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Susceptibility of Chaotic Systems to Perturbations
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The susceptibility of chaotic Hamiltonian systems with 2 degrees of freedom to a perturbation of
harmonical time dependence is studied. The dispersion relation for the susceptibility that includes the
Lyapunov exponent is established. The equations that connect the parameters of the susceptibility with
those of the power spectrum of the coordinate and the density of states are derived from the equivalence
of quantum and classical susceptibilities in the lidhit= 0. The susceptibility of the Pullen-Edmonds
nonlinear oscillator is calculated as an example. [S0031-9007(96)01840-6]

PACS numbers: 05.45.+b, 03.65.Sq

The susceptibility of a dynamic system to a smallstationary statén) is given by
periodic perturbation is one of its basic characteristics. |If 5
the perturbation is due to an applied alternating electric a(w) = 1 Z . 20Xk @ i 4)
field, the susceptibility is proportional to the polarizability h T win — (0 + i0)?
of the system, which is a fundamental quantity in the ) i )
theory of interaction of radiation with matter. Further, Wherex,. is the matrix element of the coordinate, and
the susceptibility can be related to the internal dynamic&«» = (Ex — Eq)/fi is the transition frequency between
of the system. The best known example is the fluctuationth® stategk) and|n). _ o
dissipation theorem by Callen and Welton [1] that relates !f the classical model with an unperturbed Hamiltonian
the averaged square value of the fluctuating dynami@-mCt'On corresponding to (1)_ is chaotic, then one would
variable to the imaginary part of the susceptibility of the ®XPect the chaos to show up in the features of the quantum
system at thermal equilibrium. model in the qugsmlass!cal limit [3,4]. In this case the
In this paper we study the general properties of theeXPpression 4) is pracncally_ useless. Becaqse of the
susceptibility of autonomous Hamiltonian chaotic systemdveakness of selection rules in quantum chaotic systems,
with 2 degrees of freedom and a given enekgiy chaotic the main contribution in the sum ovér will be given

dynamics [2]. by a large (and increasing withh — 0) number of terms
Let us consider a model of quantum systems witnegularly depending on. _
2 degrees of freedom with the Hamiltonian operator It is natural to describe the properties of the quantum

system defined by Eqgs. (1) and (2) in the lirhit— 0 by
classical susceptibility. This quantity can be defined by
calculating the linear response of the systaifa)), where
x(t) is the solution of canonical equations of motion

where %,9 are the operators of Cartesian coordinatesth ¢ i ized in the vicinitv of the ph traiect
px, Py are the Cartesian components of the momentum at aré finearized in the vicinity of the phase trajectory

and m is the mass of the particle. The perturbation is{p(t)’r(t)}' The angular bracke_ts_ ?n the clg_ssical case
described by adding t& the operator stand_ for averaging over thg initial conditions. Th_e
classical susceptibility of nonlinear regular systems with
V(x,1) = —%focoswt . (2) 1 degree of freedom has been treated long ago [5].
) ) , ] ) ] For the chaotic motion, among the fundamental set of
If this perturbation is switched on adiabatically, the e solutions of the system of linearized equations of
response(()) to the perturbationV(x,7) (with the  motion there is at least one that increases exponentially
infinitesimal imaginary quantity added to the frequency)ith time: ¢1(t) ~ expat, wheres > 0 is the (maximal)
has the form Lyapunov exponent. This growth indicates the existence
A6 — / " ; of a pole of the functiona(w) at the pointw = io
&) = fola' () coswr + a(w)sinwr] - (3) in the upper half-plane of complex frequency. The
with usual assumption thgtt) = 0 for the unperturbed presence of such a pole in the susceptibility of unstable
system [1]. systems is well known [6]. The causality condition for
This equation defines the re@t’) and imaginary(a””)  the temporal behavior of the response of the system is
parts of the generalized susceptibility [1]. The angularfulfilled if the integration contour in the plane of complex
brackets in Eq. (3) denote averaging over the initialw passes above this pole. The symmetry condition
quantum state. If the systeti has a discrete energy a(—w) = a*(w) gives another pole at the poiri =
spectrumk;, the susceptibility of the system in some —io. Therefore the susceptibility of the chaotic system

