A;; gives the number of bonds from state of the model has long-range correlations and hence
to j, then ' exhibits self-organized criticality.

A As pointed out earlier, when the walker has left the
l_[ a; ' =1 for all i, (3) system, the medium is in a recurrent state, and the arrows
J form a spanning tree. This is not true for intermediate
which simply reflects the fact that particles added at  times where the motion of the EW may lead to a cyclic
produce the same effect as 1 particle added at each nearesnfiguration of arrows. Thus a typical evolution of
neighbor ofi. Thus, operators; satisfy the same algebra medium has periods of cyclicity interspersed between
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“normal” acyclic states. In the EWM, the durations of directionsn; + 1,n; + 2,...,n; + r, and the arrow is
these intervals of cyclicity have a power-law distribution.reset ton; + r(mod ;). Clearly r = 1 corresponds to
In two dimensions, numerical simulations [13] show thatthe EWM, andr = 7; corresponds to the ASM. In the
the probability of intervals of cyclicity of duratiom  latter case the arrow configuration does not evolve at
varies approximately ak/7!7>. all, and may be omitted from discussion. In Fig. 4, we
Though we can establish a one to one correspondendgve shown the results of Monte Carlo simulation of this
between the recurrent configurations of the EWM andyeneral model on a square lattice of s® X 200 for
ASM, the relaxation process in the two models is quiter = 1to4. We see that we get the same general behavior
different. In the latter (in more than one dimension)of distribution of avalanches for all > 1, but the case
in almost all cases particle addition leads to a stable = 1 is special. It belongs to a different universality
configuration after a finite number of topplings, and theclass. For smalk, the distributionP(s) is dominated by
fraction of avalanches which reach the boundary is venpoundary avalanches; therefore, it does not have a simple
small. In contrast, in the present model, each walker mughermodynamic limit. However, the model has long-range
travel to the boundary before it leaves the system, andorrelations, and hence is critical.
thus the fraction of events involving a finite number of In brief, we have introduced a new analytically tractable
steps of the walker is zero in the limit of large systemmodel of SOC. It is hoped that further studies of the
sizes. This leads to the interesting conclusion that thenodel will contribute to a better understanding of self-
statistics of avalanches is not completely determined byrganizing systems in general.
the operator algebra of ASM.
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