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Localization-Delocalization Transition for Drift Diffusion in a Random Environment
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(Received 23 August 1996)

We investigate the localization-delocalization transition for the drift-diffusion equation on a regular
tree with quenched random drift velocities on its branches. The inverse of the steady-state amplitud
at the origin is expressed in terms of a random geometric series whose convergence or otherwis
determines the critical phase boundary. We establish exact criteria for localization valid for an arbitrary
distribution of the drift velocities. The phase transition is shown to be first order except in the
percolation limit. [S0031-9007(96)01870-4]
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There are a number of interesting physical proble
involving transport in quenched random environmen
These include sedimentation in porous media, diffus
limited aggregation, directed polymers, and electromig
tion along grain boundary networks (see, e.g., [1,2], a
references therein). Random walks in random envir
ments have attracted a great deal of attention as mode
such systems. Of particular interest has been the stud
how the competition between drift and diffusion in asym
metric random walks can lead to anomalous diffusive
havior [3–11]. However, there are comparatively fe
exact results known concerning the corresponding tra
port properties in continuum random media. In this L
ter we investigate the localization-delocalization transit
(in a sense to be made clear below) of the drift-diffusi
equation on a regular tree with quenched random drift
locities on its branches. Given an arbitrary distribution
the drift velocities, we establish exact criteria to determ
whether the system is localized or delocalized.

Consider a regular treeG with branching numberz and
segment lengthL ­ 1 (Fig. 1). It is convenient to parti-
tion the branches of the tree into successive generati
The first generationS1 consists of thez branches con-
nected to the origin, the second generationS2 consists of
the z2 subsequent branches connected to the first gen
tion, and so on. Thenth generation containszn branches.
The set of branches in one generation connected to a
menti in the preceding generation is denoted byIi . The
concentrationcisx, td at positionx and timet on theith
segment of the tree evolves according to the equation

≠ci

≠t
­

≠2ci

≠x2 1 yi
≠ci

≠x
, t . 0, 0 , x , 1 , (1)

with the end closer to the origin of the tree chosen
be at x ­ 0. Here the diffusion constantD is taken
to be the same on every branchsD ­ 1d and yi is the
drift velocity, which is taken to be positive if directe
towards the origin, that is, in the negativex direction.
Equation (1) is supplemented by the boundary conditi
expressing continuity of the concentration at a node

cis0, td ­ cjs0, td, i, j [ S1 ,

cis1, td ­ cjs0, td, j [ Ii

(2)
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and conservation of current through the nodeX
k[S1

Jks0, td ­ 0, Jis1, td ­
X

k[Ii

Jks0, td , (3)

whereJisx, td ­ 2≠ciy≠x 2 yicisx, td.
In steady state the current vanishes on each segm

Ji ; 0 so that the solution is of the formcisxd ­ Aie2yi x.
The continuity conditions (2) imply that the amplitude
Ai satisfy the iterative equationAi ­ F for i [ S1 and
Aie2yi for all i and j [ Ii whereF is the steady-state
concentration at the origin. Thus the amplitudeAi on a
given segmenti [ Sn, n . 1 may be expressed in term
of the concentration at the origin according to the relati
Ai ­ f

Q
j,i e2yj gF whereh j, j , ij denotes the unique

sequence of segments joiningi to the origin. Assuming
that the initial concentration is normalized to unity, co
servation of particle number implies that

P
i

R1
0 cisxd dx ­

1. Making the substitutioncisxd ­ Aie2yix the yields the
following equation forF:

F21 ­
X

i[S1

√
fsyid 1 gsyid

X
j[Ii

fsyjd

1 gsyid
X

j[Ii

gsyjd
X

k[Ii

fsykd 1 · · ·

!
, (4)

wherefsyd ­ s1 2 e2ydyy, gsyd ­ e2y. We shall as-
sume thaty is finite so thatfsyd, gsyd are bounded, posi-
tive functions.

