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We derive a trace formula for the splitting-weighted density of states suitable for chaotic pote
with isolated symmetric wells. This formula is based on complex orbits which tunnel through class
forbidden barriers. The theory is applicable whenever the tunneling is dominated by isolated
a situation which applies to chaotic systems but also to certain near-integrable ones. It is u
analyze a specific two-dimensional potential with chaotic dynamics. Mean behavior of the spli
is predicted by an orbit with imaginary action. Oscillations around this mean are obtained fr
collection of related orbits whose actions have nonzero real part. [S0031-9007(96)01893-5]

PACS numbers: 03.65.Sq, 03.20.+i, 05.45.+b, 73.40.Gk
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In this Letter we develop a method for computin
tunneling effects in quantum states associated w
chaotic regions of phase space. While the influen
of chaotic dynamics has been actively studied in t
context of chaos-assisted tunneling between Einste
Brillouin-Keller- (EBK)-quantized tori [1], less attention
has been paid to the problem of tunneling between cha
states. This is presumably because there is, at pres
no semiclassical theory for individual chaotic eigenstat
However, there does exist a well-developed theory for
spectral properties of such systems in terms of perio
orbits [2]. We will show how this can be extended to
calculation of spectral tunneling averages using comp
periodic orbits.

Complex multidimensional trajectories were introduc
in [3] to understand barrier-penetration problems as m
vated by quantum field theories. Complex periodic orb
were first used by Miller [4] in one-dimensional potentia
to derive splittings and resonance widths. These calc
tions were extended in [5] to the rotational spectrum
SF6. Splittings in chaotic potentials were related to com
plex trajectories in [6]. In the context of chaotic map
complex periodic orbits were used to calculate band g
[7]. Complex trajectories in chaotic maps have also be
explored in the time domain [8].

A commonly used probe for tunneling effects is
study the spectra of two symmetric wells which ha
a barrier between them. When classical trajectories
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localized within one well or the other, one finds th
energy levels come in symmetric-antisymmetric pairsE6

n ,
with small splittings between them. Denote the splitti
by DEn and the mean levels byEn, so that E6

n ­
En 7 DEny2. A standard periodic orbit calculation usi
real orbits yields a set of doubly degenerate levelsEsc

n ,
approximating the mean levelsEn. The degeneracy aris
because each periodic orbit has a symmetric partne
the opposing well. Therefore, the most naive use
periodic orbit theory fails to predict the existence
splittings. However, since includingcomplexorbits does
yield splittings in one dimension [4,5], we are motiva
to pursue this approach in higher dimensions.

A literal extension of this work to chaotic problems
too difficult because it involves finding tiny differenc
between poles in traces or zeros in zeta functions. Ins
the splitting-weighted density of states,

fsEd ­
X
n

DEndsE 2 End , (1)

will provide an effective vehicle for evaluating splittin
directly from complex orbits. Analysis offsEd in terms
of periodic orbits follows from approximating it by th
difference,

fsEd ø N1sEd 2 N2sEd , (2)

between the staircase functionsN6sEd for even and odd
states. The approximation is valid if we use a resolu
© 1996 The American Physical Society 4975



VOLUME 77, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 16 DECEMBER1996

.
n

ic

ll

ts
h

n
,
th

ig
re
o

th

a

e
is

ti
la

ng
ti
e
em
e

ary
e.
an

es
ted
ple
in-
n-

r-
ng

o-

-
on

ll

nd,
he
the

he
(5)

sis
e
on
out

etry

ven
ermi

ing
he
f
ks
d
the
ling
cter
in energy that is much greater thanDEn. We next note
that N6sEd ­ 2s1ypd Im

RE dE0g6sE0d, where g6 are
traces of the symmetry-projected Greens functions [9]

g6sEd ­
X
n

1
E 2 E6

n
ø

1
2

X
g

x6sggdAgeiSgy h̄. (3)

The traces receive contributions from orbitsg which either
close simply in phase space (gg ­ I) or close after
applying a reflection operation (gg ­ Rx). The group
characters arex6sId ­ 1 and x6sRxd ­ 61, Sg is the
action andAg is obtained from the stability of the orbit
Real orbits cannot cross from one well to the other a
necessarily correspond togg ­ I . Their contribution
vanishes when we calculate the difference, a fact wh
is true to all orders inh̄. fsEd is then approximated by
orbits corresponding togg ­ Rx, which are necessarily
complex, and from which we can extract the exponentia
small splittings.

