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Bose-Einstein Condensation in a Dilute Gas: Measurement of Energy
and Ground-State Occupation
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We measure the ground-state occupation and energy of a dilute Bose YRb @ftoms as a function
of temperature. The ground-state fraction shows good agreement with the predictions for an ideal Bose
gas in a 3D harmonic potential. The measured transition temperat@e4i$)7,, whereT, is the
value for a noninteracting gas in the thermodynamic limit. We determine the energy from a model-
independent analysis of the velocity distribution, after ballistic expansion, of the atom cloud. We
observe a distinct change in slope of the energy-temperature curve near the transition, which indicates a
sharp feature in the specific heat. [S0031-9007(96)01891-1]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 51.30.+i

The ability to create Bose-Einstein condensation (BECxool the atoms in the TOP trap with forced evaporation
in magnetically trapped alkali gases [1—-4] provides arf15] by applying a radio frequency (rf) magnetic field
opportunity to experimentally study the thermodynamicswhich induces Zeeman transitions of the most energetic
of bosonic systems in which the interactions are (i) weakatoms to untrapped spin states [16]. By ramping down the
(i) binary, and (iii) experimentally adjustable [5—7]. One frequency of the rf field we control the cloud temperature.
goal of experimental and theoretical work in this field is The final stages of evaporative cooling are performed in a
to understand a variety of low-temperature phenomena, = 373 Hz trap.
from both macroscopic and microscopic points of view, We observe the atom cloud, after a period of free
with a quantitative reconciliation of these two approachesexpansion, with resonant absorption imaging [5]. The
The recent experimental studies of collective excitationzonfining TOP potential is turned off suddenly, and
of zero-temperature condensates [5,8] were a step in thike cloud of atoms is allowed to expand freely for
direction. The purpose of the present effort is to explorel0 ms. The cloud is then probed by 2% us pulse
the nature of the BEC phase transition by performingof light resonant with thesS,,,, F =2 to 5P3p, F =
gquantitative measurements of BEC in a different regime—3 transition. The atoms scatter photons, impressing a
near the critical temperature. shadow onto the probe beam. The shadow is imaged

In this paper we analyze a series of images of ultraonto a CCD array, and the data are digitally processed
cold clouds of rubidium gas to determine the critical tem-to extract the optical depth of the cloud at each point.
perature and to extract ground-state occupation and meakfter point-by-point corrections for imperfect polarization
energy as a function of temperature. Mean energy (oand saturation effects, the result is a 2D projection of the
its derivative, specific heat) has a certain historical sigvelocity distribution in the expanded cloud.
nificance because it was London’s comparison [9] of the These distributions contain a wealth of thermodynamic
specific heats of liquid helium and an ideal Bose gasnformation. For instance, the integrated area under the
that began the rehabilitation of BEC as a useful physidistribution is proportional to the total numb&rof atoms
cal concept. Moreover, measurements of thermodynamiio the sample. The condensate appears as a narrow feature
quantities such as specific heat are essential in studyingentered on zero velocity [1]; the number of atoms in the
any phase transition. Ground-state occupation and criticground stateN,, is then proportional to the integrated
temperature of a Bose gas are interesting because in liguatea under this feature. From the mean square radius of
helium the former is very difficult to measure, while the the expanded cloud and the expansion time, we get the
latter is almost impossible to calculate accurately. mean square velocity, or average energy, of the cloud.

