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We derive a trace formula for the splitting-weighted density of states suitable for chaotic potentials
with isolated symmetric wells. This formula is based on complex orbits which tunnel through classically
forbidden barriers. The theory is applicable whenever the tunneling is dominated by isolated orbits,
a situation which applies to chaotic systems but also to certain near-integrable ones. It is used to
analyze a specific two-dimensional potential with chaotic dynamics. Mean behavior of the splittings
is predicted by an orbit with imaginary action. Oscillations around this mean are obtained from a
collection of related orbits whose actions have nonzero real part. [S0031-9007(96)01893-5]

PACS numbers: 03.65.Sq, 03.20.+i, 05.45.+b, 73.40.Gk

In this Letter we develop a method for computinglocalized within one well or the other, one finds that
tunneling effects in quantum states associated witkenergy levels come in symmetric-antisymmetric paifs
chaotic regions of phase space. While the influencevith small splittings between them. Denote the splittings
of chaotic dynamics has been actively studied in theoy AE, and the mean levels by,, so thatE =
context of chaos-assisted tunneling between Einsteink, = AE,/2. A standard periodic orbit calculation using
Brillouin-Keller- (EBK)-quantized tori [1], less attention real orbits yields a set of doubly degenerate levgjs
has been paid to the problem of tunneling between chaotiapproximating the mean levets,. The degeneracy arises
states. This is presumably because there is, at preseligcause each periodic orbit has a symmetric partner in
no semiclassical theory for individual chaotic eigenstatesthe opposing well. Therefore, the most naive use of
However, there does exist a well-developed theory for theeriodic orbit theory fails to predict the existence of
spectral properties of such systems in terms of periodisplittings. However, since includingpmplexorbits does
orbits [2]. We will show how this can be extended to ayield splittings in one dimension [4,5], we are motivated
calculation of spectral tunneling averages using complexo pursue this approach in higher dimensions.
periodic orbits. A literal extension of this work to chaotic problems is

Complex multidimensional trajectories were introducedtoo difficult because it involves finding tiny differences
in [3] to understand barrier-penetration problems as motibetween poles in traces or zeros in zeta functions. Instead,
vated by quantum field theories. Complex periodic orbitghe splitting-weighted density of states,
were first used by Miller [4] in one-dimensional potentials
to derive splittings and resonance widths. These calcula- f(E) = Z AE,S(E — Ey), 1)
tions were extended in [5] to the rotational spectrum of ] N ) ) o
SFKs. Splittings in chaotic potentials were related to com-Will provide an effective vehicle for evaluating splittings
plex trajectories in [6]. In the context of chaotic maps,directly from complex orbits. Analysis of(E) in terms
complex periodic orbits were used to calculate band gap@ﬂ_t periodic orbits follows from approximating it by the
[7]. Complex trajectories in chaotic maps have also beefifference,
explored in the time domain [8]. _ _

A commonly used probe for tunneling effects is to J(E) = N+(E) = N-(E), (2)
study the spectra of two symmetric wells which havebetween the staircase functiois (E) for even and odd
a barrier between them. When classical trajectories arstates. The approximation is valid if we use a resolution
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in energy that is much greater tha¥,. We next note The simplest complex orbit starts on theaxis with
that N-(E) = —(1/a)Im fE dE'g+(E'), whereg. are negative kinetic energy and evolves after an imaginary
traces of the symmetry-projected Greens functions [9] time —i7 to the symmetry-related point on the other side.
| | ' It has real position and imaginary momentum, giving an
ge(E) =Y —— == x.(g,)A,¢™/". (3) imaginary actions = iK. The amplitude of this orbit is
E—-Ey 25 reduced by a factor at on reflection from the inside of
the barrier. This anomalous reflection coefficient derives
from a calculation in which a Stokes constant is calculated
on a Stokes line [10,12], and can be understood in simple
terms by comparison with an exact calculation for the in-
action andA, is obtained from the stability of the orbit. V?l;tid har_Eonlfc otscnlatgrl[lg]. _I'_Ar‘f a resul(’;, the orblttgon—
Real orbits cannot cross from one well to the other anérI utes with a factos, = /2. € monodromy matrix
can be found by inverting the potential. The tunneling or-

necgssarlly correspond 1g, = 1. _Thelr contribution ._bit then transforms to a real, unstable orbit running along
vanishes when we calculate the difference, a fact whichj

) ; . . the ridgey = 0, whose monodromy matri¥ is readily

IS ;F“e to all ord((ejr_s Inf. f(_E) IS thﬁ_nhapproxmated t_)ly calculated. Reverting to the upright potential, the mono-

orbits corresponding t@, = R, which are necessarily dromy matrix W is obtained fromM by multiplying the

comIrIJIexl,_ a_nd from which we can extract the exloor'emlalIyoff-diagonal elements by:i. This leaves eigenvalues un-

small splittings. . S .
After substituting the contributions of complex orbits changed.  After including a phase factor from reflection

into the trace formula and integrating, we arrive at theInSIde the barrier, we obtain

following sum [10]:

n

The traces receive contributions from orhitehich either
close simply in phase spaceg,(=I) or close after
applying a reflection operationg{ = R,). The group
characters arge~(7) = 1 and y+(R,) = =1, S, is the

is,/ —K/F
> (4) [ —

2
-2 — 6
F(E) Wlm;ﬁy e r— iy e (6)

