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We show that under variation of moduli fieldsf the first law of black hole thermodynamics become
dM ­ kdA

8p 1 VdJ 1 cdq 1 xdp 2 Sdf, where S are the scalar charges. Also the Arnowit
Desner-Misner mass is extremized at fixedA, J, sp, qd when the moduli fields take the fixed valu
ffixsp, qd which depend only on electric and magnetic charges. Thus the double-extreme black
minimizes the mass for fixed conserved charges. We can now explain the fact that extreme
holes fix the moduli fields at the horizonf ­ ffixsp, qd: ffix is such that the scalar charges vanis
Ssssffix, sp, qdddd ­ 0. [S0031-9007(96)01890-X]
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There has recently been intense interest in the ther
dynamics of black holes in string theory. In particular t
entropy S of some extreme black holes considered a
function of their conserved electric and magnetic char
sp, qd has been related to the logarithm of the num
of the Bogomol’nyi-Prasad-Summerfeld (BPS) states
large sp, qd [1]. The properties of the black holes in th
theories considered depend on the valuesf` of certain
massless scalar fields, referred to as moduli fields, at
tial infinity. The moduli at infinityf` may be thought of
as labeling different ground states or vacua of the the
It is of crucial importance for the consistency of the st
counting interpretation that the entropyS ­

1
4 A, whereA

is the area of the event horizon, is independent (in the
treme limit) of the particular vacuum or ground state, i
of f`, and depends only on the conserved chargessp, qd.
The Arnowitt-Desner-Misner (ADM) massM, however,
does depend onf` even in the extreme case. In th
nonextreme case both the massM and the areaA depend
in a nontrivial way onf`. In other words, to specify
completely a black hole in these theories one need
give the entropyS ­

1
4 A, the conserved chargessp, qd,

moduli at infinity f`, and the total angular momen
tum J. In thermodynamic termsA, spL, qLd, J, fa

` are
coordinates on the state spaceR1 3 R2n 3 R 3 Mf,
whereL ­ 1, Ùs, n is the number of electric (or magneti
charges,Mf is the manifold in which the scalars tak
their values, anda ­ 1, Ùs, m ­ dim Mf.

The usual first law of thermodynamics relates
variation of M to the temperatureT ­

k

2p , where k

is the surface gravity, the angular velocityV, and the
electrostatic and magnetostatic potentialscL andxL:

dM ­
kdA
8p

1 VdJ 1 cLdqL 1 xLdpL. (1)
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However, Eq. (1) does not take into account the dep
dence upon the modulif`. It should clearly be replace
by

dM ­
kdA
8p

1 VdJ 1 cLdqL

1 xLdpL 1

√
≠M
≠fa

!
dfa, (2)

where the partial derivative of the mass is taken
fixed values of the area, angular momentum and char≥

≠M
≠fa

¥
A,J,p,q. Similar equations appeared in [2].

Our first result is that the coefficient ofdfa is given by√
≠M
≠fa

!
A,J,p,q ­ 2Gabsf`dSb, (3)

where Gab is the metric on the scalar manifoldMf in
terms of which the kinetic part of the scalar Lagrang
density is

1
2

Gab≠mfa≠nfbgmnp
2g , (4)

andSa are the scalar charges of the black hole defined

fa ­ fa
` 1

Sa

r
1 O

µ
1
r2

∂
(5)

at spatial infinity. Note that the scalar chargesSa them-
selves depend nontrivially onA, spL, qLd, J, fa

`. The
vector part of the Lagrangian is

2
1
4

smLSF LF S 2 nLSF LpF Sd
p

2g , (6)

where the Abelian field strengths areF L ; ≠mAL
n 2

≠nAL
m andpF S are the dual field strengths of the vect
© 1996 The American Physical Society
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fields andmLS and nLS are moduli dependentn 3 n
matrices. The chargessqL, pLd are defined by

pL ­
1

4p

Z
F L,

qL ­
1

4p

Z
smLS p F S 1 nLSF Sd . (7)

We would like to stress that the charges must be defi
as above, in order that Gauss’s theorem holds; i.e.,
charges are conserved and are the subject to quantiz
conditions in the quantum theory.