After substituting the contributions of complex orbi
into the trace formula and integrating, we arrive at t
following sum [10]:

fsEd ø
2
p

Im
X
g

bg

eiSgy h̄q
2 detsMg 2 Id

. (4)

Here Sg and Mg are, respectively, the complex actio
and monodromy matrix ofg. (Mg includes, if necessary
a factor representing linearization in the surface of
section of the symmetry operationgg .) We use a complex
square root in the denominator, and the ambiguity in s
is determined by following the evolution of the squa
root in the complex plane—this mirrors the computati
of Maslov indices for real orbits [11]. The factor2
reflects a degeneracy in the direction of tunneling, and
dimensionless factorbg, explained below, is1 for most
orbits.

We explore this approximation for the two-dimension
potential

V sx, yd ­ sx2 2 1d4 1 x2y2. (5)

When E , 1, the classical motion is confined to on
of two symmetric wells, leading to splittings. There
a real periodic orbit confined to thex axis which has
a bifurcation atEc ­ 0.236 such that it is elliptic for
E , Ec and inverse hyperbolic forE . Ec (in which
energy range phase space is predominantly chao
Tunneling in this system is dominated by a particu
set of complex orbits that are similarly confined to thex
axis. Their contributions are found by first consideri
the analogous one-dimensional orbits in the poten
V sx, 0d ­ sx2 2 1d4. They are then dressed with th
complex monodromy matrix obtained by embedding th
in the other dimension. This is useful because a v
careful analysis of such orbits is possible; the results
which can later be extended to more general orbits.
4976
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The simplest complex orbit starts on thex axis with
negative kinetic energy and evolves after an imagin
time 2it to the symmetry-related point on the other sid
It has real position and imaginary momentum, giving
imaginary actionS ­ iK. The amplitude of this orbit is
reduced by a factor of2 on reflection from the inside of
the barrier. This anomalous reflection coefficient deriv
from a calculation in which a Stokes constant is calcula
on a Stokes line [10,12], and can be understood in sim
terms by comparison with an exact calculation for the
verted harmonic oscillator [10]. As a result, the orbit co
tributes with a factorbg ­ 1y2. The monodromy matrix
can be found by inverting the potential. The tunneling o
bit then transforms to a real, unstable orbit running alo
the ridgey ­ 0, whose monodromy matrixM is readily
calculated. Reverting to the upright potential, the mon
dromy matrixW is obtained fromM by multiplying the
off-diagonal elements by6i. This leaves eigenvalues un
changed. After including a phase factor from reflecti
inside the barrier, we obtain

f0sEd ­
1
p

e2Ky h̄p
2detsW 2 Id

. (6)

A final complication derives from the fact that we wi
consider separately states with even and oddy parity.
The orbit lies on the corresponding symmetry axis a
as a result, contributes differently to the two parities. T
amplitude must therefore be decomposed according to
prescription in [13].

For comparison with the theory, we also found t
quantum eigenvalues corresponding to the potential
numerically. We used 100 harmonic oscillator ba
states in both thex andy directions and diagonalized th
resulting Hamiltonian. We worked to quadruple precisi
which allowed us to calculate splittings as small as ab
10230. All results shown are for̄h ­

p
8y100. We also

used the appropriate bases to isolate the four symm
classes. States even and odd with respect tox generate the
splittings. The symmetry with respect toy is additional,
and we refer to the corresponding parity classes as e
and odd. For each of these classes, the Thomas-F
density of statesr0sEd is calculated following reduction
to quadratures [10].

