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Blowout Bifurcation Route to Strange Nonchaotic Attractors
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Strange nonchaotic attractors are attractors that are geometrically strange, but have nonpositive Lya-
punov exponents. We show that for dynamical systems with an invariant subspace in which there is
a quasiperiodic torus, the loss of the transverse stability of the torus can lead to the birth of a strange
nonchaotic attractor. A physical phenomenon accompanying this route to strange nonchaotic attractors
is an extreme type of intermittency. [S0031-9007(96)01861-3]
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Strange nonchaotic attractors are attractors that
geometrically complicated, but typical trajectories o
these attractors exhibit no sensitive dependence on ini
conditionsasymptotically[1–11]. Here the wordstrange
refers to the complicated geometry of the attractor:
strange attractor is not a finite set of points, and it
not piecewise differentiable. The wordchaotic refers to
a sensitive dependence on initial conditions: trajectori
originating from nearby initial conditions diverge expo
nentially in time. Strange nonchaotic attractors occur
dissipative dynamical systems driven by severalincom-
mensuratefrequencies (quasiperiodically driven system
[1–11]. For example, it was demonstrated that in tw
frequency quasiperiodically driven systems, there exist
gions of finite Lebesgue measure in the parameter sp
for which there are strange nonchaotic attractors [3,
More recent work demonstrates that a typical trajecto
on a strange nonchaotic attractor actually possesses p
tive Lyapunov exponents in finite time intervals, althoug
asymptotically the exponent is negative [7]. Strange no
chaotic attractors can arise in physically relevant sit
ations such as quasiperiodically forced damped pend
and quantum particles in quasiperiodic potentials [2], a
in biological oscillators [4]. These exotic attractors hav
been observed in physical experiments [8,9].

While the existence of strange nonchaotic attracto
was firmly established, a question that remains interest
is how these attractors are created as a system param
changes through a critical value, i.e., what the possib
routes to strange nonchaotic attractors are. One ro
was investigated by Heagy and Hammel [5] who di
covered that, in quasiperiodically driven maps, th
transition from two-frequency quaisperiodicity to strang
nonchaotic attractors occurs when a period-doubled to
collides with its unstable parent torus [5]. Near th
collision, the period-doubled torus becomes extreme
wrinkled and develops into a fractal set at the collisio
although the Lyapunov exponent remains negati
throughout the collision process. Recently, Feud
et al. found that the collision between a stable torus an
an unstable one at a dense set of points leads to a stra
nonchaotic attractor [10]. A renormalization-grou
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analysis was also devised for the transition to strange n
chaotic attractors in a particular class of quasiperiodica
driven maps [11].

In this paper, we present at route to strange nonchao
attractors in dynamical systems with a symmetric low
dimensional invariant subspaceS in the phase space
SinceS is invariant, initial conditions inS result in tra-
jectories which remain inS forever. We consider the case
wherethere is a quasiperiodic torus inS [12]. Whether
the torus attracts or repels initial conditions in the vicin
ity of S is determined by the sign of the largest transver
Lyapunov exponentLT computed for trajectories inS with
respect to perturbations in the subspaceT which is trans-
verseto S. WhenLT is negative,S attracts trajectories
transversely in the phase space, and the quasiperiodic t
in S is also an attractor of the full phase space. Wh
LT is positive, trajectories in the vicinity ofS are repelled
away from it, and, consequently, the torus is transvers
unstable, and it is hence not an attractor of the full pha
space. Assume that a system parameter changes thro
a critical value ac; LT passes through zero from th
negative side. This bifurcation is referred to as the “blow
out bifurcation” [13–15]. Our main result is that blowou
bifurcation can lead to the birth of a strange nonchao
attractor. A physical phenomenon associated with th
route to strange nonchaotic attractors is that the dynam
variables in the transverse subspaceT exhibit an extreme
type of temporally intermittent bursting behavior: on-o
intermittency [16]. Thus, our work also demonstrates th
on-off intermittency can occur in quasiperiodically drive
dynamical systems, whereas, to our knowledge, these
termittencies have been reported only for systems that
driven either randomly or chaotically.

We consider the following class ofN-dimensional dy-
namical systems,

dx
dt

­ Fsx, z, pd ,

(1)
dz
dt

­ v ,

where x is Nx dimensional,z is Nz dimensional,Nx 1

Nz ­ N , v ; sv1, v2, . . . , vNz
d is a frequency vector,
© 1996 The American Physical Society 5039
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andp is a bifurcation parameter. The functionF satisfies
Fs0, z, pd ­ 0 so that x ­ 0 defines the invariant sub
spaceS in which the dynamics is described by [17]dzy
dt ­ v. The frequenciessv1, v2, . . . , vNz d are incom-
mensurate so that thez dynamics gives a quasiperiod
torus. The largest transverse and nontrivial ov
all Lyapunov exponents of the systems are given
LT ­ limt !`

