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Experimental Evidence for Chaotic Scattering in a Fluid Wake
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We present the first experimental evidence of chaotic scattering in a fluid wake. Measureme
tracer particles and dye in the stratified wake of a moving cylinder are shown to be consisten
four predictions based on simple models and direct numerical simulation: unstable periodic orbit
shadowed by tracer particles; streaklines marked by wake-delayed dye are shown to be fracta
time-delay statistics of fluid elements interacting with the wake decayed exponentially; and finall
fractal dimension of the wake is consistent with the dynamics of the wake, as measured by charac
time delays and Lyapunov exponents. [S0031-9007(96)01924-2]

PACS numbers: 47.52.+ j, 05.45.+b, 47.27.Vf, 83.50.Ws
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Chaotic scattering [1–3] refers to the possibility tha
system can manifest symptoms of chaos (such as sens
dependence on initial conditions) for a finite time, ev
though the system’s phase-space trajectory is asymp
cally free during earlier and later epochs, i.e., the sys
is open. This can occur when the system’s phase-space
jectory shadows a genuinely chaotic invariant set, whi
being unstable, is not directly observable in a typic
experiment. Chaotic scattering has been identified a
possible phenomenon in a wide variety of contexts,
cluding celestial mechanics [4], microwave scattering [
solar physics [6], geophysics [7], optics [8], atomic and n
clear physics [9], and fluid dynamics [10–14]. Howeve
there have been very few [5] laboratory demonstrations
chaotic scattering, where sufficient control is available
test several independent predictions of a chaotic scatte
model. In this Letter, we present experimental eviden
for chaotic scattering in a fluid wake.

In a two-dimensional incompressible flow, there exi
a time-dependent stream function such that a pas
tracer’s equations of motion have the exact form
Hamilton’s equations. Thus the configuration-space pa
of tracers in such a flow are also phase-space path
an associated dynamical system. This identification
been used previously [10–13,15–17] to analyze sev
different fluid flows. If the associated dynamical syste
has chaotic scattering, then the flow will show the sa
properties in physical space; i.e., the scattering will
directly observable. References [12,13] suggested, b
on direct numerical simulation of two-dimensional flo
fields and on numerical investigation of analytical stre
functions, that chaotic scattering should be observabl
a two-dimensional fluid wake. Until now, that suggesti
has not been realized in an actual experiment.

The most spectacular manifestation of chaotic scatte
is that a generic scattering function exhibits an uncou
able number of singularities, located on a fractal supp
in the space of impact parameters. In the case of a fl
wake, we take thetime delayof fluid elements passing
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the perturbing body to be the scattering variable; alm
all fluid elements eventually leave the wake and join fre
streaming fluid elements, but some can be delayed f
long time. Unfortunately, exhibiting an actual scatteri
function is hardly practical for a real fluid wake, whe
accurate determination of the impact parameter of a fl
element exiting the wake region is currently impossib
Our demonstration of chaotic scattering is less direct,
we present several interlocking pieces of evidence con
tent with the two-dimensional scattering model introduc
in Refs. [12,13]. First, we observed that individual trac
particles shadowed periodic orbits predicted to exist in
closure of the unstable chaotic invariant set inhabiting
wake (herewakedenotes the disturbed region of flow b
hind the moving body, where fluid element velocities diff
from those in the free stream). Second, we observed th
wake-persistent fraction of an incident ensemble of trac
concentrated on a set that is approximately fractal. Th
we observed that the time delay statistics of fluid eleme
exiting the wake region showed an initial exponent
decay. Fourth, and perhaps most conclusively, the fra
dimension of the set marked by the wake-persistent fl
elements is predicted by the time-delay statistics and lo
wake dynamics, according to a formula due to Kantz a
Grassberger [18]. This last piece of evidence is analog
to using Lyapunov exponents to predict the dimensions
spatial fractal patterns via the Kaplan-Yorke formula [1
this analysis has previously been accepted [16] as conv
ing evidence that some two-dimensional flows can be
curately described by low-dimensional dynamics.

Our experiments were conducted in JHUyAPL’s 1 m 3

3 m 3 8 m stratified flow facility, which allows experi-
ments with arbitrary stable density profiles (see Fig.
We produced a thin (1–5 cm), strong density gra
ent at middepth, between layers of concentrated b
(r ø 1.2 g cm23) on the bottom and fresh water o
the top. We made all measurements within the t
mixing layer, where the Brunt-Väisälä frequencyN ­
fgr21jdrydzjg1y2 was in the range6 # N # 14 s21.
© 1996 The American Physical Society 5055
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FIG. 1. Schematic diagram of experimental setup.

