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Blowout Bifurcation Route to Strange Nonchaotic Attractors
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Strange nonchaotic attractors are attractors that are geometrically strange, but have nonpositive Lya-
punov exponents. We show that for dynamical systems with an invariant subspace in which there is
a quasiperiodic torus, the loss of the transverse stability of the torus can lead to the birth of a strange
nonchaotic attractor. A physical phenomenon accompanying this route to strange nonchaotic attractors
is an extreme type of intermittency. [S0031-9007(96)01861-3]

PACS numbers: 05.45.+b

Strange nonchaotic attractors are attractors that ar@nalysis was also devised for the transition to strange non-
geometrically complicated, but typical trajectories onchaotic attractors in a particular class of quasiperiodically
these attractors exhibit no sensitive dependence on initigriven maps [11].
conditionsasymptotically{1—-11]. Here the wordtrange In this paper, we present at route to strange nonchaotic
refers to the complicated geometry of the attractor: Aattractors in dynamical systems with a symmetric low-
strange attractor is not a finite set of points, and it isdimensional invariant subspacg in the phase space.
not piecewise differentiable. The wordhaoticrefers to  SinceS is invariant, initial conditions irS result in tra-

a sensitive dependence on initial conditions: trajectoriegectories which remain i8S forever. We consider the case
originating from nearby initial conditions diverge expo- wherethere is a quasiperiodic torus iff [12]. Whether
nentially in time. Strange nonchaotic attractors occur irthe torus attracts or repels initial conditions in the vicin-
dissipative dynamical systems driven by sevenglom- ity of S is determined by the sign of the largest transverse
mensuratdrequencies (quasiperiodically driven systems)Lyapunov exponenh; computed for trajectories i with
[1-11]. For example, it was demonstrated that in two-respect to perturbations in the subspdcehich istrans-
frequency quasiperiodically driven systems, there exist reverseto S. When Ay is negative S attracts trajectories
gions of finite Lebesgue measure in the parameter spadeansversely in the phase space, and the quasiperiodic torus
for which there are strange nonchaotic attractors [3,4]in S is also an attractor of the full phase space. When
More recent work demonstrates that a typical trajectory\r is positive, trajectories in the vicinity & are repelled

on a strange nonchaotic attractor actually possesses posiway from it, and, consequently, the torus is transversely
tive Lyapunov exponents in finite time intervals, althoughunstable, and it is hence not an attractor of the full phase
asymptotically the exponent is negative [7]. Strange nonspace. Assume that a system parameter changes through
chaotic attractors can arise in physically relevant situa critical valuea.; Ar passes through zero from the
ations such as quasiperiodically forced damped pendulaegative side. This bifurcation is referred to as the “blow-
and quantum particles in quasiperiodic potentials [2], anabut bifurcation” [13—15]. Our main result is that blowout

in biological oscillators [4]. These exotic attractors havebifurcation can lead to the birth of a strange nonchaotic
been observed in physical experiments [8,9]. attractor. A physical phenomenon associated with this

While the existence of strange nonchaotic attractorgoute to strange nonchaotic attractors is that the dynamical
was firmly established, a question that remains interestingariables in the transverse subspdtexhibit an extreme
is how these attractors are created as a system parametgpe of temporally intermittent bursting behavior: on-off
changes through a critical value, i.e., what the possibléntermittency [16]. Thus, our work also demonstrates that
routes to strange nonchaotic attractors are. One routen-off intermittency can occur in quasiperiodically driven
was investigated by Heagy and Hammel [5] who dis-dynamical systems, whereas, to our knowledge, these in-
covered that, in quasiperiodically driven maps, thetermittencies have been reported only for systems that are
transition from two-frequency quaisperiodicity to strangedriven either randomly or chaotically.
nonchaotic attractors occurs when a period-doubled torus We consider the following class &f-dimensional dy-
collides with its unstable parent torus [5]. Near thenamical systems,

collision, the period-doubled torus becomes extremely dx

wrinkled and develops into a fractal set at the collision, dr F(x,z,p),

although the Lyapunov exponent remains negative ()
throughout the collision process. Recently, Feudel dz _ o,

et al. found that the collision between a stable torus and dt

an unstable one at a dense set of points leads to a strangbere x is N, dimensional,z is N, dimensional,N, +
nonchaotic attractor [10]. A renormalization-group N; = N, o = (w1, w2,...,wy.) iS a frequency vector,
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andp is a bifurcation parameter. The functiéhsatisfies (a)
F(0,z, p) = 0 so thatx = 0 defines the invariant sub- 1.2
spaceS in which the dynamics is described by [17%/

