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Susceptibility of Chaotic Systems to Perturbations
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The susceptibility of chaotic Hamiltonian systems with 2 degrees of freedom to a perturbati
harmonical time dependence is studied. The dispersion relation for the susceptibility that includ
Lyapunov exponent is established. The equations that connect the parameters of the susceptibil
those of the power spectrum of the coordinate and the density of states are derived from the equi
of quantum and classical susceptibilities in the limit" ! 0. The susceptibility of the Pullen-Edmond
nonlinear oscillator is calculated as an example. [S0031-9007(96)01840-6]
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The susceptibility of a dynamic system to a sm
periodic perturbation is one of its basic characteristics.
the perturbation is due to an applied alternating elec
field, the susceptibility is proportional to the polarizabili
of the system, which is a fundamental quantity in t
theory of interaction of radiation with matter. Furthe
the susceptibility can be related to the internal dynam
of the system. The best known example is the fluctuati
dissipation theorem by Callen and Welton [1] that rela
the averaged square value of the fluctuating dyna
variable to the imaginary part of the susceptibility of t
system at thermal equilibrium.

In this paper we study the general properties of
susceptibility of autonomous Hamiltonian chaotic syste
with 2 degrees of freedom and a given energyE in chaotic
dynamics [2].

Let us consider a model of quantum systems w
2 degrees of freedom with the Hamiltonian operator

Ĥsp̂, r̂d ­
1

2m
sp̂2

x 1 p̂2
yd 1 Usx̂, ŷd , (1)

where x̂, ŷ are the operators of Cartesian coordinat
p̂x , p̂y are the Cartesian components of the momentu
and m is the mass of the particle. The perturbation
described by adding tôH the operator

V̂ sx̂, td ­ 2x̂f0 cosvt . (2)

If this perturbation is switched on adiabatically, th
responsekx̂stdl to the perturbationV̂ sx̂, td (with the
infinitesimal imaginary quantity added to the frequenc
has the form

kx̂stdl ­ f0fa0svd cosvt 1 a00svd sinvtg (3)

with usual assumption thatkx̂l ­ 0 for the unperturbed
system [1].

This equation defines the realsa0d and imaginarysa00d
parts of the generalized susceptibility [1]. The angu
brackets in Eq. (3) denote averaging over the init
quantum state. If the system̂H has a discrete energ
spectrumEi , the susceptibility of the system in som
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stationary statejnl is given by

asvd ­
1
"

X
k

2jxnkj2vkn

v
2
kn 2 sv 1 i0d2

, (4)

where xnk is the matrix element of the coordinate, a
vkn ­ sEk 2 Endy" is the transition frequency betwee
the statesjkl andjnl.

If the classical model with an unperturbed Hamiltoni
function corresponding to (1) is chaotic, then one wo
expect the chaos to show up in the features of the quan
model in the quasiclassical limit [3,4]. In this case t
expression (4) is practically useless. Because of
weakness of selection rules in quantum chaotic syste
the main contribution in the sum overk will be given
by a large (and increasing with" ! 0) number of terms
irregularly depending onk.

It is natural to describe the properties of the quant
system defined by Eqs. (1) and (2) in the limit" ! 0 by
classical susceptibility. This quantity can be defined
calculating the linear response of the systemkxstdl, where
xstd is the solution of canonical equations of motio
that are linearized in the vicinity of the phase trajecto
hpstd, rstdj. The angular brackets in the classical ca
stand for averaging over the initial conditions. Th
classical susceptibility of nonlinear regular systems w
1 degree of freedom has been treated long ago [5].

For the chaotic motion, among the fundamental se
the solutions of the system of linearized equations
motion there is at least one that increases exponent
with time:w1std , expst, wheres . 0 is the (maximal)
Lyapunov exponent. This growth indicates the existe
of a pole of the functionasvd at the point v ­ is
in the upper half-plane of complex frequency. T
presence of such a pole in the susceptibility of unsta
systems is well known [6]. The causality condition f
the temporal behavior of the response of the system
fulfilled if the integration contour in the plane of comple
v passes above this pole. The symmetry condit
as2vd ­ apsvd gives another pole at the pointv ­
2is. Therefore the susceptibility of the chaotic syste
© 1996 The American Physical Society 5043
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can be put in the form

asvd ­
g

v2 1 s2 1 bsvd , (5)

whereg is some constant andbsvd has no singularities
in the upper half-plane. Sincebsvd obeys the usua
Kramers-Kronig dispersion relation [1], the dispersi
relation forasvd can be written as

asvd ­
2
p

Z `

0

ja00sjd
j2 2 sv 1 i0d2 dj 1

g

v2 1 s2 .