1
t lnfjdxstdjyjdxs0djg and L ­ limt !`

1
t

3 lnfjdXstdjyjdXs0djg, respectively, where the infini
tesimal vectorsdxstd and dXstd are evolved according
to ddxstdydt ­ s≠Fy≠xdjx­0. dx and ddXstdydt ­
s≠Fy≠xd ? dX for random initial vectorsdxs0d anddXs0d
[13]. To illustrate our findings, we consider a physic
example, mathematically described by the followi
version of Eq. (1),

dx
dt

­ y ,

dy
dt

­ 2 ky 2 gx3 1 sb 1 f1 sinz1 1 f2 sinz2d

3 sins2pxd ,
(2)

dz1

dt
­ v1,

dz2

dt
­ v2 ,

where the invariant subspaceS is given bysx, yd ­ s0, 0d,
v1 and v2 are two incommensurate frequencies so t
there is a two-frequency quasiperiodic torus inS sz1, z2d for
which the largest Lyapunov exponent is zero. In Eq. (
k (dissipation),g, b, f1, andf2, are parameters. Equa
tion (2) is a slightly modified version of the experimen
model used by Zhou, Moss, and Bulsara, which is relev
to the radio-frequency-driven superconducting quan
interference device (SQUID) [9]. In our numerical e
periments, we arbitrarily choosek as the bifurcation pa
rameter and fix other parameters atg ­ 2.0, b ­ 21.1,
v1 ­ 2.25, v1yv2 ­

1
2 s

p
5 1 1d (the golden mean)

f1 ­ 3.5, andf2 ­ 5.0. Numerically we observe that
blowout bifurcation occurs atkc ø 4.17, whereLT . 0
s, 0d for k , kc s.kcd.

Figure 1(a) shows thesx, yd projection of a trajectory o
50 000 iterations (after 10 000 preiterations) on the stro
scopic surface of section defined byz1stnd ­ 2np sn ­
1, 2, . . .d for k ­ 4.1 sLT ø 0.019d. The largest nontriv-
ial Lyapunov exponent of the system isL ø 20.134.
Thus, there is no positive Lyapunov exponent for t
parameter setting. The geometric shape of the attra
however, appears strange, as can be seen from Fig.
Qualitatively, the strangeness can be understood as
lows. Fork & kc, the transverse Lyapunov exponent
slightly positive. Thus, a typical trajectory on the torus
S is transversely unstable. There are time intervals d
ing which the trajectory, when it is in the vicinity ofS, is
repelled fromS. As can be verified numerically, at th
parameter setting there are apparently no other attra
in the phase space [18]. Thus, the trajectory comes b
to the neighborhood ofS intermittently in the course o
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FIG. 1. (a) A trajectory of 50 000 points on the stroboscop
section for Eq. (2) atk ­ 4.1 (see text for other paramete
values). Apparently, the attractor is geometrically stran
(b) Singular-continuous spectrum analysis of the time se
hxnj: shown is log10jXsV, Tdj2 versus log10 T . We have
jXsV, T dj2 , T 1.26. The subplot shows the corresponding pa
sReX, Im Xd.

time evolution. Since the trajectory is bounded in bo
x and y, the asymptotic attractor in the full phase spa
develops a strange shape: It apparently consists o
infinite number of points, and it is not piecewise differe
tiable. SinceL is negative, despiteLT * 0, the attractor
is nonchaotic. Thus, ask decreases through the critica
valuekc, a strange nonchaotic attractor is born: The po
tiveness of the transverse Lyapunov exponentLT gives
rise to strangeness of the attractor, and the negative
of the largest nontrivial Lyapunov exponentL guarantees
the attractor is nonchaotic.

To qualitatively verify that the attractor fork & kc

is strange nonchaotic, we perform a singular-continuo
spectrum analysis that was first proposed in the
vestigation of models of quasiperiodic lattices a
quasiperiodically forced quantum systems [19], and w
later applied to strange nonchaotic attractors by Pikov
and Feudel [6]. Take a time serieshxnj or h ynj on the
surface of section. Compute the following Fourier su
XsV, T d ­

PT
n­1 xnei2pnV, where V is proportional
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to the ratio of the two incommensurate frequencies
the quasiperiodic driving. WhenT is regarded as time
the quantity XsV, T d defines a path in the comple
plane sReX, Im Xd. For discrete spectrum, we hav
jXsV, T dj2 , T 2, while for continuous spectrum, th
path is described by Brownian motion and, hen
jXsV, T dj2 , T . The spectrum associated with stran
nonchaotic attractors falls somewhat in between th
two categories. It was demonstrated [6] that for stran
nonchaotic attractors, the quantityXsV, T d has the fol-
lowing two distinct features: (1)jXsV, Tdj2 , Ta , where
a fi 1, 2; and (2) the pathsReX, Im Xd is fractal. Fig-
ure 1(b) shows, forV ­ s

p
5 1 1dy2, log10 jXsV, Tdj2

versus log10 T and the pathsReX, Im Xd (subplot) com-
puted from the time serieshxnj in Fig. 1(a). We have
a ø 1.26 and, the pathsReX, Im Xd apparently exhibits
a fractal self-similar structure. These results stron
suggest that the attractor in Fig. 1(a) is indeed stra
nonchaotic.