dt = w. The frequenciesw;, w,,..., wy,) are incom-

mensurate so that the dynamics gives a quasiperiodic 0.4
torus. The largest transverse and nontrivial over-

all Lyapunov exponents of the systems are given by >

Az = lim,— + In[|8x(1)|/16x(0)[] and A = lim,_.. 1 044
X In[16X(2)|/|6X(0)|], respectively, where the infini-

tesimal vectorsdox(r) and 6X(¢) are evolved according

to déx(t)/dt = (0F/0x)|x=0. &x and dé6X(¢)/dt = b
(9F/ox) - 86X for random initial vector$x(0) and5X(0) _1‘%1,2 -04 0.4 ' 1.2
[13]. To illustrate our findings, we consider a physical X

example, mathematically described by the following
version of Eq. (1),

dr _
a2
dy 3 . .
LA + (B + fisinz; + fasinzy)
2
X sin2mx), @
o _ dw _
dt 1s dt 25
where the invariant subspases given by(x, y) = (0,0),
w; and w, are two incommensurate frequencies so that 0

there is a two-frequency quasiperiodic toru$itx;, z») for 6. 20 30 40 50 60
which the largest Lyapunov exponent is zero. In Eqg. (2),
« (dissipation),y, B, f1, andf,, are parameters. Equa-
tion (2) is a slightly modified version of the experimental FIG. 1. (a) A trajectory of 50000 points on the stroboscopic
model used by Zhou, Moss, and Bulsara, which is relevargection for Eq. (2) atc = 4.1 (see text for other parameter

(o A . alues). Apparently, the attractor is geometrically strange.
to the radio-frequency-driven superconducting quantu b) Singular-continuous spectrum analysis of the time series

interference device (SQUID) [9]. In our numerical eX- {y}: shown is log,|X(Q,T)]> versus log, T. We have

periments, we arbitrarily choose as the bifurcation pa- |x(Q,7)|? ~ T'%. The subplot shows the corresponding path

rameter and fix other parametersyat= 20, 8 =—-1.1, (ReX,ImX).

w; =225, w;/w, = 5(/5+ 1) (the golden mean),

f1 = 3.5, andf, = 5.0. Numerically we observe that a time evolution. Since the trajectory is bounded in both

blowout bifurcation occurs at, = 4.17, whereAy > 0  x andy, the asymptotic attractor in the full phase space

(< 0)for k < k. (>ke). develops a strange shape: It apparently consists of an
Figure 1(a) shows thex, y) projection of a trajectory of infinite number of points, and it is not piecewise differen-

50 000 iterations (after 10 000 preiterations) on the strobotiable. SinceA is negative, despitd; = 0, the attractor

log,,T

scopic surface of section defined by(t,) = 2n7 (n =  is nonchaotic. Thus, as decreases through the critical
1,2,...) for k = 4.1 (A7 = 0.019). The largest nontriv- valuek,, a strange nonchaotic attractor is born: The posi-
ial Lyapunov exponent of the system i = —0.134.  tiveness of the transverse Lyapunov expon&nt gives

Thus, there is no positive Lyapunov exponent for thisrise to strangeness of the attractor, and the negativeness
parameter setting. The geometric shape of the attractoof the largest nontrivial Lyapunov exponefitguarantees
however, appears strange, as can be seen from Fig. 1(&)e attractor is nonchaotic.

Quialitatively, the strangeness can be understood as fol- To qualitatively verify that the attractor fok < k.
lows. Fork =< k., the transverse Lyapunov exponent isis strange nonchaotic, we perform a singular-continuous
slightly positive. Thus, a typical trajectory on the torus inspectrum analysis that was first proposed in the in-
S is transversely unstable. There are time intervals durvestigation of models of quasiperiodic lattices and
ing which the trajectory, when it is in the vicinity &, is  quasiperiodically forced quantum systems [19], and was
repelled fromS. As can be verified numerically, at this later applied to strange nonchaotic attractors by Pikovsky
parameter setting there are apparently no other attractoesid Feudel [6]. Take a time seri¢s,} or {y,} on the

in the phase space [18]. Thus, the trajectory comes badckurface of section. Compute the following Fourier sum:
to the neighborhood o intermittently in the course of X(Q,T) = z,{:lxneimﬂ, where () is proportional