FIG. 1. Topologically biased regular tree with branchin
number z ­ 2 indicating successive generationsS1 ­ hi, jj,
S2 ­ hi1, i2, j1, j2j, etc. AlsoIi ­ hi1, i2j, etc. Arrows indi-
cate direction of the drift velocityyi on each branchi relative
to the originO.
© 1996 The American Physical Society 5075
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Equation (4) expressesF21 in terms of an infinite series
If this series is convergent thenF has a finite value and th
steady state is localized. On the other hand, if the se
diverges thenF ­ 0 and the steady state is delocalize
The simplest case to analyze is when all drift velocities
the same,yi ­ y for all i, so that we have a homogeneo
tree. Then Eq. (4) reduces to the geometric series

F21 ­ fsyd
X̀
p­0

zp11gsydp ­
zfsyd

1 2 zgsyd
, (5)

provided thatzgsyd , 1. This yields a critical drift veloc-
ity yc ­ ln z beyond which the system is localized. Ify ,

yc then the asymptotic decay of the delocalized state
hibits conventional behavior, whereas at the critical po
y ­ yc there is anomalous behavior in the form of a cri
cal slowing down [12]. In this Letter we are interested
deriving conditions for localization when the drift veloc
ties yi are quenched random variables. Time-depend
aspects of the problem will not be addressed here.

Let us begin by examining a simplified but still interes
ing version of the full problem. Suppose that within ea
generationn all segments have the same drift velocityyn

but the sequencehyn, n $ 1j is independently and identi
cally distributed (intergenerational disorder). Letrsyd be
the associated probability density. Equation (4) simplifi
to the form

szFd21 ; R ­
X̀
n­1

fsyndzn21
n21Y
m­1

gsymd (6)

so that the steady-state concentration is expressed in t
of a random geometric seriesR. Similar series have arise
in a variety of studies of one-dimensional problems [1,
8,13]. It can be shown that ifklnfzgsydgl , 0 then R
converges with probability one [7]. Hence the stea
state is localized provided thatkyl . yc ­ ln z, that is,
the average drift velocity exceeds the critical veloc
for localization on a homogeneous tree. On the ot
hand, if kyl , yc then R is infinite and the steady stat
is delocalized. Using Jensen’s inequalitykeyl $ ekyl,
it is simple to show that this localization criterion
stronger than that based on the vanishing of the asymp
particle velocity, which takes the formk1ygsydl . z.
The latter is a necessary but not sufficient condition
localization [12].

In the language of phase transitions, there is a transi
from a localized to a delocalized state at the critical poi

kyl . ln z slocalizedd, kyl , ln z sdelocalizedd .

(7)
The critical points determine a phase boundary in
infinite-dimensional space of probability densitiesrsyd
that separates the localized and delocalized phases
characteristic feature of the phase transition is that
kyl ! yc in some prescribed fashion the probability d
tribution F of R in the localized phase develops a lon
tail for which all moments are infinite. This is a cons
5076
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quence of the fact that when the first moment
R

r dFsrd ­
k fsydlyf1 2 zk gsydlg becomes infinite,k gsydl ­ 1yz,
the system is still localized since, from Jensen’s inequ
ity, kyl $ yc. Assuming the existence of a probabilit
density Csrd such thatdFsrd ­ Csrddr , we obtain the
following integral equation forC:

Csrd ­
Z `

2`

rsyd
zgsyd

C

µ
r 2 fsyd

zgsyd

∂
dy . (8)

This equation can be derived from the renewal equat
Yn ­ zgsyndYn11 1 fsynd with each pairsss fsynd, gsyndddd
generated independently fromrsyd and Y0 fixed; the
distribution of Yn converges to that ofR independently
of Y0 [7]. An alternative form of the integral equation (8
is obtained by taking Laplace transforms:

Mssd ­
Z `

2`

rsydMssszgsydsddde2sfsyd dy , (9)

with Mssd ­
R`

0 e2sr Csrd dr . It is not generally possible
to solve these equations analytically. However, one c
determine the asymptotic behavior ofC whenr is large.
Suppose thatrsyd is nonarithmetic, that is,rsyd cannot
be written in the form

P`
n­2` pndsy 2 lnd for anyl and

hpnj such that
P`

n­2` pn ­ 1. Also assume that the firs
moment ofC is infinite so thatk gsydl . 1yz. It can then
be proven [7,8,13] that there exist positive constantsa, s

with 0 , s , 1 such thatCsrd , ar2s21 for large r
[and soMssd , 1 1 bss for smalls]. In other words,Yn

is in the domain of attraction of a Levy stable law. Th
large-r behavior ofC ensures that ifs . 0 then Fp ;
limy!`