The apparatus and procedures we use for creating dfinally, as discussed below, the temperatfliis extracted
ultracold Bose gas and BEC are described elsewhefeom the images, even though the temperature is not
[1,10,11]. In summary, we optically trap [12] and pre- merely proportional to mean energy in a degenerate Bose
cool [13] ¥’Rb atoms, then load [14] them into a purely cloud.
magnetic trap. We use a time-averaged orbiting potential We have gone to some lengths to extract these ther-
(TOP) trap consisting of a static quadrupole field plus anodynamic quantities in a model-independent way. For
small rotating transverse bias field [11]. The effectiveinstance, if we were to fit the observed velocity distri-
potential is axially symmetric and harmonic, with a ratio butions to a Bose-Einstein distribution, we could hardly
of axial to radial trapping frequencies ¢f8. We further avoid coming to the conclusion that the specific heat is
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discontinuous—the singular behavior is built-in to the aspart of the cloud, where degeneracy, interactions, fluctua-
sumed functional form. Moreover, such a fit would pre-tions, etc. may be significant. To test the assumption of
clude our being able to observe effects due to interactionshermal equilibrium we have checked that the measured
finite N, critical fluctuations, etc. Fortunately, useful ther- temperature of clouds is independent of the size of the
modynamic information about the sample can be extractedxclusion region, outside of the degenerate regime [19].
from direct calculation of various moments of the velocity The first quantity we examine is the ground-state frac-
distribution, without specific reference to the nature of thetion N,/N as a function of scaled temperatuf&'T,
distribution. The total number and energy of the atoms(Fig. 1). The temperature scaling removes the trivial shift
as mentioned above, are simply proportional to the zerotin the transition temperature which occurs because as we
and second moments, respectively, calculated directly bgvaporatively cool through the transition we also reduce
summing over the velocity distribution images [17]. the total number of atomN (Fig. 1, inset). We choose
We define the number of atoms in the ground stateur scaling temperature to Be(N) = hw/kg[N/{(3)]'/3
to be the number of atoms contributing to the narrowwherew is the geometric mean of the trap frequencies and
central feature in the optical depth images [1]. To avoid/ is the Riemann Zeta functionT, (N) is also the critical
biased and noisy results we provide the least-squargemperature, in the thermodynamic limit, for noninteract-
fitting routine with a tightly constrained template to useing bosons in an anisotropic harmonic potential [20,21].
in its search for a condensate. With an independent sétor this case the temperature dependence of the ground-
of measurements on condensates near zero temperatusegte fraction isN,/N =1 — (T/T,)* below T, (solid
we have found that the condensate shapes are well-fine, Fig. 1). We emphasize that, in contrast with the re-
with 2D Gaussians whose widths, aspect ratios, and peakent work of Meweset al. [6], this line contains no free
heights, for a given trap frequency and expansion time, arparameters and is not fit to the data, and so comparing this
functions only of the total number of atoms in the featureline to our data provides a detailed test of theory. From
[7,18]. The width, for instance, is parametrized &8y=  our data we find a critical temperature®f = 0.94(5)7T,.
o,(1 + aN,)"/5, whereo, is the predicted noninteracting The uncertainty is dominated by the systematic uncertainty
condensate width and is extracted empirically. The in our measurement of the scaled temperature stemming
procedure yields robust values of,, as long as the mostly from a 2% uncertainty in the magnification of our
temperature is high enough that the noncondensate atorireaging system. Our measurements are thus only margin-
form a distribution that is significantly broader than theally different from the theory for noninteracting bosons in
sharp condensate feature. Attemperatures b&lpfy, =  the thermodynamic limit. Finite number corrections [22]
0.5, bothT and N, measurements become suspect, as iwill shift the transition temperaturg.(N) down about 3%
is no longer possible to cleanly separate the condensate
and the noncondensate components without recourse ti Y - T T
a detailed model, which is contrary to the spirit of this ’ '
treatment.
Our thermometry differs from previously reported 08
methods for ultracold trapped gases [1-3,5-8]. For
an ideal gas far from quantum degeneracy the velocity 06
distribution is a Gaussian whose width is proportional
to 7'2. As the cloud is cooled closer to the BEC
phase transition, higher densities and lower temperature:Z 04
cause a rapid increase in the significance of quantum
statistics and of residual atom-atom interactions. Rather 02}
than attempt to model these effects, we assume that th
high-energy tail of the velocity distribution (i) remains in
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thermal equilibrium with the rest of the cloud and (ii) can oop . . .. e . .
be characterized by a purely ideal Maxwell-Boltzmann 0.0 05 1.0 1.5
(MB) distribution. The latter is plausible because these T/To (N)

hlghest—energy atoms spend most of thelr trajgctorles IIQIG. 1. Total numberN (inset) and ground-state fraction
the low-density, and therefore weakly interacting, outery, /N as a function of scaled temperatufe¢’T,. The scale

