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Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics
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We show that under variation of moduli fielgsthe first law of black hole thermodynamics becomes
dM = % + QdJ + ¢dq + xydp — Zd¢, where %, are the scalar charges. Also the Arnowitt-
Desner-Misner mass is extremized at fixédJ, (p,q) when the moduli fields take the fixed value
¢+ix(p, q) which depend only on electric and magnetic charges. Thus the double-extreme black hole
minimizes the mass for fixed conserved charges. We can now explain the fact that extreme black
holes fix the moduli fields at the horizap = ¢¢ix(p, q): ¢rix IS such that the scalar charges vanish:

3(brixs (p.q)) = 0. [S0031-9007(96)01890-X]
PACS numbers: 04.70.Dy, 11.25.-w, 11.30.Pb
There has recently been intense interest in the thermddowever, Eq. (1) does not take into account the depen-

dynamics of black holes in string theory. In particular thedence upon the modud... It should clearly be replaced
entropy S of some extreme black holes considered as dy

function of their conserved electric and magnetic charges dA

(p,q) has been related to the logarithm of the number dM = —— + QdJ + ¢y dga

of the Bogomol'nyi-Prasad-Summerfeld (BPS) states at 8

large(p, q) [1]. The properties of the black holes in the + xadp + ( oM >d¢a, (2)
theories considered depend on the valdesof certain dpe

massless scalar fields, referred to as moduli fields, at spa, th tial derivati f th is tak t
tial infinity. The moduli at infinity¢.. may be thought of }N ere he partial derivative ol the mass IS 1aken a .

. . ixed values of the area, angular momentum and charges:
as labeling different ground states or vacua of the theory,’;,; o ] )
It is of crucial importance for the consistency of the state(W)AJ_,p,q- Similar equations appeared 'Z‘ 2]
counting interpretation that the entrogy= %A, wherea Ouir first result is that the coefficient @ip is given by
is the area of the event horizon, is independent (in the ex- oM b
treme limit) of the particular vacuum or ground state, i.e., (@)A,J,p,q = ~Gap(¢=)27, ®3)
of ¢, and depends only on the conserved chafgeg).
The Arnowitt-Desner-Misner (ADM) masaf, however, whereG,;, is the metric on the scalar manifol, in
does depend omb.. even in the extreme case. In the terms of which the kinetic part of the scalar Lagrangian
nonextreme case both the magsand the areal depend density is
in a nontrivial way on¢.. In other words, to specify 1
completely a black hole in these theories one needs to = Gupd,$®d, b g"" /g, 4)
give the entropyS = %A, the conserved chargéy, ), 2
moduli at infinity ¢., and the total angular momen- andX“ are the scalar charges of the black hole defined by
tum J. In thermodynamic termd, (p*, ga), J, 2 are sa ( 1 >

5)

coordinates on the state spaRe X R*" X R X My, P =L+ — + 0

whereA = 1, s,n is the number of electric (or magnetic) r

charges, M, is the manifold in which the scalars take at spatial infinity. Note that the scalar charges them-

their values, and = 1,5,m = dim M. selves depend nontrivially om, (p™, ga),J, #%. The
The USUaI firSt IaW Of thermodynamics I’elates thevector part Of the Lagrang|an |S

variation of M to the temperaturel’ = 7-, where «

72

is the surface gravity, the angular vglocit}/, and the —l(MAz.TA.’FE — VAE.’FA*.TE)\/—_g, (6)
electrostatic and magnetostatic potentials and y »: 4
wdA where the Abelian field strengths a® = 9,4} —

_ A A i
dM = o+ QdJ + yidgn + xadp™. (1) 5,44 and=F> are the dual field strengths of the vector
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fields and s and vps are moduli dependent X n henceM is extremal if and only if the black hole solution

matrices. The chargdg,, p*) are defined by has constant values of the moduli fields
ey ¢'(x) = . (11)
4;7 Moreover, the constant value? is not arbitrary but
gr = — f(MAE # F2 4+ vps FP). (7)  must be chosen to extremize at fixed electric and mag-
4 netic charges a certain non-negative functidnwhich