R`

y dFsrd ­ 0, in other words, that the seriesR of
Eq. (6) is convergent with probability one. Substitutio
of the asymptotic form forC (or M) into Eq. (8) [or
(9)] leads to the equationGssd ; zsk gsydsl 2 1 ­ 0.
Provided that the densityrsyd satisfies the previously
stated conditions, there exist two real roots ofGssd,
s ­ 0, s, and the real part of all complex roots is large
than s. Hence the nontrivial real roots dominates
for large r. Suppose thatrsyd depends smoothly on
some parameterl such thatssld . 0 for l , lc and
liml!lc

ssld ­ 0. In the limit l ! lc, C ceases to
exist (it is no longer normalizable) and the probabili
Fp that R is infinite jumps from Fp ­ 0 to Fp ­ 1.
Identifying Fp as an order parameter we deduce that
localization-delocalization phase transition is first orde
Differentiating the equationGsssssld, lddd ­ 0 with respect
to l gives Z drlsyd

dl
fzgsydgssld dy 1

s0sld kfzgsydgssld lnfzgsydgll ­ 0 . (10)

Taking the limit l ! lc in Eq. (10) leads to the resul
s0slcd fkyllc

2 ycg ­ 0. Sincelc is a bifurcation point
it follows thats0slcd . 0 and hencekyllc ­ yc.
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The restriction to intergenerational disorder reduc
the analysis of the steady state to an effective o
dimensional problem. This is no longer the case when
has intragenerational disorder where the topology of
tree must be taken into account explicitly. Suppose t
the drift velocity on each segment is now independen
and identically distributed with a probability densityrsyd.
The resulting random series on the right-hand side
Eq. (4) is then generated by a renewal process on the
Consider a bounded tree ofN generations and associa
with each segmenti a random variableY

sNd
i such that (for

fixed Y
sNd
k , k [ SN)

Y
sNd
i ­

X
j[Ii

gsyidY
sNd
j 1 fsyid,

i [ Sn, 1 # n , N . (11)

Equation (4) may then be rewritten in the form

F21 ­
X

i[S1

Ri , Ri ­ lim
N!`

Y
sNd
i . (12)

Suppose thatRi converges with probability one indepen
dently of the boundary conditions. The symmetry of t
tree then ensures that all variablesRi, i [ S1, are identi-
cally and independently distributed with a probability d
tribution F. The renewal equation (11) implies that th
associated probability densityC satisfies the fixed poin
equation

Cs yd ­
Z `

0

zY
j­1

Cs yjd dyj

Z `

2`

rsyd

3 d

√
y 2 gsyd

zX
j­1

yj 2 fsyd

!
dy . (13)

Laplace transforming Eq. (13) gives a correspond
integral equation for the generating functionMssd:

Mssd ­
Z `

2`
rsyd fMssssgsyddddgze2sfsyd dy . (14)

Note that whenz ­ 1 Eq. (14) reduces to Eq. (9); there
no distinction between intergenerational and intragene
tional disorder in one dimension.

Suppose that we expand the generating functionMssd
for smalls along similar lines to the intergenerational ca
such thatMssd , 1 1 bss . Substituting into Eq. (14)
yields the equationHssd ; zk gsydsl 2 1 ­ 0. In con-
trast to the functionGssd, s ­ 0 is not an allowed
root of Hssd ­ 0. Therefore the transition is no longe
characterized by the limits ! 0. Introduce the index
sp [ f0, 1g defined according to the propertyHsspd ­
min0#s#1 Hssd. Note thatsp depends on the branchin
numberz and the probability densityrsyd. If Hsspd . 0
then any solution ofHssd ­ 0 must satisfys . 1 im-
plying that the first moment ofC is finite. On the other
hand,Hs1d . 0 implies that the first moment is infinite
The evident contradiction shows that ifHsspd . 0 then
d
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the only allowed solution of the integral equation (14) f
s . 0 is Mssd ­ 0 and the system is delocalized. W
infer from this and our analysis of intergenerational d
order that there is a first-order phase transition from a
calized to a delocalized state at the critical pointssp

c . 0
whereHssp

c d ­ 0. This determines a phase boundary
the space of probability densities that separates the lo
ized and delocalized phases:

zke2spyl , 1 slocalizedd,

zke2spyl . 1 sdelocalizedd .
(15)

Strictly speaking, the above analysis of the integ
equation (14) has established only the second inequa
in Eq. (15). In the case of distributions that allow on
positive drift velocities [so that0 , gsyd , 1] one can
also establish the first inequality from Eq. (14) sinc
Hssd is then a monotonically decreasing function ofs.
The latter implies that ifHsspd , 0 thenHs1d , 0, and
hence that all moments ofC are finite, i.e., the system
is localized. It also follows that the system becom
delocalized as soon as the first moment ofC becomes
infinite and henceC does not develop a long tail nea
the transition point. A more rigorous derivation of th
two inequalities in Eq. (15), which proves they ho
for arbitrary distributions of the drift velocities, will be
presented elsewhere using some recent powerful theor
concerning random walks on trees [14,15].