One may prove Eq. (2), with (3) and (4), eith
using Hamiltonian methods, modifying the procedure
Wald [3], or by covariant methods, following the old
procedure of Bardeen, Carter, and Hawking [4]. A rec
account of the covariant approach including scalars
dropping the last terms of Eq. (2) is given in [5]. Fro
Eq. (95) of [5] for gravity coupled to as model we have

dM 2
kdA
8p

2 VdJ ­ 2
I

dfaGabsfd
≠fb

≠xidsi , (8)

where the integral on the right hand side is over
boundary of a spacelike surface. The boundary has
components, one on the horizon and one at spatial infi
The contribution from the horizon vanishes becausefb is
assumed to be independent of time and regular. The
at infinity yields

dM 2
kdA
8p

2 VdJ ­ 2SaGabdfb. (9)

If vectors are present there is the usual additional term
to variation of the charges.

The last term in Eq. (9) was dropped in [5] because
the application the authors had in mind (Skyrmion bla
hole) the scalar chargesSa do indeed vanish.

For black holes in string theory, however, the sca
chargesSa will not in general vanish. They will vanis
if and only if f`, and hence the vacuum state,
chosen to extremize the ADM mass at the fixed entr
A
4 , angular momentumJ, and conserved electric an
magnetic chargesspL, qLd. Note that despite the extr
term in the first law the integrated version, i.e., the Sm
formula, remains [6]

M ­
kA
4p

1 2VJ 1 cLqL 1 xLpL. (10)

From now on we will, for simplicity, consider only stat
nonrotating black holes. The extension to include rota
is both obvious and immediate.

The idea of extremization of the black hole mass
the moduli space at the fixed charges was suggeste
supersymmetric black holes by Ferrara and one of
authors [7]. This idea is extended here for general b
holes.

Our second result is that subject to a convexity con
tion that we explain below, the scalar charges vanish
ed
the
tion
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henceM is extremal if and only if the black hole solutio
has constant values of the moduli fields

fasxd ­ fa
`. (11)

Moreover, the constant valuefa
` is not arbitrary but

must be chosen to extremize at fixed electric and m
netic charges a certain non-negative functionV which
is quadratic in the electric and magnetic charges and
pends nontrivially on the scalars.

V ­ sp, qdtM

µ
p
q

∂
, (12)

where

M21 ­

Ç
m 1 nm21n nm21

m21n m21

Ç
. (13)

For extended supergravity theories these2n 3 2n moduli
dependent matrices have been studied before [6–8].

Spherically symmetric nonextreme black holes in th
ories described above can be conveniently cast into
form [10]

ds2 ­ 2 e2Udt2

1 e22U

∑
c2dt2

sinh4 ct
1

c2

sinh2 ct
sdu2 1 sin2 udw2d

∏
.

(14)

The coordinatet runs from 2` (horizon) to 0 (spatial
infinity). The boundary condition forU is thatUs0d ­ 1
and U ! ct as t ! 2`. The boundary condition for
fastd is that fas0d ­ fa

` and dfa

dt ­ Osectd as t !

2`. The physical significance ofc is that

c ­
kA
4p

­ 2ST . (15)

The field equations forU andfa are

d2U
dt2

­ 2V sssf, sp, qdddde2U , (16)

Dfa

Dt2 ­
≠V

≠fa e2U , (17)

andµ
dU
dt

∂
2 1 Gab

dfa

dt

dfb

dt
2 V sssf, sp, qdddde2U ­ c2.

(18)

Our convexity condition is that the symmetric tens
field onMf defined by

Vab ­ =a=bV , (19)

where =a is the Levi-Civita covariant derivative with
respect to the metricGab of Mf , is non-negative.
4993
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It follows from the equation of motion forfa that

d2V
dt2 ­ Vab

dfa

dt

dfb

dt
1 2e2U ≠V

≠fa

≠V
≠fb Gab . (20)

If we multiply by V, integrate, and use the bounda
conditions, we obtain

2

0Z
2`

1
2

µ
dV
dt

∂
2dt ­ Sa

√
≠V
≠fa

!
`

1

0Z
2`

µ
Vab

dfa

dt

dfb

dt

1 2e2U ≠V
≠fa

≠V
≠fb

Gab

∂
dt. (21)