In Fig. 1 we show the exact splittingsDEn weighted
by r0sEnd. These are dimensionless numbers express
the splittings in units of the mean level spacing. T
solid curve isf0sEd and provides a good description o
the average behavior. In particular, the theory wor
for E , Ec, in which range the motion is mixed an
the real one-dimensional orbit is stable. Therefore,
theory predicts the mean behavior whenever the tunne
is dominated by isolated orbits, regardless of the chara
of the classical motion in the wells.
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FIG. 1. The dots show the quantum splittings multiplied
the Thomas-Fermi density of states, and the solid curves s
the results usingf0sEd of Eq. (6). “Even” and “odd” refer to
the y parity.

In addition to the mean behavior, there is an oscillat
structure in the splittings. To explain this, we consid
orbits obtained by attaching, to the basic tunneling or
above, real periodic orbits in the wells on either side
always withy ­ 0. We denote byS0 and T0 the action
and period of the real primitive orbit segment. Restricti
the sum to orbits which tunnel only once, we allow a
number of iterations of the real orbit in the first well b
fore tunneling and in the second well after tunneling. O
bits going from left to right with a total actionrS0 1 iK
occur with a degeneracyr . On doing the trace integral in
the wells, we get a contribution tog1sEd 2 g2sEd with
an amplitude factorrT0yih̄. Summation over these con
tributions is sufficient in one-dimensional calculations
identify poles ing6sEd and obtain individual splittings
[4,5]. For a consistent approximation offsEd, however,
it is also necessary to add a term with amplitude2ityih̄
that arises from integration across the forbidden region
a contribution which was not included (or needed) in t
one-dimensional calculations. The integration in ene
leading to the staircase functions leaves a denomin
≠srS0 1 iKdy≠E which cancels this combination of pe
riods. Including a factor2 to account for the choice o
starting well, the result is (4) withbg ­ 1. This argu-
ment can be made precise by considering the problem
an infinite square well with a finite square barrier in t
middle [10]. The equivalent calculations are exact a
free from the ambiguities inherent in comparing expon
tially small quantities in WKB calculations.

The monodromy matrix for an orbit withr real handles
is conjugate toMr ­ WMr

0 , whereM0 is the real mono-
dromy matrix of a primitive real orbit segment.Mr has
complex entries. Collectively, these orbits contribute

foscsEd ­
2
p

Im
X̀
r­1

esriS02Kdy h̄p
2detsWMr

0 2 Id
(7)
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to fsEd. To determine the branch of the square ro
we write

p
2detsM 2 Id ­

p
ls1 2 l22d, whereM is a

surface-of-section matrix with the leading eigenvaluel,
defined at each point along the orbit. Initially,l ­ 1,
and it then grows along the real axis if we start w
the tunneling segment. With subsequent evolution
real time, l moves into the complex plane. When t
real segment is unstable, it executes a counterclock
rotation of approximatelyp with each periodT0, this
becoming more exact with every iteration. To th
evolution should be added a counterclockwise rotation
p at each turning point. Asymptotically, each iterati
then leads in the unstable case to a phase factors2id3 in
the amplitude, reflecting the Maslov indexs ­ 3 of the
real orbit [11].

Adding foscsEd to f0sEd is similar to adding peri-
odic orbit contributions to the Thomas-Fermi density
states. It introduces oscillatory structure to the mo
tonically increasing background. To make a compa
son with exact results, it is useful to divide out th
background (shown in Fig. 1)—the result should be
fluctuating function with mean value1. We compare
in Fig. 2 the Thomas-Fermi density-weighted splittin
r0sEndDEnyf0sEnd (filled circles) with the function1 1

foscsEdyf0sEd (lower solid curve) obtained by summin
over the first ten repetitionsr.

Let us first discuss the energy regimeE , Ec, where
the real orbit is stable. Here, summation overr results
explicitly in delta functions—apparent as the first narr
peaks in Fig. 2. (In order that the quantum data not
obscured, sidebands around the peaks have been gr
cally removed.) The positions give the mean energie
states localized near the orbit in the surrounding isla
analogous to a quantization of stable orbits obtained
the usual trace formula [15]. The peaks have weights