A 1, R R
H(p,#) = —(p: + py) + U@&.)., @)
2m Y
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can be put in the form power spectruns, (E, w) of the coordinate [8,9]:
S S 7 Si(E )
a(w) T4 o2 + B(w), (5) |0k | hp(E) (12)

wherey is some constant and(w) has no singularities The power spectrurs, (E, ») is related to the autocorre-
in the upper half-plane. Sincg(w) obeys the usual |ation function of the coordinate for chaotic motion within
Kramers-Kronig dispersion relation [1], the dispersiona given component(E) on the energy surfacd = E,

relation fora(w) can be written as B.(E.7) = (x(t + m)x(t)) — (x())? (13)

2 (7 a’(¢) Y -
= — + .

a(w) - fo = (o + 02 dé P by the equation 1 )

(6) Sy (E,w) = Py f B.(E,T)e Tdr. (14)
This equality holds for any classical dynamic chaotic -
system with only one positive Lyapunov exponent.

In the high frequency range — « both parts of this
equality can be expanded in series in powersof. To
determine the coefficients of this expansion of the left- (E) = 1
hand side (Ihs) _for ;[Z)e Han;)iltoniar(; S)I/astem (1), th(ra] p - (2wh)? c®)

uantum expression can be used. equating the . . . s oy
2oefficients gtw—z and » —* the following eq)l/Jati%ns an where 6(z) is the Dirac delta functionH(p, ) is the

be obtained with the help of the well known sum rules m.classical Hamiltonian function, and the integration is car-
) ‘ried over the chaotic compone@tE). In the semiclassi-

1r_2 fwfa”(g)dg — 7) cal case the matrix elementg; between the states with
m T Jo ' nonoverlapping supports vanish [10]. Therefore the same
| ) expression (15) fop(E) should be inserted in the right-

—(Une) = = f a"&)dé + yo?, (8) hand side (rhs) of Eq. (11).

m 7T Jo For the energyE in Eq. (12) we take its interpo-
whereU,, = 92U /ax?. If the chaotic motion is ergodic lation value E~ = (E, + Exx)/2 = E, * (hw)/2 [8]
within a given componenC(E) on the energy surface (see Fig. 1). From Eqgs. (10)-(12) in the lintit— 0 we
H = E, the matrix element of the second derivative ofobtain the expression for the rate of the energy absorption:

The p(E) in Eg. (12) denotes the density of states with
the support in the same chaotic compon€fE) [8,10].
In the classical limit it is given by the expression

S(E — H(p,r))dpdr, (15)

the. potentialU,, in the lhs of Eq. (8.) can be replaped _ lw2f2<aSX(E’w) t S.E w)dm p(E)>
Ft)y ]!ts average ovef(E). In our notation Eg. (8) retains 2 o\ g B @) e )
its form.

The rate of energy absorptiap by the perturbed sys- _ _(16)
tem is proportional to the imaginary part of its suscepti-By comparison of Egs. (9) and (16), the following ex-
bility [1]: pression for the imaginary part of the susceptibility is

w obtained:
0 =—a"()fs. 9
2 0 a(w) = Ww(—aSX(E’w) + SX(E,w)—dInp(E)>. a7
This quantity can be calculated in the quantum model by IE dE
treating the energy spectrum as a quasicontinuous one. Let’s introduce the notation
Since the perturbing forcg is arbitrarily small, the =
absorption rate is given by the Fermi golden rule: Son(E) = ]ﬁ 0 S (E,»)dw (18)
0 =hoW, — W_). (10)
W. andW_ in Eq. (10) are transition rates from the initial
state|n) accompanied by the absorptigf) or emission Y B y=E,+ o
(—) of energy quant# w: X ___%@al ______ E+:En+;’i"
v, — 2™ fo,
Wi L4 |xnk| p(Eki), (11) n ”
where p(E;+) is the density of states near the final ~ ----- %i ----- E =En—2—w
state with the energ¥;,+~ = E, * fiw. Matrix elements £ —ho
xn Of quantum chaotic systems strongly fluctuate with By =En~