To illustrate the above ideas we shall consider a p
ticular example of the velocity probability densityrsyd,
namely, a Gaussian with meanm and varianceD2. In
Fig. 2 the resulting phase boundary for intrageneratio
disorder is displayed in the parameter space given
the mean and variance (the curve separating region
and III). This boundary is determined by findingsp

for a given pair sm, Dd and then solving the equation
zke2spyl ­ 1 to obtainD as a function ofm. One finds
thatsp ­ myD2 if m , D2 andsp ­ 1 if m $ D2. This
leads to the following explicit expression for the pha
boundary: Dsmd ­

p
2sm 2 ln zd for m [ fln z, 2 ln zg

FIG. 2. Phase diagram showing localization-delocalizati
phase boundaries for a Gaussian distribution of the d
velocities. In the case of intergenerational disorder the sys
is delocalized in region I and localized in regions II and II
whereas in the case of intragenerational disorder the syste
localized only in region III.
5077
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andDsmd ­ my
p

2 ln z for m . 2 ln z. The correspond-
ing phase boundary for intergenerational disorder is
vertical line throughm ­ ln z and is independent of th
variance. The physical interpretation of these results
that the removal of correlations within a generation wh
going from the intergenerational to the intrageneratio
case leads to a higher tendency to delocalize.

So far we have assumed that the drift velocities
finite so that0 , gsyd , `. If there exists a nonzero
probability that y is infinite f gsyd ­ 0g then (in the
case of intragenerational disorder) we have a gene
ized bond percolation problem [2,14] since any branci
that has an infinite drift velocity acts as a broken bo
In such a circumstance one can show that the tra
tion is second order rather than first order. The s
tem is still localized whenzke2spyl , 1 with Fp ­ 0.
However, ifzke2spy l . 1 then0 , Fp , 1 so that there
is a nonzero probability that the random seriesRi of
Eq. (12) is finite and hence a nonzero probability th
the system is localized beyond the critical point. T
illustrate this we shall consider conventional bond p
colation for whichrsyd is taken to be a Bernoulli distri
butionrsyd ­ pdsyd 1 s1 2 pddsy 2 yd with y ! `.
It follows immediately from Eq. (15) that the percolatio
threshold ispc ­ 1yz. The integral equation (14) be
comesMssd ­ pMssdze2s 1 s1 2 pd since Ms0d ­ 1.
In the particular casez ­ 2 one obtains

Mssd ­ es
h
1 2

q
1 2 4s1 2 pdpe2s

i
y2p , (16)

from which we deduce that1 2 Fp ; lims!0 Mssd ­
s1 2 j2p 2 1jdy2p. For p , 1y2 we have Fp ­ 0,
whereas forp . 1y2 we haveFp ­ s2p 2 1dyp. Of
course, such results are well known [2] although it
interesting to see them derived in a different context.

In summary, we have derived exact criteria to det
mine the localization-delocalization phase boundary
the steady-state solution of the drift-diffusion equation
a regular tree with quenched random drift velocities on
branches. Three cases have been considered: (i) uni
drift for which the criterion isy ­ ln z, (ii) intergenera-
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tional disorder for which the criterion iskyl ­ ln z, and
(iii) full intragenerational disorder for which the criterion
is zke2spy l ­ 1 with a suitably defined indexsp. Cer-
tain results in this Letter can be modified to handle tre
that are not homogeneous in branching number [14]. A
other interesting issue concerns the localization lengthj

which, from Eq. (4), we assume satisfies the scaling l
(for largen) F expf2snyjdng ­ k

P
j[Sn

Ajl for some ex-
ponentn. In the case of intergenerational disorderj is
self-averaging andj21 ­ kyl 2 ln z with n ­ 1. The
corresponding result for intragenerational disorder is m
difficult to establish and the localization length may n
longer be a self-averaging quantity. These and other
sues will be discussed in more detail elsewhere.
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