Here S, and M, are, respectively, the complex action o ) .
and monodromy matrix of. (M, includes, if necessary, A fmgl complication derives from the fact that we will

a factor representing linearization in the surface of theconsider separately states with even and odgarity.
section of the symmetry operatigg.) We use a complex The orbit lies on the corresponding symmetry axis and,
square root in the denominator, and the ambiguity in sigr®S & _result, contributes differently to the two parities. The
is determined by following the evolution of the square@mplitude must therefore be decomposed according to the
root in the complex plane—this mirrors the computationPrescription |n_[13]. _

of Maslov indices for real orbits [11]. The facta@ For comparison with the theory, we also found the
reflects a degeneracy in the direction of tunneling, and thguantum eigenvalues corresponding to the potential (5)
dimensionless factoB,,, explained below, is for most numerically. We used 100 harmonic oscillator basis

orbits. states in both the andy directions and diagonalized the
We explore this approximation for the two-dimensional'esulting Hamiltonian. We worked to quadruple precision
potential which allowed us to calculate splittings as small as about
10739, All results shown are fofi = +/8/100. We also
Vix,y) = (x> — D* + x%2 (5) used the appropriate bases to isolate the four symmetry

classes. States even and odd with respectgenerate the
When E < 1, the classical motion is confined to one splittings. The symmetry with respect jois additional,
of two symmetric wells, leading to splittings. There is and we refer to the corresponding parity classes as even
a real periodic orbit confined to the axis which has and odd. For each of these classes, the Thomas-Fermi
a bifurcation atE. = 0.236 such that it is elliptic for density of statego(E) is calculated following reduction
E < E. and inverse hyperbolic foE > E. (in which  to quadratures [10].
energy range phase space is predominantly chaotic). In Fig. 1 we show the exact splitting§E, weighted
Tunneling in this system is dominated by a particularby po(E,). These are dimensionless numbers expressing
set of complex orbits that are similarly confined to the the splittings in units of the mean level spacing. The
axis. Their contributions are found by first consideringsolid curve isfy(E) and provides a good description of
the analogous one-dimensional orbits in the potentialhe average behavior. In particular, the theory works
V(x,0) = (x> — 1)*. They are then dressed with the for E < E., in which range the motion is mixed and
complex monodromy matrix obtained by embedding thenthe real one-dimensional orbit is stable. Therefore, the
in the other dimension. This is useful because a veryheory predicts the mean behavior whenever the tunneling
careful analysis of such orbits is possible; the results ofs dominated by isolated orbits, regardless of the character
which can later be extended to more general orbits. of the classical motion in the wells.
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00 ' ' o to f(E). To determine the branch of the square root,
0L oyen T we write /—de(M — I) = +/A(1 — A72), whereM is a
-100F A ] surface-of-section matrix with the leading eigenvalue
-150F L 1 defined at each point along the orbit. Initially,= 1

200 250 and it then grows along the real axis if we start with

the tunneling segment. With subsequent evolution in
real time, A moves into the complex plane. When the
real segment is unstable, it executes a counterclockwise
rotation of approximatelyr with each periodT,, this
becoming more exact with every iteration. To this
evolution should be added a counterclockwise rotation of
7r at each turning point. Asymptotically, each iteration
E then leads in the unstable case to a phase faetoy in

FIG. 1. The dots show the quantum splittings multiplied bythe amplitude, reflecting the Maslov index = 3 of the

the Thomas-Fermi density of states, and the solid curves sh0\5\5aal Or_bit [11]. . L . .
the results using(E) of Eq. (6). “Even” and “odd” refer to ~ Adding foc(E) to fo(E) is similar to adding peri-
the y parity. odic orbit contributions to the Thomas-Fermi density of