If we assume thatSa ­ 0 andVab is positive definite,
we must have≠V

≠fa ­ 0 for all t, which implies that the
moduli are frozen, i.e.,fasrd ­ fa

`.
The mass of the black hole is given byM ­ s dU

dt dt­0,
and therefore we have from (18) a rather useful gen
relation [10] which may be interpreted as the statem
that the total self force on the hole due to the attract
forces of gravity and the scalar fields is not exceeded
the repulsive self force due to the vectors and vanis
only in the extreme case:

M2 1 GabSaSb 2 V sfa
`d ­ 4S2T 2. (22)

One might refer to the inequality obtained from the no
negativity of the right hand side as an antigravity bou
Note that unlike the Bogomol’nyi bound [9] its derivatio
requires neither supersymmetry nor duality invarian
Differentiating with respect tofa

` gives

M
≠M
≠fc

`

1 GabSa=cSb 2
1
2

≠V
≠fc

`

­ 4S2T
≠T

≠fc
`

. (23)

We deduce that if the mass is extremized with resp
to fa

`, then so is the temperature. It follows that the fix
or “frozen” moduli must minimizeV , i.e., ffix is defined
by µ

≠V
≠fa

∂
f­ffix,sp,qd

­ 0 . (24)

Static black holes with frozen moduli have the spa
time geometry given by the Reissner-Nordström metric

A year ago Ferrara, Kallosh, and Strominger [11] fou
that for a class of supersymmetric black holes the mod
field at the horizonfH depends only on the conserve
electric and magnetic charges

fH,extreme ­ ffixsp, qd . (25)

Recall that at extremality, the mass depends on the mo
at infinity and the conserved charges
4994
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M ­ Mextremeffa
`, sp, qdg . (26)

An implicit formula was found more recently in [7] fo
fH,extreme that can be written asµ

≠Mextreme

≠f

∂
sp,qd,f­fH,extreme

­ 0 , (27)

where the derivative is taken at fixed values of charg
The result which holds for all of the theories we consid
here was found by analyzing the radial equation for t
moduli fields fsrd which is governed by the function
V sf, p, qd.

Two questions arose and motivated the results of t
paper:

(i) Why is fH,extreme independent off`?
(ii) Why is fH,extreme given by (27)?
We can now offer an answer for the second questi

From (3), which we first derived for the example given
[12], it follows that Eq. (27) is equivalent to

Sasssffix, sp, qdddd ­ 0 , (28)

thus defining ffix ­ ffixsp, qd. (This equation was
noted in [7] for the extreme case.) But as we stated abo
a black hole with vanishing scalar charge must ha
spatially constant moduli fields:fasrd ­ f

a
H,extreme ­

fa
`, or frozen moduli. In other words, to satisfy Eq. (28

we must choosefa
` to bef

a
H,extreme.

As found in [7], the entropy of all extreme black hole
is independent offa

` and is given by

S ­
A
4

­ pV sssffixsp, qd, sp, qdddd . (29)

Our new result establishes that for any static black ho
extreme or not,

MsssS, f`, sp, qdddd $ MsssS, ffix, sp, qdddd . (30)

But because black holes with frozen moduli have t
Reissner-Nordström geometry, the right hand side of (
is always greater than the mass of the extreme Reiss
Nordström black hole with same charges.

We would like to emphasize that our results hold f
a wide class of theories—one need not assume ei
supersymmetry or duality invariance. In addition we wi
to emphasize the following:

(i) The scalar chargesSa are not conserved but they d
act as the sources for the moduli. They are not associ
with a conserved current. The flux of the gradient of t
scalar charge vanishes at the horizon. Thus the sc
charge resides entirely outside the event horizon.

(ii) Previously one did not consider variations of th
moduli at infinity f` , which were regarded fixed onc
and for all. In that case the scalar chargeSa need not be
specified independently of the mass, angular moment
and electric and magnetic charges. However, if one d
not regard the moduli at infinity to be givena priori one
needs to specify, in addition toM, J, and (q, p), either
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f` or Sa to characterize completely the black hole. Th
may be important when considering situations in wh
f` becomes dynamical, for example, if one consid
slow adiabatic changes off` or possibly time-dependen
cosmological situations.
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