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Localization-Delocalization Transition for Drift Diffusion in a Random Environment
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We investigate the localization-delocalization transition for the drift-diffusion equation on a regular
tree with quenched random drift velocities on its branches. The inverse of the steady-state amplitude
at the origin is expressed in terms of a random geometric series whose convergence or otherwise
determines the critical phase boundary. We establish exact criteria for localization valid for an arbitrary
distribution of the drift velocities. The phase transition is shown to be first order except in the
percolation limit. [S0031-9007(96)01870-4]

PACS numbers: 64.60.Cn, 05.40.+j, 05.60.+w

There are a number of interesting physical problemsnd conservation of current through the node
involving transport in quenched random environments.
These include sedimentation in porous media, diffusion > H0,0=0,  Ji(L,y= D 0,0, (3
limited aggregation, directed polymers, and electromigra- k€ kel
tion along grain boundary networks (see, e.g., [1,2], andvhereJ;(x,t) = —dc;/dx — vici(x,t).
references therein). Random walks in random environ- In steady state the current vanishes on each segment
ments have attracted a great deal of attention as models ¢f = 0 so that the solution is of the form(x) = A;e 7.
such systems. Of particular interest has been the study dhe continuity conditions (2) imply that the amplitudes
how the competition between drift and diffusion in asym-A; satisfy the iterative equatioA; = ® for i € X, and
metric random walks can lead to anomalous diffusive beA;e~ ¥ for all i andj € I; where ® is the steady-state
havior [3—11]. However, there are comparatively fewconcentration at the origin. Thus the amplitudleon a
exact results known concerning the corresponding transgiven segment € X, n > 1 may be expressed in terms
port properties in continuum random media. In this Let-of the concentration at the origin according to the relation
ter we investigate the localization-delocalization transitiond; = [[];; e™/]® where{,j < i} denotes the unique
(in a sense to be made clear below) of the drift-diffusionsequence of segments joinirigo the origin. Assuming
equation on a regular tree with quenched random drift vethat the initial concentration is normalized to unity, con-
locities on its branches. Given an arbitrary distribution ofservation of particle number implies that f(l) ci(x)dx =
the drift velocities, we establish exact criteria to determine|, Making the substitutiom;(x) = A;e "~ the yields the

whether the system is localized or delocalized. following equation for®:
Consider a regular treE with branching numbey and
segment lengti = 1 (Fig. 1). Itis convenient to parti- ® ' = > (f(vi) +g(w) D f(v)
tion the branches of the tree into successive generations. €3, JEI
The first generatior®; consists of thez branches con-
nected to the origin, the second generatihnconsists of + 8(vi) ; g(vj)k; ACT R BN
J=4i i

the z?> subsequent branches connected to the first genera-
tion, and so on. Theth generation containg’ branches. Wwheref(v) = (1 — e ¥)/v, g(v) = ¢”¥. We shall as-
The set of branches in one generation connected to a segme thav is finite so thatf(v), g(v) are bounded, posi-
ment; in the preceding generation is denoted by The tive functions.

concentratiore;(x, t) at positionx and times on theith
segment of the tree evolves according to the equation

dce;  9%c ac;
G _ o¢ UiaCl, t>0, 0<x<1, (1)
X

ot dx2
with the end closer to the origin of the tree chosen to
be atx = 0. Here the diffusion constanb is taken
to be the same on every bran¢th = 1) and v; is the
drift velocity, which is taken to be positive if directed

towards the origin, that is, in the negatiwedirection. ] 2 23
Equatlor_1 (1) is §upp|emented by the b_oundary Condltlonns—IG. 1. Topologically biased regular tree with branching
expressing continuity of the concentration at a node number z = 2 indicating successive generatiod§ = {i, j},
ci(0,1) = ¢;(0,1), i,j €3, 2, ={i1, 02, j1, jo}s €tc. Also I, = {iy, ir}, etc. Arrows indi-
' (2) cate direction of the drift velocity; on each branch relative
ci(1,1) = ¢(0,1), jE I to the originO.
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Equation (4) expressds ™! in terms of an infinite series. quence of the fact that when the first moméntdF (r) =
If this series is convergent tha has a finite value and the { f(v))/[1 — z{g(v))] becomes infinite(g(v)) = 1/z,
steady state is localized. On the other hand, if the seriethe system is still localized since, from Jensen’s inequal-
diverges thend = 0 and the steady state is delocalized.ity, (v) = v.. Assuming the existence of a probability
The simplest case to analyze is when all drift velocities arelensity W(r) such thatdF(r) = ¥ (r)dr, we obtain the
the samey; = v for all i, so that we have a homogeneousfollowing integral equation fotV':

tree. Then Eq. (4) reduces to the geometric series = ov) - = f)
O = f) D g = ) (5) T = [foo zg(v)lp< zg(v) )dv. (®)
p=0

1 —zg(v)’
] o N ) This equation can be derived from the renewal equation
provided thatg(v) < 1. This yields a critical drift veloc- y '— ;¢(y,)¥,.; + f(v,) with each pair( £(v,), g(v,))
ity v. = Inz beyond which the systemiis localized.vlf<  generated independently from(v) and Y, fixed; the

cal slowing down [12]. In this Letter we are interested in .