(6)
This equality holds for any classical dynamic chao
system with only one positive Lyapunov exponent.

In the high frequency rangev ! ` both parts of this
equality can be expanded in series in powers ofv22. To
determine the coefficients of this expansion of the le
hand side (lhs) for the Hamiltonian system (1), t
quantum expression (4) can be used. By equating
coefficients atv22 andv24 the following equations can
be obtained with the help of the well known sum rules [

1
m

­
2
p

Z `

0
ja00sjd dj 2 g , (7)

1
m2 kUxxl ­

2
p

Z `

0
j3a00sjd dj 1 gs2, (8)

whereUxx ­ ≠2Uy≠x2. If the chaotic motion is ergodic
within a given componentCsEd on the energy surfac
H ­ E, the matrix element of the second derivative
the potentialUxx in the lhs of Eq. (8) can be replace
by its average overCsEd. In our notation Eq. (8) retain
its form.

The rate of energy absorptionQ by the perturbed sys
tem is proportional to the imaginary part of its suscep
bility [1]:

Q ­
v

2
a00svdf2

0 . (9)

This quantity can be calculated in the quantum mode
treating the energy spectrum as a quasicontinuous
Since the perturbing forcef0 is arbitrarily small, the
absorption rate is given by the Fermi golden rule:

Q ­ "vs ÙW1 2 ÙW2d . (10)
ÙW1 and ÙW2 in Eq. (10) are transition rates from the initi

statejnl accompanied by the absorptions1d or emission
s2d of energy quanta"v:

ÙW6 ­
2p

"

f2
0

4
jxnkj2rsEk6d , (11)

where rsEk6d is the density of states near the fin
state with the energyEk6 ­ En 6 "v. Matrix elements
xnk of quantum chaotic systems strongly fluctuate w
variation of k [3,4]. However, the averaged squar
quantity jxnkj2 in the limit " ! 0 is smooth. Becaus
of the correspondence principle it is proportional to
5044
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power spectrumSxsE, vd of the coordinate [8,9]:

jxnkj2 ø
SxsE, vd
"rsEd

. (12)

The power spectrumSxsE, vd is related to the autocorre
lation function of the coordinate for chaotic motion withi
a given componentCsEd on the energy surfaceH ­ E,

BxsE, td ­ kxst 1 tdxstdl 2 kxstdl2 (13)

by the equation

SxsE, vd ­
1

2p

Z `

2`
BxsE, tde2ivt dt . (14)

The rsEd in Eq. (12) denotes the density of states wi
the support in the same chaotic componentCsEd [8,10].
In the classical limit it is given by the expression

rsEd ­
1

s2p"d2

Z
CsEd

dsssE 2 Hs $p, $rddddd $p d $r , (15)

where dszd is the Dirac delta function,Hs $p, $rd is the
classical Hamiltonian function, and the integration is ca
ried over the chaotic componentCsEd. In the semiclassi-
cal case the matrix elementsxnk between the states with
nonoverlapping supports vanish [10]. Therefore the sa
expression (15) forrsEd should be inserted in the right
hand side (rhs) of Eq. (11).

For the energyE in Eq. (12) we take its interpo-
lation value E6 ­ sEn 1 Ek6dy2 ­ En 6 s"vdy2 [8]
(see Fig. 1). From Eqs. (10)–(12) in the limit" ! 0 we
obtain the expression for the rate of the energy absorpt

Q ­
p

2
v2f2

0

µ
≠SxsE, vd

≠E
1 SxsE, vd

d ln rsEd
dE

∂
.