We would like to stress that the charges must be definet$ quadratic in the electric and magnetic charges and de-
as above, in order that Gauss’s theorem holds; i.e., th@ends nontrivially on the scalars.

charges are conserved and are the subject to quantization

conditions in the quantum theory. vV =(p, 61)'~'M<p ) (12)

One may prove Eqg. (2), with (3) and (4), either i
using Hamiltonian methods, modifying the procedure ofwhere
Wald [3], or by covariant methods, following the older B .
procedure of Bardeen, Carter, and Hawking [4]. A recent M= ‘ Mt flﬂ v V'“,l ’ . (13)
account of the covariant approach including scalars but moy e
dropping the last terms of Eq. (2) is given in [5]. From
Eq. (95) of [5] for gravity coupled to @ model we have

1

For extended supergravity theories thesex 2n moduli
dependent matrices have been studied before [6-8].

_ kdA _ a Ip” Spherically symmetric nonextreme black holes in the-
M T QdJ = fdd) G“b(¢)axidai - 8 ories described above can be conveniently cast into the
where the integral on the right hand side is over theform [10]

boundary of a spacelike surface. The boundary has two

. y LD s = — 02U gs?
components, one on the horizon and one at spatial |nf|n|ty‘.1

The contribution from the horizon vanishes becagdds Ll ctdr? c2 , )
assumed to be independent of time and regular. The term te [sinﬁ‘ or | sinfer (d6* +si 0d o )} .
at infinity yields (14)
kdA QdJ = —3¢ b
aM - 87T dJ = =2"Gapd¢”. (®)  The coordinater runs from —o (horizon) to 0 (spatial

. .. infinity). The boundary condition fot/ is thatU(0) = 1
If vectors are present there is the usual additional term du&nd U— cr as — —o. The boundary condition for

to variation of the charges. a . am - ra de® or .
The last term in Eq. (9) was dropped in [5] because in(fofT)Tﬁethﬁt s(?cé\?)si_ni(?izaigg QtffTis %aot(e )as7
the application the authors had in mind (Skyrmion black phy 9

hole) the scalar chargé&s® do indeed vanish. KA
For black holes in string theory, however, the scalar CTur T 28T. (15)
charges2® will not in general vanish. They will vanish

if and only if ¢., and hence the vacuum state, isThe field equations fot and¢* are

chosen to extremize the ADM mass at the fixed entropy U .

4 angular momentunv, and conserved electric and e 2V(d,(p,q))e™, (16)
magnetic chargesp®,g,). Note that despite the extra

term in the first law the integrated version, i.e., the Smarr D¢ _ VvV 4y (17)
formula, remains [6] D2 ape

A
M = :— + 2007 + yhga + xaph. (10) and
T

a b

From now on we will, for simplicity, consider only static <d—U>2 + Gap dp® do” _ V(. (p,q)e* = 2.
nonrotating black holes. The extension to include rotation %7 dr dr (18)
is both obvious and immediate.

The idea of extremization of the black hole mass in Our convexity condition is that the symmetric tensor
the moduli space at the fixed charges was suggested féield on M, defined by
supersymmetric black holes by Ferrara and one of the
authors [7]. This idea is extended here for general black Vb = V.V, V, (29)
holes.