FIG. 2. The same as Fig. 1 but with the meanf0sEd scaled
out. The dots are the quantum data with dashed l
connecting them. The lower solid curve is1 1 foscsEdyf0sEd.
The upper dashed and solid curves are the corresponding re
averaged with a Gaussian of variance0.015. Their scale should
be read from the right axis.
4977
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the forms2h̄AyT0de2Ky h̄ [10], whereA is a function ofW
andM0. These weights approximate the splittings and a
similar to the one-dimensional case (for whichA ­ 1). In
Table I the positions of the peaks and their semiclassi
weights are compared with the quantum-mechanical me
levels and splittings, respectively. Agreement is reaso
able. There are also states which do not correspond
peaks in the theoretical curve. We presume that these
associated with regions of phase space removed from
orbit. It should be noted that, in the limitE ! 0, the real
orbit suffers an infinite cascade of bifurcations. Unfortu
nately, the lowest even state has an energy near the
such bifurcation, so the theory cannot be trusted and
do not plot the theoretical curve in this range.

At energies aboveEc, the real orbit is unstable, and
phase space is dominated by chaos. The theory
smooth oscillations, and there are no longer any individu
states associated with these orbits. However, the the
does reproduce with some detail a marked periodicity
the splittings. Such oscillations have recently been o
served experimentally by Wilkinsonet al. [16] in quan-
tum wells and interpreted by them as corresponding
enhanced tunneling in states “scarred” by a real orbit.
our formalism, we obtain an explicit quantitative predic
tion, but for averaged tunneling properties and not (in t
chaotic regime) for individual states. For a quantitativ
comparison, we also compare in Fig. 2 the results of co
volving quantum-mechanical and semiclassical resca
quantities with a Gaussian. The mean theory overe
mates the splittings nearE ­ 1 because the matrixW be-
comes marginal; this can, in principle, be corrected
existing theories for bifurcations [14]. Also, the cascad
of bifurcations at small energies means that the theory
not to be trusted in this range either. Other than these
fects, there is detailed agreement of period, amplitude, a
phase. [For the odd states,f0sEd is smaller and correc-
tions become more apparent after rescaling.] Notice a
that, as far as averaged quantities are concerned, the
no qualitative difference between the regimes in which t
orbit is stable or unstable.

The problem studied here made use of a class
orbits which are essentially one dimensional—their tw

TABLE I. Semiclassical energies and splittings predicted
the stable orbit are compared with exact results.

y parity Eqm Esc DEqm DEsc

1 0.0694 0.0679 0.548 3 10222 0.522 3 10222

1 0.1158 0.1147 0.227 3 10220 0.222 3 10220

1 0.1677 0.1667 0.881 3 10219 0.841 3 10219

1 0.2237 0.2222 0.304 3 10217 0.261 3 10217

2 0.0718 0.0608 0.655 3 10223 0.477 3 10223

2 0.1076 0.1013 0.210 3 10221 0.194 3 10221

2 0.1531 0.1480 0.754 3 10220 0.724 3 10220

2 0.2038 0.1988 0.275 3 10218 0.225 3 10218
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dimensional character being carried exclusively throu
the monodromy matrix. This is an artifact of the reflectio
symmetry about they axis, and it will be interesting to
follow these orbits, as the symmetry is broken, by addi
another term to the potential and including a magne
field. This would be the first step in understanding ho
to combine the contributions of many complex orbits
as to get individual splittings in the chaotic case. Anoth
necessary ingredient is some form of symbolic dynam
of the complex orbits so that we have a systematic w
of searching for orbits; without this, it is an extreme
difficult task to find long orbits. A distinct problem is to
determine whether the statistics of the splittings confo
to any universal distributions.

The form of analysis developed here may help in u
derstanding mesoscopic systems such as Coulomb bl
ade peaks in which electrons tunnel into a quantum d
and on which, to date, only statistical analyzes have b
brought to bear [17]. For this purpose, we note tha
very natural extension of the theory developed here wo
allow us to find the width-weighted density of resonanc
for unbounded problems. The formalism might also
used to investigate leakage from or between billiards w
small holes. If the holes are small enough, the contrib
tion of leaking orbits will be suppressed diffractively s
that the widths or splittings will decay algebraically wit
wavelength, as opposed to the exponential decay foun
tunneling.
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