part of the trapped cloud. Furthermore the occupatioRemperatureT,(N) is the predicted critical temperature, in
numbers of the corresponding energy states are much legg thermodynamic (infinitev) limit, for an ideal gas in a

than one. Finally, during the free expansion the highharmonic potential. The solid (dotted) line shows the infinite

inite) N theory curves. At the transition, the cloud consists
enﬁrgy atgm% udngert%O on averagt_e much IdeS:{S th_an 31@(?“40000 atoms at 280 nK. The dashed line is a least-
cofision. Lsuided by these assumptions, we determine gquares fit to the formv,/N =1 — (T/T.)® which gives

temperature by fitting a 2D Gaussian to only the wingsr, = 0.94(5)7,. Each point represents the average of three
of our velocity-distribution images, excluding the centralseparate images.
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(dotted line, Fig. 1). Mean-field [21,23] and many-body examining the deviatiod of the data from the classical
[24] interaction effects may also shift (V) a few percent. line we see (Fig. 2, inset) that the energy curve clearly
The second result we present is a measurement of thehanges slope near the empirical transition temperature
energy and specific heat. Ballistic expansion, which facili-0.94T, obtained from the ground-state fraction analysis
tates quantitative imaging, also provides a way to meadiscussed above.
sure the energy of a Bose gas [6,7,18]. The total The specific heat is usually defined as the temperature
energy of the trapped cloud consists of harmonic potentiallerivative of the energy per particle, taken with either
kinetic, and interaction potential energy contributions, orpressure or volume held constant. In our case the
Epot, Exin, @andE;y, respectively. As the trapping field is derivative is the slope of the scaled energy vs temperature
nonadiabatically turned-off to initiate the expansidi,;  plot (Fig. 2), with neither pressure nor volume, but
suddenly vanishes. During the ensuing expansion, theather confining potential held constant. To place our
remaining components of the energy,;, and E;,;, are  measurement in context, it is instructive to look at the
then transformed into purely kinetic energyof the ex- expected behavior of related specific heat vs temperature
panding cloudEy;, + Ei — E, whereE is the quantity plots (Fig. 3). The specific heat of an ideal classical gas
we actually measure. According to the virial theorem,(MB statistics), displayed as a dashed line, is independent
if the particles are idealH;,; = 0), E will equal half the of temperature all the way to zero temperature. Ideal
total energy, i.e.E = 3E!®al However, for a system bosons confined in a 3D box have a cusp in their specific
with interparticle interactions the energy per particle dugheat at the critical temperature (dotted line) [9]. Liquid
to Ej, can be non-negligible and théh = aE, Where “He can be modeled as bosons in a 3D box, but the true
a is not necessarilgl. behavior is quite different from an ideal gas, as illustrated

The scaled energy per particl&€,/NksT,, is plotted by_ _the specific heat data [25] _(dot—dashed line): The
versus the scaled temperatufgT, in Fig. 2. E/N is critical (or lambda) temperature is too low, and the gentle
normalized by the characteristic energy of the transitioridéal gas cusp is replaced by a logarithmic divergence.
ksT,(N) just as the temperature is normalizedy The We can compare our data with the calculated specific
data shown are extracted from the same cloud images &¢at of ideal bosons in a 3D anisotropic simple harmonic
those analyzed for the ground-state fraction. Abdye Oscillator (SHO) potential [20] (solid line). Note that
the data tend to the straight solid line which correspond§ecause we do not measuig,, we must divide the
to the classical MB limit for the kinetic energy. Most SHO theory values by two to compare with our measured

interesting is the behavior of the gas at the transition. ByeXpansion energies. The specific heat of the ideal gas is
discontinuous and finite at the transition.