variation_of k [3,4]. However, the averaged squared FIG. 1. Level scheme for the calculation of the rate of energy

quantity |x,.[* in the limit # — 0 is smooth. Because apsorption. The interpolation values of eney are shown
of the correspondence principle it is proportional to theby the dashed lines.
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for even momentss,, (E) of the power spectrum of the 3

coordinate. The substitution of Eq. (17) into Egs. (7) and®* | ) s gt
(8) yields -
1 ds, dInp(E) :
4 m g T TaE (19)
1 ds dInp(E)
2 = _dos o dlpE)
yo m2<Uxx) 1B Sy E (20) |

Formulae (17), (19), and (20) define the susceptibility B e = S S
of a chaotic system through the power spectrum of the | W

coordinate, average value of the second derivative of thi
potential, and the logarithmic derivative of the density of
states. Since the density of states in the semiclassici . T : . .
limit given by Eq. (15) is just proportional td 2, its 0 ! z o
!ogarlthmlc derl\(atlve doe§ not depend énand hence FIG. 2. The frequency dependence of the redl €olid line)
is a purely classical quantl'gy. and imaginary ¢”, dashed line) parts of the susceptibility of
As an example of chaotic systems we take the Pullenpyllen-Edmonds model (20) at the chaotic motion with energy
Edmonds model [11] with the Hamiltonian function E = 16.

-
-~

m

1 0?2 _
H= (p: + p}) + 5 (2 + y2 + 2A72x%?).
walls. The power spectra of coordinates for chaotic

_ _ (_21) billiards of nearly circular form closely resemble that of
Its chaotic properties have been thoroughly studied botkhe pullen-Edmonds model [18,19]. Since for the billiard
numerically [12,13] and analytically [14,15]. In what p(E) = const, from Eq. (17) it follows that
follows we putm = ) = A = 1. o 5
For high energiesz = 10, the motion of the system ] de _mdS _ m dlx)
(21) is nearly ergodic: The invariant measure of the Jo @ 2 dE 2 dE
chaotic component at the Poincare sectjon deviates This quality can hold only if there are bands with
from 1 by no more tha X 1072 [12]. For this model a"(w) < 0. We note in passing that for chaotic billiards
even moments of the power spectrum of the coordinatef any form, Eq. (19) yields = 0.
have been found analytically in the ergodic approximation |n conclusion we note that our constraint on the number
[15]. The substitution of the ergodic approximation for of degrees of freedom (2) was chosen so as to ensure
S>(E) into EQq. (19) yieldsy = 0. Since the Pullen- that the dynamic system has only one positive Lyapunov
Edmonds system is only approximately ergodic, one caexponent. The results are valid also for Hamiltonian
expect that the sum of the last two terms in the rhs okystems that describe the motion of the particle in a three-
Eq. (8) deviates from its ergodic valGe 1) by a quantity  dimensional potential field if this condition is fulfilled.
of order 1 — u, ~3 X 1072, An attempt to calculate  We would like to thank E. A. Ostrovskaya for her useful
y from the numerically found values of,(E) yielded discussions, and also V.P. Kandidov and A.S. Chirkin
the inconclusive valugs = 0.07 = 0.47. At present we for their suggestions concerning the improvement of the
cannot affirm thaty differs from zero. numerical accuracy of our computer calculations. This
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at directly from definition (14) by numerical integration Foundation (Grant No. ISF #M12300) and INTAS (Grant
of the canonical Hamilton equations. Six fragments ofNo. #94-2112).
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used to calculateB,(E, 7) at each of two close energy
values. The values of the density of staje&) have
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