(16)
By comparison of Eqs. (9) and (16), the following ex
pression for the imaginary part of the susceptibility
obtained:

a00svd ­ pv

µ
≠SxsE, vd

≠E
1 SxsE, vd

d ln rsEd
dE

∂
. (17)

Let’s introduce the notation

S2nsEd ­
Z `

2`
v2nSxsE, vd dv (18)

FIG. 1. Level scheme for the calculation of the rate of ener
absorption. The interpolation values of energyE6 are shown
by the dashed lines.
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for even momentsS2nsEd of the power spectrum of th
coordinate. The substitution of Eq. (17) into Eqs. (7) a
(8) yields

g ­ 2
1
m

1
dS2

dE
1 S2

d ln rsEd
dE

, (19)

gs2 ­
1

m2
kUxxl 2

dS4

dE
2 S4

d ln rsEd
dE

. (20)

Formulae (17), (19), and (20) define the susceptib
of a chaotic system through the power spectrum of
coordinate, average value of the second derivative of
potential, and the logarithmic derivative of the density
states. Since the density of states in the semiclas
limit given by Eq. (15) is just proportional to"22, its
logarithmic derivative does not depend on" and hence
is a purely classical quantity.

As an example of chaotic systems we take the Pul
Edmonds model [11] with the Hamiltonian function

H ­
1

2m
sp2

x 1 p2
yd 1

mV2

2
sx2 1 y2 1 l22x2y2d .

(21)
Its chaotic properties have been thoroughly studied b
numerically [12,13] and analytically [14,15]. In wh
follows we putm ­ V ­ l ­ 1.

For high energiesE $ 10, the motion of the system
(21) is nearly ergodic: The invariant measure of
chaotic component at the Poincare sectionms deviates
from 1 by no more than3 3 1022 [12]. For this model
even moments of the power spectrum of the coordin
have been found analytically in the ergodic approximat
[15]. The substitution of the ergodic approximation
S2sEd into Eq. (19) yieldsg ; 0. Since the Pullen
Edmonds system is only approximately ergodic, one
expect that the sum of the last two terms in the rhs
Eq. (8) deviates from its ergodic values­ 1d by a quantity
of order 1 2 ms , 3 3 1022. An attempt to calculate
g from the numerically found values ofS2sEd yielded
the inconclusive valueg ­ 0.07 6 0.47. At present we
cannot affirm thatg differs from zero.

The power spectrum of the coordinate has been arr
at directly from definition (14) by numerical integratio
of the canonical Hamilton equations. Six fragments
trajectory with lengths of2 3 104 time units have bee
used to calculateBxsE, td at each of two close energ
values. The values of the density of statesrsEd have
been taken from the ergodic approximation. The r
part of the susceptibility has been calculated from
dispersion relation (6) withg ­ 0. Figure 2 presents th
real and imaginary parts of the susceptibility of the Pull
Edmonds system at the energyE ­ 16. The spectra
bands of negative absorption should be noted.

The presence of such bands may be typical for cha
systems. As a second example we take the cha
billiards [16,17]—systems in which the particle mov
freely in two dimensions in a region confined by rig
d

ity
he
the
of
ical

n-

oth
t

e

ate
on
r

an
of

ed

of

al
he

n-

tic
tic
s
d

FIG. 2. The frequency dependence of the real (a0, solid line)
and imaginary (a00, dashed line) parts of the susceptibility o
Pullen-Edmonds model (20) at the chaotic motion with ener
E ­ 16.

walls. The power spectra of coordinates for chao
billiards of nearly circular form closely resemble that o
the Pullen-Edmonds model [18,19]. Since for the billia
rsEd ­ const, from Eq. (17) it follows thatZ `

0

a00svd
v

dv ­
p

2
dS0

dE
­

p

2
dkx2l
dE

­ 0 . (22)

This quality can hold only if there are bands wit
a00svd , 0. We note in passing that for chaotic billiard
of any form, Eq. (19) yieldsg ­ 0.

In conclusion we note that our constraint on the numb
of degrees of freedom (2) was chosen so as to ens
that the dynamic system has only one positive Lyapun
exponent. The results are valid also for Hamiltonia
systems that describe the motion of the particle in a thr
dimensional potential field if this condition is fulfilled.
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