This very strong stratification effectively suppressed m
tion in the vertical direction, especially on time scal
characteristic of fluid motion in the horizontal direction
The fluid wake was created by a cylinder (with ver
cal symmetry axis, radiusRcyl ­ 5 cm) moving horizon-
tally along the center of a channel between false w
(width w ­ 20 cm). This setup duplicated the geom
try of Refs. [12,13]; however, the earlier numerical wo
considered flow around a stationary cylinder in a ch
nel. With our moving cylinder we found some unimpo
tant (i.e., not relevant to the issue of chaotic scatteri
differences from the predictions of the earlier work, d
to the different flow field near the channel walls. W
towed the cylinder from an overhead track at low velo
ties Ucyl of a few mm s21, yielding Reynolds numbers
Re ­ 2RcylUcylyn in the range100 # Re # 250. In this
range of Reynolds number, after an initial transient,
velocity field in the wake region is (ideally) time periodi
This time dependence provides sufficient phase-space
grees of freedom (x, y, andt modTc, whereTc is the pe-
riod of the velocity field) to support chaos. The perio
Tc also provides a characteristic time scale against wh
to measure the dynamics (at Re­ 100, Tc ­ 595 s; at
Re ­ 250, Tc ­ 205 s). The dynamical system can b
considered a three-dimensional continuous-time syst
or alternatively, can be viewed as a two-dimensional ar
preserving mapping, by considering snapshots taken a
tervals ofTc.

The flow field in the wake is dominated by vortice
which form behind the cylinder, alternating sides in t
cross-stream direction. The nearby walls and visco
quickly suppress this vorticity, so the entire von Karm
street is reduced to only two vortices at any time.

The wake region was visualized from above using
CCD camera fixed with respect to the cylinder. Ultravi
let lamps inside the cylinder excited tiny fluorescent tra
particles (floating in the mixing layer [20]) or fluoresce
dye, depending on the experiment.

In order to check that our experiment was inde
approximately two dimensional, with a time-periodic v
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locity field, we performed a strictly two-dimensional dire
numerical simulation (DNS) of the flow field at the limit
ing Reynolds numbers. The DNS used a multigrid dom
decomposition approach incorporating the pseudospec
element method [21]. We then compared compu
streaklineswith observed dye lines produced by a comb
outlets upstream from the cylinder. The corresponde
was excellent (see Fig. 2), even at the lowest valu
of Ucyl, where background motions in the tank pos
the largest threat to the periodicity of the velocity fiel
and where the initial, aperiodic transient was longe
Because background motions in the tank at the star
a run broke the flow symmetry, the initial transient w
brief; comparison with the DNS indicates that unavoidab
background motions were on the order of 0.01Ucyl.

Periodic orbits.—The periodic orbits predicted [12,13
to inhabit the wake region are extremely unstable.
fact, the earlier numerical work used an analytical stre
function that artificially expanded the boundary laye
making the periodic orbits more stable and allowing th
numerical identification. Therefore we did not expe
to see periodic orbits directly in our experiment. O
approach was to move the cylinder through a horizon

FIG. 2. Image of experimental flow field (a) shown abo
corresponding numerically computed streaklines (b) at Re­
100. Cylinder is moving to the left. In (a), the thicknes
of dyed streaklines results from diffusion and slight thr
dimensionality of flow; extrusion of the dye under positiv
pressure results in some vertical extent to the dye lines.
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sheet of tiny tracer particles and record the particle tra
with the CCD camera. By piecing together portions
the tracks of many different tracers, which shadowed
predicted orbits for various periods of time, we ha
identified several classes of predicted orbits. Of cou
artificialities of the earlier numerical model resulted
detailed differences, but the generic character of the or
is very similar to those shown in Refs. [12,13] (s
Fig. 3).

Fractal nature of wake.—The unstable chaotic invari
ant set predicted [12,13] in the wake is a chaotic sad
C (topologically, a Cantor dust), having both an unsta
manifoldW u and stable manifoldW s. We expectW u, a
foliation of curves, to have dimensiondsW ud ­ Du 1 1,
where0 , Du , 1. When passive tracers impinge on t
wake, those nearW s spend a long time shadowingC and
tend to leaveC alongW u. Thus, in an experiment wher
the cylinder traverses a cross-stream stripe of dye, one
pects that dye leaving the wake should trace out a g
approximation ofW u and should also have dimensio
dsW ud. These arguments hold for capacity and inform
tion dimensions; the latter is more experimentally relia
[16] and more dynamically relevant [18,19].