5040



VOLUME 77, NUMBER 25 PHYSICAL REVIEW LETTERS 16 BCEMBER 1996

to the ratio of the two incommensurate frequencies ofwhere « and b are parameters, and € (0,1) is an
the quasiperiodic driving. Wheffi is regarded as time, irrational number so that the dynamics is a map on
the quantity X(Q),T) defines a path in the complex the circle that generates a quasiperiodic torus with uni-
plane (ReX,ImX). For discrete spectrum, we have form invariant densityp(z) = 1/Q2#) in z € [0,27]
|X(Q,T)|> ~ T?, while for continuous spectrum, the (two-frequency quasiperiodicity). The one-dimensional
path is described by Brownian motion and, hencejnvariant subspace is = 0. The transverse Lyapunov
|X(Q,T)|> ~ T. The spectrum associated with strangeexponent isA; = Iimn_,x% ;l:l In|a cosz; + b| = %
nonchaotic attractors falls somewhat in between thesg f27r|n|aCOSz + b|ldz. We obtain Ay = In|b| —
two categ_ories. It was demonst_rated [6] that for strang%(z}){l +[1 = (a/b2]) if a=b, and Ay = In|b| +
non_chaotlc a_lttr_actors, the .quantllgz(ﬂ,g) has; the fol- In% if «>b. We have, for exampleg, =2 for
lowing two distinct features: (1DX(Q,T)|_ ~T ,Whe_re the casea > b > 0, where A; =0 for a = a, and

a # 1,2; and (2) the patt{ReX,Im X) is fractal. Fig- A '~ (for 4 > a,. The nontrivial Lyapunov exponent
ure 1(b) shows, ford = (V5 + 1)/2, logy IX(Q, ) jg'A ~ A7 + A, whered = [In|cod27x)|p(x)dx < 0
versus log, T and the patt{ReX, Im X) (subplot) com- a4 (1) s the invariant density of for @ > a,. Note
puted from the time serie§,} in Fig. 1(a). We have hat for ¢ < a. we have A = 0 and henceA = A

a = 1.26 and, the pathReX,ImX) apparently exhibits pocase in this case approaches zero asymptotically.
a fractal self-similar structure. These results strongly=q, , = a. whereA; = 0, it is possible to have\ =< 0
suggest that the attractor in Fig. 1(a) is indeed strangBecauser < 0. Thus a strange nonchaotic attractor is

nonchaotic. , _ _ born at the blowout bifurcation with on-off intermittency,
A feature associated with the birth of the strange non-

- : ] ) as can also be verified numerically. We stress that
chaotic attractor is the occurrence of on-off intermittency; is essential to have quasiperiodicity in the invariant
[16] when k < k. (Ar being slightly positive). This is
shown in Fig. 2, where the time serigsg,} is plotted for

x = 4.1. We see that there are time intervals whgn

subspace. When frequencies are locked on the torus
(corresponding tow’s being rational), trajectories only

- o " have a finite number of possible values. Numerical
stays neay = 0 (the "off” state), but there are also in- 5n5)y5is indicates that the attractor does not appear to be
termittent bursts of, (the “on” state) away from the off strange in the phase space.

state. This is a typical consequence of the blowout bi-\yig'now describe two issues related to the bifurcation.
furcation [13—15]. Note that the on-off intermittency in (1) variation of the Lyapunov exponent after the blow-
Fig. 2 is, in fact, produced by a quasiperiodic driving 104 hifurcation—We address the following question: how

the transverse dynamics. o does the strange nonchaotic attractor become a chaotic
To understand why\ remains negative in parameter gyractor asc decreases from,? To answer this question,
regimes after the blowout bifurcation wheAg- = 0, we notice thath =~ A + A, wherex < 0. Thus,A becomes

consider the following gnalyzable two-di_mensional MaPpositive whenA; > [A|. As k decreasesA; increases
that captures the essential feature of physical model Eq. ( onotonically nearx,, but A is not monotonic. This
on the surface of section is shown in Fig. 3, whereA7, A, and A versusk are
plotted for 2000 values ot in [3.2,4.8]. For each value
of k, A7, A, and A are computed with 50 000 iterations
(3) and 10000 preiterations on the surface of section. When

1 .
Xp+1 = —(acosz, + b)sin2mwx,),
27

Zn+1 = (20 + 2m@) mod27), A7 and|A| have comparable magnitudes,can change
0.30 —_—
0.15
| <
oo | < 000
<
—0.15
_1.0 T T T T T T T T _0-30 T T T T T
0 1000 2000 3000 4000 5000 3.2 3.6 4.0 4.4 4.8
n K
FIG. 2. On-off intermittency ak = 4.1. FIG. 3. Ar, A, and A versus the parametat.
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