Our second result is that subject to a convexity condiwhere V, is the Levi-Civita covariant derivative with

tion that we explain below, the scalar charges vanish antespect to the metric,;, of M4 , is non-negative.
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It follows from the equation of motion fo$“ that M = Myyemel 02, (P, q)]. (26)
2 a b
d \; _v, do¢* d¢ + 262,]8_‘/[1 a_Vb @b (20) An implicit formula was found more recently in [7] for
dr dr dr I dg b1 extreme that can be written as

If we multiply by V, integrate, and use the boundary <aMextreme> —0 27)
conditions, we obtain 0D ) (p.g)d=dueuene ’
0
_] l(d_V>sz _ s V) where the derivative is taken at fixed values of charges.
2\dr ape The result which holds for all of the theories we consider
- 0 Jbe ddb here was found by analyzing the radial equation for the
+ ](ng plde” moduli fields ¢ (r) which is governed by the function
JN T dr dr V(b.p.q).
vV oV Two questions arose and motivated the results of this
20°5Y YV ~ab
2 T ad)bG )dr. (21)  paper:

(i) Why is ¢ g extreme iNdependent oth.,?
If we assume thak¢ = 0 andV,, is positive definite, (i) Why is ¢y extreme given by (27)?
we must have= = 0 for all 7, which implies that the We can now offer an answer for the second question.
moduli are froggn i.egd(r) = ¢ From (3), which we first derived for the example given in

The mass of the black hole is given by = (i—f)FO, [12], it follows that Eq. (27) is equivalent to
and therefore we have from (18) a rather useful general 3% drix, (p,q)) =0, (28)

relation [10] which may be interpreted as the stateme%us defining sy = brin(p.q). (This equation was

that the total _self force on the h(_)le dge to the attracﬂvenoted in [7] for the extreme case.) But as we stated above,
forces of gravity and the scalar fields is not exceeded b black hole with vanishing scalar charge must have

the repulsive self force due to the vectors and vanishegpatially constant moduli fields®(r) = ¢? _
— WHextreme

only in the exireme case: @&, or frozen moduli. In other words, to satisfy Eq. (28)
we must chooséZ to be ¢ exreme -

As found in [7], the entropy of all extreme black holes
is independent o £ and is given by

M? + G393 — V(pd) = 48°T>.  (22)

One might refer to the inequality obtained from the non-

negativity of the right hand side as an antigravity bound. A v 29
Note that unlike the Bogomol'nyi bound [9] its derivation S=5°="7 (¢ix(. 4).(p. 9)). (29)
requires neither supersymmetry nor duality invariance. Qur new result establishes that for any static black hole,
Differentiating with respect t@¢ gives extreme or not,
M 19V oT M(S, ¢=,(p,q)) = M(S, ¢rix. (P, q)) (30)
M + Ga avc b - — 4S2T_ 23 }) 0y P,q b fix» pvq M
ags T OE VT S50 ags @

But because black holes with frozen moduli have the
ecl%ieissner—Nordstrbm geometry, the right hand side of (16)
dq's always greater than the mass of the extreme Reissner-

Nordstrom black hole with same charges.
We would like to emphasize that our results hold for
a wide class of theories—one need not assume either
< A% > _ supersymmetry or duality invariance. In addition we wish
= 0. (24) : -

00 ) g= i (p.0) to emphasize the following:

(i) The scalar chargeX“ are not conserved but they do

Static black holes with frozen moduli have the space-act as the sources for the moduli. They are not associated
time geometry given by the Reissner-Nordstrém metric. with a conserved current. The flux of the gradient of the

A year ago Ferrara, Kallosh, and Strominger [11] foundscalar charge vanishes at the horizon. Thus the scalar
that for a class of supersymmetric black holes the modulcharge resides entirely outside the event horizon.
field at the horizongy depends only on the conserved (ii) Previously one did not consider variations of the

We deduce that if the mass is extremized with resp
to ¢, then so is the temperature. It follows that the fixe
or “frozen” moduli must minimizeV, i.e., ¢yix is defined

by

electric and magnetic charges moduli at infinity ¢, which were regarded fixed once
and for all. In that case the scalar chaXfeneed not be
D H extreme = Drix (P, q) . (25) specified independently of the mass, angular momentum,

and electric and magnetic charges. However, if one does
Recall that at extremality, the mass depends on the modutiot regard the moduli at infinity to be givenpriori one
at infinity and the conserved charges needs to specify, in addition t™M, J, and @,p), either
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