For the Re­ 250 case, the information dimension o
the wake was measured (using the approach of Ref. [
to be dsW ud ­ 1.3 6 0.1. Because of the camera

FIG. 3. Unstable periodic orbits in wake revealed by parti
tracking. Particle coordinates were digitized and assem
into tracks. Portions of orbit shadowed by different partic
are indicated by different plot symbols. (a) Period-1 orbit
Re ­ 100. (b) Period-1 orbit at Re­ 250.
ks
f

he
e
e,

its
e

le
le

e

ex-
od

-
le

6])

le
ed
s
t

limited resolution, the precision of this estimate is low, b
the result is statistically bounded away from an integer

Time delay statistics.—The picture presented above
complicated by the fact that fluid elements are delay
by two attributes of the system: the chaotic sadd
C (a hyperbolic set) and the wall of the cylinder
marginally stable, or parabolic set). Given the underly
Hamiltonian structure, there may also be Kolmogoro
Arnol’d-Moser (KAM) surfaces. Both latter possibilitie
would contaminate the exponentially distributed tim
delay statistics expected of the hyperbolic component w
algebraic decay at longer times.

We therefore considered the time delay of the earl
fluid elements leaving the wake. By moving the cyli
der though a cross-stream stripe of dye, we marked
ensemble of impact parameters. The first dye to re
a strip 10Rcyl behind the cylinder (which was also be
hind the alternating vortices) had not interacted with
wake and was used to define the zero of time delay.
recorded the radiometric intensity of the dye that sub
quently passed through the strip. The decay of the
maining dye (shown in Fig. 4) is initially exponentia
indicating the predicted [12] interaction with a hyperbo
invariant set. Longer delays show a more complica
time dependence than the predicted simplet22 algebraic
decay. This discrepancy is likely due to overly simpl
tic approximation of the cylinder boundary layer in th
analytical stream function of Ref. [12], but could also i
dicate the presence of KAM surfaces near the flow se
ration (although none were convincingly demonstrated
the experiment). In any case, the discrepancy is irrelev
to the argument for chaotic scattering.

FIG. 4. Average time-delay statistics for dye interacting w
wake. Since space of impact parameters includes the tim
which fluid element encounters cylinder, relative to phase
periodic velocity field, an average is taken over eight runs w
different upstream placement of the dye stripe.
5057
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Prediction of wake geometry.—Kantz and Grassberge
[18] derived relationships among several quantities ch
acteristic of the hyperbolic chaotic invariant setC of
a two-dimensional mapping: the information dimensio
of C and its stable and unstable manifolds [dsC d ­
Du 1 Ds, dsW sd ­ 1 1 Ds, and dsW ud ­ 1 1 Du],
the Lyapunov exponents (hu . hs) along an invariant tra-
jectory, and the characteristic delay timektl of randomly
initialized trajectories shadowing the invariant set:

Ds ­ 1 2
1

huktl
, (1)

Du ­
hu 2 1yktl

jhsj
. (2)

Since for a conservative systemhs ­ 2hu, Du ­ Ds.
In the previous section, we described the measu

ment of ktl; for the Re­ 250 case,ktl ­ 0.43 6 0.01.
The largest Lyapunov exponent was measured by part
tracking to behu ­ 3.15 6 0.12. Thus Eq. (2) predicts
an information dimensiondsW ud ­ 1.26 6 0.03, con-
sistent with the experimental measurement of the wa
information dimension.

In conclusion, we have presented four interlocki
types of experimental evidence supporting the predict
[12,13] that chaotic scattering should describe the delay
fluid elements in a wake. This is a rare laboratory con
mation of chaotic scattering theory and an indication th
chaotic scattering may have practical implications. Sin
the delay of fluid elements in a wake is one componen
drag on a moving body, approximate calculation or ev
reduction of drag may be facilitated using simple chao
scattering models. For example, because the invariant
the chaotic saddle in the wake may be expressed in te
of the properties of the unstable periodic orbits embe
ded in the saddle, disruption of the periodic orbits sho
affect the drag properties directly. Analysis of period
orbits in simple models is much easier than direct nume
cal simulation of the Navier-Stokes equations.
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from Joseph E. Hopkins and C. Howard Hoshall a
useful discussions with E. M. Ziemniak. Much of th
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the Department of the Navy, Space and Naval Warf
Systems Command.
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