A feature associated with the birth of the strange n
chaotic attractor is the occurrence of on-off intermitten
[16] when k & kc (LT being slightly positive). This is
shown in Fig. 2, where the time seriesh ynj is plotted for
k ­ 4.1. We see that there are time intervals whenyn

stays neary ­ 0 (the “off” state), but there are also in
termittent bursts ofyn (the “on” state) away from the of
state. This is a typical consequence of the blowout
furcation [13–15]. Note that the on-off intermittency
Fig. 2 is, in fact, produced by a quasiperiodic driving
the transverse dynamics.

To understand whyL remains negative in paramete
regimes after the blowout bifurcation whereLT * 0, we
consider the following analyzable two-dimensional m
that captures the essential feature of physical model Eq
on the surface of section

xn11 ­
1

2p
sa coszn 1 bd sins2pxnd ,

(3)
zn11 ­ szn 1 2pvd mods2pd ,

FIG. 2. On-off intermittency atk ­ 4.1.
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where a and b are parameters, andv [ s0, 1d is an
irrational number so that thez dynamics is a map on
the circle that generates a quasiperiodic torus with u
form invariant densityrszd ­ 1ys2pd in z [ f0, 2pg
(two-frequency quasiperiodicity). The one-dimension
invariant subspace isx ­ 0. The transverse Lyapuno
exponent isLT ­ limn !`

1
n

Pn
j­1 lnja coszj 1 bj ­

1
2p

3
R2p

0 lnja cosz 1 bj dz. We obtain LT ­ ln jbj 2

lnsss2yh1 1 f1 2 saybd2gjddd if a # b, and LT ­ lnjbj 1

ln a
2b if a . b. We have, for example,ac ­ 2 for

the casea . b . 0, where LT # 0 for a # ac and
LT . 0 for a . ac. The nontrivial Lyapunov exponen
is L ø LT 1 l, wherel ;

R
lnj coss2pxdjrsxd dx , 0

and rsxd is the invariant density ofx for a . ac. Note
that for a , ac we have l ­ 0 and henceL ­ LT

because in this casex approaches zero asymptoticall
For a * ac whereLT * 0, it is possible to haveL & 0
becausel , 0. Thus a strange nonchaotic attractor
born at the blowout bifurcation with on-off intermittenc
as can also be verified numerically. We stress t
it is essential to have quasiperiodicity in the invaria
subspace. When frequencies are locked on the t
(corresponding tov’s being rational), trajectories only
have a finite number of possiblez values. Numerical
analysis indicates that the attractor does not appear t
strange in the phase space.

We now describe two issues related to the bifurcatio
(1) Variation of the Lyapunov exponent after the blo

out bifurcation.—We address the following question: ho
does the strange nonchaotic attractor become a cha
attractor ask decreases fromkc? To answer this question
notice thatL ø LT 1 l, wherel , 0. Thus,L becomes
positive whenLT . jlj. As k decreases,LT increases
monotonically nearkc, but l is not monotonic. This
is shown in Fig. 3, whereLT , L, and l versusk are
plotted for 2000 values ofk in [3.2, 4.8]. For each value
of k, LT , L, andl are computed with 50 000 iteration
and 10 000 preiterations on the surface of section. W
LT and jlj have comparable magnitudes,L can change

FIG. 3. LT , L, andl versus the parameterk.
5041
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from negative to positive and vice versa. Consequen
there exist several parameter intervals for chaotic att
tors sL . 0d which are interspersed with parameter
tervals for strange nonchaotic attractorssL , 0d. This
behavior has actually been observed in other physical
tems such as the quasiperiodically forced pendulum
We believe that the existence of two competing ex
nents, i.e.,LT andl, is responsible for the alternation o
strange nonchaotic and chaotic attractors. We have
served that whenk is decreased further through some cr
cal value,LT is sufficiently large so thatLT , jlj does
not occur, the system possesses a positive Lyapunov
ponentL and, consequently, strange nonchaotic attrac
are no longer possible.

(2) Transient on-off intermittent behavior precedi
the blowout bifurcation.—Before the birth of the strang
nonchaotic attractor, a typical trajectory exhibits transi
on-off intermittent behavior before finally approaching t
invariant subspacex ­ y ­ 0. For a given paramete
value k, the average transient lifetime,tskd, depends on
the parameter differencejk 2 kcj. Numerically, we find
the following scaling law:tskd , jk 2 kcj

21. This can
be understood by noting thattskd , 1yLT , and fork near
kc, we haveLT , jk 2 kcj.

In summary, we have shown that two distinct dyna
ical phenomena, strange nonchaotic attractor and on
intermittency, commonly thought as arising in very d
ferent contexts in the study of nonlinear systems,
actually be closely related. The link is the blowout b
furcation that destabilizes, transversely, the quasiperi
torus in the invariant subspace. Our study thus dem
strates that blowout bifurcation can occur even if the d
ing is not chaotic or random but quasiperiodic. As
consequence, on-off intermittency can arise in quasip
odically driven dynamical systems. We have presente
physical example for which the blowout bifurcation rou
to strange nonchaotic attractor can be observed num
cally, and we believe that this route can be tested in ph
cal experiments.
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