In order to extract a specific heat from our noisy data,

20 ' I I | ' | we assume that, as predicted, there is a discontinuity in the
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FIG. 2. The scaled energy per partidig NkzT, of the Bose

gas is plotted vs scaled temperatliéT,. The straight, solid FIG. 3. Specific heat, at constant external potential, vs scaled
line is the energy for a classical, ideal gas, and the dashed linemperatureT /T, is plotted for various theories and experi-
is the predicted energy for a finite nhumber of noninteractingment: theoretical curves for bosons in a anisotropic 3D har-
bosons [22]. The solid, curved lines are separate polynomiainonic oscillator and a 3D square well potential, and the data
fits to the data above and below the empirical transitioncurve for liquid*He [25]. The flat dashed line is the specific
temperature 00.947,. (inset) The difference\ between the heat for a classical ideal gas. (inset) The derivative (bold line)
data and the classical energy emphasizes the change in slopg&the polynomial fits to our energy data is compared to the
of the measured energy-temperature curve O&&lT, (vertical  predicted specific heat (fine line) for a finite number of ideal
dashed line). bosons in a harmonic potential.
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slope at the empirically determined transition temperature[4] C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, and
and fit the data to separate polynomials on either side C.E. Wieman (to be published).

of T. (curved, solid lines in Fig. 2). We extract the [5] D.S. Jinetal., Phys. Rev. Lett77, 420 (1996).

specific heat curve shown in Fig. 3 (bold line in inset). [6] M.-O. Meweset al., Phys. Rev. Lett77, 416 (1996).

The observed step in the specific heat at the critical g% II\DASO vatvié%?cgh j'spgg?,%'L;?ypflégg ((11336?)).
temperature is considerably smaller than predicted by a[g] F. London, Nature (London}41, 643 (1938).

finite number', ideal gas theory[22] (F'g.' 3, mset, thin IIne)'[10] H. Rohner, inProceedings of the 39th Symposium on the
A more senS|bI§ comparison is to avoid taking the model- Art of Glassblowing(American Scientific Glassblowers
dependent derivative and instead to compare theory and  gqciety, Wilmington, Delaware, 1994), p. 57.
experiment directly in the energy-temperature plot (Fig. 2){ll] W. Petrich, M.H. Anderson, J.R. Ensher, and E.A.
The major deviation between the data and the SHO ideal  Cornell, Phys. Rev. LetZ4, 3352 (1995).
gas theory (dotted line) occurs at scaled temperatures ¢f2] E.L. Raabet al., Phys. Rev. Lett59, 2631 (1987).
0.85 and below. The difference is probably due in part td13] Special issue on laser cooling and trapping of atoms,
the effects of interactions. Mean-field repulsion will tend ~ edited by S. Chu and C. Wieman [J. Opt. Soc. Am. B
to increase the energy at a given temperature. 6 (1989)]. _ _

We have measured the critical temperature, groundd4] ghy'\s/lolgreove’L\eAt/t.G?\iasr;? (TégFé)oblnson, and C. Wieman,
R0 atome.  Our analysis 9 unidue ‘?.'l“iﬁﬁﬁ?ﬁ?iﬁﬁﬂ H.F. Hesset al. Phys. Rev. LellS9, 672 (1987).

" 6] D. Pritchard et al., in Proceedings of the 11th In-
rely on detailed models of the quantum degenerate clog ternational Conference on Atomic Physicsdited by
shape. We are thus able to examine the thermodynamics s Haroche, J.C. Gay, and G. Grynberg (World Scien-
of the Bose gas in an unbiased and quantitative way. The tific, Singapore, 1989), pp. 619—621.
measured ground-state fraction and transition temperatufe7] Some smoothing is performed in the wings of the
agree well with the theory for noninteracting bosons. distribution, where the signal-to-noise ratio is poor, using
However, the qualitative features of the energy data the same set of assumptions we use for thermometry.
are significantly different from the noninteracting theory.[18] M. Holland, D.S. Jin, M. Chiofalo, and J. Cooper (to be
In future work we will attempt to elucidate the role published). o _
interactions play in the phase transition and the specifi€l® As the excluded central region is enlarged, systematic
heat. For example, we can control the interactions by bias in the inferred temperature vanishes, but so does the

N . . - signal-to-noise ratio. We found it necessary to fit to a
adjusting the magnetic trap spring constants and changing

o - region which unfortunately samples the outer edge of the
the number of trapped atoms [5]. In addition, with larger degenerate portion of the cloud. From numerical studies of

clouds [4] we can reduce our uncertaintyZip, allowing the ideal Bose-Einstein distribution, we derive and apply

us to investigate finite number and mean-field effects at  a modest €10%) correction to the measured temperature.

the 1% level. The feature we see in the cloud energy occurs regardless
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