deriving conditions for localization when the drift veloci- _ —sf(w

ties v; g'Jdre guenched random variables. Time-dependent M(s) = f_wp(v)M(Zg(v)s)e v, )
aspects of the problem will not be addressed here. . _ _

Let us begin by examining a simplified but still interest- With M(s) = [; e™*"W(r)dr. Itis not generally possible
ing version of the full problem. Suppose that within eachto solve these equations analytically. However, one can
generatiom all Segments have the same drift VE|OQth,y determine the asymptotic behavior ¥f whenr is Iarge.
but the sequencly,, n = 1} is independently and identi- Suppose thap(v) is nonarithmetic, that isp(v) cannot
cally distributed (intergenerational disorder). L) be be written in the formd.,__. p,8(v — A") for any A and

the associated probability density. Equation (4) simplified -} such thad ;.. p, = 1. Also assume that the first
to the form moment ofV is infinite so that g(v)) > 1/z. It can then

% n—1 be proven [7,8,13] that there exist positive constanis
@) '=R = fw)" ' [] glvm) (6) with 0 < o <1 such thatW(r) ~ ar ! for large r
n=1 m=1 [and soM(s) ~ 1 + bs” for smalls]. In other wordsy,
so that the steady-state concentration is expressed in terdgsin the domain of attraction of a Levy stable law. The
of a random geometric seri& Similar series have arisen large+ behavior of ¥ ensures that iir > 0 then F* =
in a variety of studies of one-dimensional problems [1,3-im,— [, dF(r) = 0, in other words, that the seri&sof
8,13]. It can be shown that ifin[zg(v)]) < 0 then R Eq. (6) is convergent with probability one. Substitution
converges with probability one [7]. Hence the steadyof the asymptotic form for¥ (or M) into Eq. (8) [or
state is localized provided théb) > v. = Inz, that is, (9)] leads to the equatioF(o) = z7(g(v)7) — 1 = 0.
the average drift velocity exceeds the critical velocityProvided that the density(v) satisfies the previously
for localization on a homogeneous tree. On the otheptated conditions, there exist two real roots Gfo),
hand, if(v) < v, thenR is infinite and the steady state o = 0,7, and the real part of all complex roots is larger
is delocalized. Using Jensen’s inequalify’) = ¢, than@. Hence the nontrivial real root dominates
it is simple to show that this localization criterion is for large r. Suppose thap(v) depends smoothly on
stronger than that based on the vanishing of the asymptotgome parametei such thate(A) > 0 for A < A, and

particle velocity, which takes the fornl/g(v)) > z.  limay o(A) = 0. In the limit A — A., ¥ ceases to
The latter is a necessary but not sufficient condition foxist (it is no longer normalizable) and the probability
localization [12]. F* that R is infinite jumps fromF* =0 to F* = 1.

In the language of phase transitions, there is a transitiolflentifying F* as an order parameter we deduce that the

from a localized to a delocalized state at the critical pointdocalization-delocalization phase transition is first order.

w)>1Inz (localized. () <Inz (delocalized, Differentiating the equatio; (a(A), A) = 0 with respect

to A gives
The critical points determine a phase boundary in the PA [zg) "WV dv +
infinite-dimensional space of probability densitipgv) dA
that separates the localized and delocalized phases. A (W) {zg@) " P In[zg(v)Pr = 0. (10)

characteristic feature of the phase transition is that as

(v) — v, in some prescribed fashion the probability dis- Taking the limit A — A, in Eq. (10) leads to the result
tribution F of R in the localized phase develops a longa/(A.)[{v),., — v.] = 0. SinceA, is a bifurcation point
tail for which all moments are infinite. This is a conse- it follows thato’(A.) > 0 and hencév),, = v..
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The restriction to intergenerational disorder reducedhe only allowed solution of the integral equation (14) for
the analysis of the steady state to an effective ones > 0 is M(s) = 0 and the system is delocalized. We
dimensional problem. This is no longer the case when on@fer from this and our analysis of intergenerational dis-
has intragenerational disorder where the topology of the@rder that there is a first-order phase transition from a lo-
tree must be taken into account explicitly. Suppose thatalized to a delocalized state at the critical points> 0
the drift velocity on each segment is now independentlywhere H(o) = 0. This determines a phase boundary in
and identically distributed with a probability densjiyv).  the space of probability densities that separates the local-
The resulting random series on the right-hand side oized and delocalized phases:

Eq. (4) is then generated by a renewal process on the tree. A ;
angiéer a bognded tree q))/;f generatior?s and associate e . ) <1 (Iocahze.d, (15)
with each segmenta random variable'"’ such that (for e 7") > 1 (delocalized.
fixed Y,EN), k € 3y) Strictly speaking, the above analysis of the integral
equation (14) has established only the second inequality
Yi(N) = Z g(vi)Y;N) + f(vy), in Eq. (15). In the case of distributions that allow only
JET ' positive drift velocities [so tha® < g(v) < 1] one can
iel,l=n<N. (11) also establish the first inequality from Eq. (14) since
. . . H(o) is then a monotonically decreasing function ®f
Equation (4) may then be rewritten in the form The latter implies that it/ (o) < 0 thenH(1) < 0, and
-1 o (N) hence that all moments oF are finite, i.e., the system
=D R Ri= A Y (12) " is localized. It also follows that the system becomes

ey, . '
= delocalized as soon as the first moment¥fbecomes

Suppose thak; converges with probability one indepen- jnfinite and hence¥ does not develop a long tail near
dently of the boundary conditions. The symmetry of thethe transition point. A more rigorous derivation of the
tree then ensures that all variablRs i € 3, are identi- o inequalities in Eq. (15), which proves they hold
cally and independently distributed with a probability dis-for arbitrary distributions of the drift velocities, will be
tribution F. The renewal equation (11) implies that the presented elsewhere using some recent powerful theorems
associated probability density satisfies the fixed point concerning random walks on trees [14,15].

equation To illustrate the above ideas we shall consider a par-
g * ticular example of the velocity probability densip(v),
V(y) = /0 l_llll'(yj)dyj f_mp(v) namely, a Gaussian with mean and varianceA?. In
=

Fig. 2 the resulting phase boundary for intragenerational
< disorder is displayed in the parameter space given by
X 5(Y - g() _ZYJ' - f(U)> dv. (13)  the mean and variance (the curve separating regions |
=l and Ill). This boundary is determined by finding*
Laplace transforming Eq. (13) gives a correspondingor a given pair(u,A) and then solving the equation

integral equation for the generating functidf{s): z{e”??) = 1 to obtainA as a function ofu. One finds
o thato* = u/A%if u < A?ando* = 1if u = A2, This
M(s) = f_ p(v) [M(sgw)Fe /™ dv. (14)  leads to the following explicit expression for the phase

boundary: A(u) = +/2(x — Inz) for u € [Inz,2Inz
Note that whery = 1 Eq. (14) reduces to Eqg. (9); there is y: Alw) H® ) nel ]

no distinction between intergenerational and intragenera-
tional disorder in one dimension.

Suppose that we expand the generating funclit(z)
for smalls along similar lines to the intergenerational case
such thatM(s) ~ 1 + bs?. Substituting into Eq. (14)
yields the equatio/ (o) = z{g(v)?) — 1 = 0. In con-
trast to the functionG(o), o = 0 is not an allowed
root of H(o) = 0. Therefore the transition is no longer
characterized by the limi- — 0. Introduce the index
o* € [0,1] defined according to the property(c*) =
Ming=,<1 H(o). Note thate™ depends on the branching
numberz and the probability density(v). If H(o*) > 0 FIG. 2. Phase diagram showing localization-delocalization
then any solution off (o) = 0 must satisfyo > 1 im- phase boundaries for a Gaussian distribution of the drift

. . NP velocities. In the case of intergenerational disorder the system
plying that the first moment oW is finite. On the other 5" yeiocalized in region | and localized in regions Il and III,

hand,H(1) > 0 implies that the first moment is infinite. \hereas in the case of intragenerational disorder the system is
The evident contradiction shows thatAf(c*) > 0 then localized only in region IIl.

variance
o

Inz mean
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andA(u) = w/v/2Inz for w > 2Inz. The correspond- tional disorder for which the criterion &) = Inz, and

ing phase boundary for intergenerational disorder is théiii) full intragenerational disorder for which the criterion

vertical line throughu = Inz and is independent of the is z{e~“ V) = 1 with a suitably defined index*. Cer-

variance. The physical interpretation of these results isain results in this Letter can be modified to handle trees

that the removal of correlations within a generation wherthat are not homogeneous in branching number [14]. An-

going from the intergenerational to the intragenerationabther interesting issue concerns the localization lerigth

case leads to a higher tendency to delocalize. which, from Eq. (4), we assume satisfies the scaling law
So far we have assumed that the drift velocities ardfor largen) ® exd—(n/£)"] = (3 ;es, A;) for some ex-

finite so that0 < g(v) < «. If there exists a nonzero ponentr. In the case of intergenerational disordeiis

probability that v is infinite [ g(v) = 0] then (in the self-averaging and™!' = (v) — Inz with » = 1. The

case of intragenerational disorder) we have a generatorresponding result for intragenerational disorder is more

ized bond percolation problem [2,14] since any branch difficult to establish and the localization length may no

that has an infinite drift velocity acts as a broken bondlonger be a self-averaging quantity. These and other is-

In such a circumstance one can show that the transsues will be discussed in more detail elsewhere.

tion is second order rather than first order. The sys-

tem is still localized wheng{e™? V) < 1 with F* = 0.

However, ifz{e 7"?) > 1 then0 < F* < 1 so that there

s a nonzero _probability that the random Se”k,’s_ of *Department of Mathematical Sciences.

Eq. (12) is fl_nlte an_d hence a nonzero _probab!llty that TDepartment of Electronic and Electrical Engineering.
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