states. It introduces oscillatory structure to the mono-
tonically increasing background. To make a compari-
son with exact results, it is useful to divide out this
In addition to the mean behavior, there is an oscillatorybackground (shown in Fig. 1)—the result should be a
structure in the splittings. To explain this, we considerfluctuating function with mean valué¢. We compare
orbits obtained by attaching, to the basic tunneling orbiin Fig. 2 the Thomas-Fermi density-weighted splittings
above, real periodic orbits in the wells on either side—py(E,)AE, /fo(E,) (filled circles) with the functionl +
always withy = 0. We denote bys, and Ty the action  fo.(E)/fo(E) (lower solid curve) obtained by summing
and period of the real primitive orbit segment. Restrictingover the first ten repetitions.
the sum to orbits which tunnel only once, we allow any Let us first discuss the energy regimie< E., where
number of iterations of the real orbit in the first well be- the real orbit is stable. Here, summation overesults
fore tunneling and in the second well after tunneling. Or-explicitly in delta functions—apparent as the first narrow
bits going from left to right with a total actionS, + iK  peaks in Fig. 2. (In order that the quantum data not be
occur with a degeneraoy. On doing the trace integral in obscured, sidebands around the peaks have been graphi-
the wells, we get a contribution t9, (E) — g—(E) with  cally removed.) The positions give the mean energies of
an amplitude factorT,/i/i. Summation over these con- states localized near the orbit in the surrounding island,
tributions is sufficient in one-dimensional calculations toanalogous to a quantization of stable orbits obtained in
identify poles ing-(E) and obtain individual splittings the usual trace formula [15]. The peaks have weights of
[4,5]. For a consistent approximation ¢fE), however,
it is also necessary to add a term with amplitueléer /i %
that arises from integration across the forbidden region—
a contribution which was not included (or needed) in the
one-dimensional calculations. The integration in energy
leading to the staircase functions leaves a denominator
d(rSy + iK)/dE which cancels this combination of pe-
riods. Including a factog to account for the choice of
starting well, the result is (4) wittB, = 1. This argu-
ment can be made precise by considering the problem of
an infinite square well with a finite square barrier in the
middle [10]. The equivalent calculations are exact and
free from the ambiguities inherent in comparing exponen-
tially small quantities in WKB calculations.
The monodromy matrix for an orbit with real handles
is conjugate tavf, = WM, whereM, is the real mono-
dromy matrix of a primitive real orbit segmentM, has FIG. 2. The same as Fig. 1 but with the mefyt£) scaled

; ; ; ; out. The dots are the quantum data with dashed lines
complex entries. Collectively, these orbits contribute connecting them. The lower solid curvelist fo (E)/ fo(E).

logw pO(E)AE

Rescaled data
sa8paoay

% riSo—K)/ The upper dashed and solid curves are the corresponding results
fosc(E) = Z (7) averaged with a Gaussian of variaric@l5. Their scale should
=/ —detwMmg — 1) be read from the right axis.
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the form(2/iA/T,)e  X/" [10], whereA is a function of#  dimensional character being carried exclusively through
andM,. These weights approximate the splittings and areghe monodromy matrix. This is an artifact of the reflection
similar to the one-dimensional case (for whi€h= 1). In  symmetry about the axis, and it will be interesting to
Table | the positions of the peaks and their semiclassicdbollow these orbits, as the symmetry is broken, by adding
weights are compared with the quantum-mechanical meaanother term to the potential and including a magnetic
levels and splittings, respectively. Agreement is reasonfield. This would be the first step in understanding how
able. There are also states which do not correspond tm combine the contributions of many complex orbits so
peaks in the theoretical curve. We presume that these ags to get individual splittings in the chaotic case. Another
associated with regions of phase space removed from theecessary ingredient is some form of symbolic dynamics
orbit. It should be noted that, in the limit — 0, the real of the complex orbits so that we have a systematic way
orbit suffers an infinite cascade of bifurcations. Unfortu-of searching for orbits; without this, it is an extremely
nately, the lowest even state has an energy near the firdifficult task to find long orbits. A distinct problem is to
such bifurcation, so the theory cannot be trusted and weetermine whether the statistics of the splittings conform
do not plot the theoretical curve in this range. to any universal distributions.

At energies abové:,, the real orbit is unstable, and  The form of analysis developed here may help in un-
phase space is dominated by chaos. The theory haterstanding mesoscopic systems such as Coulomb block-
smooth oscillations, and there are no longer any individuaade peaks in which electrons tunnel into a quantum dot,
states associated with these orbits. However, the theorgnd on which, to date, only statistical analyzes have been
does reproduce with some detail a marked periodicity irbrought to bear [17]. For this purpose, we note that a
the splittings. Such oscillations have recently been obvery natural extension of the theory developed here would
served experimentally by Wilkinsoat al.[16] in quan-  allow us to find the width-weighted density of resonances
tum wells and interpreted by them as corresponding tdor unbounded problems. The formalism might also be
enhanced tunneling in states “scarred” by a real orbit. lrused to investigate leakage from or between billiards with
our formalism, we obtain an explicit quantitative predic- small holes. If the holes are small enough, the contribu-
tion, but for averaged tunneling properties and not (in thetion of leaking orbits will be suppressed diffractively so
chaotic regime) for individual states. For a quantitativethat the widths or splittings will decay algebraically with
comparison, we also compare in Fig. 2 the results of conwavelength, as opposed to the exponential decay found in
volving quantum-mechanical and semiclassical rescaletlnneling.
quantities with a Gaussian. The mean theory overesti- We would like to thank E. Bogomolny, O. Bohigas,
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