
VOLUME 77, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER1996

ingdom

496
Effect of Level Statistics on Superconductivity in Ultrasmall Metallic Grains
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We examine the destruction of superconducting pairing in metallic grains as their size is decreased
for both even and odd numbers of electrons. This occurs when the average level spacingd is of the
same order as the BCS order parameterD. The energy levels of these grains are randomly distributed
according to random matrix theory, and we must work statistically. We find that the average value
of the critical level spacing is larger than that for the model of equally spaced levels for both parities,
and derive numerically the probability densitiesPo,esdd that a grain of mean level spacingd shows
pairing. [S0031-9007(96)01831-5]

PACS numbers: 74.80.Bj, 71.23.–k, 73.20.Dx
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A recent experiment by Black, Ralph, and Tinkha
(BRT) [1] involving the observation of a superconductin
gap in ultrasmall Al grains (of size between 5 and 13 n
has led to the reconsideration of an old but fundame
theoretical question—how small can a superconductor
It is also of interest that in a previous experiment [2] on
smaller Al grain, the same group saw no sign of a gap
though, as they noted, there are experimental difficultie
observing an energy gap of similar magnitude to the av
age level spacing). von Delftet al. [3] have considered
a simple mean-field model for such a grain which us
the standard BCS pairing interaction and assumes e
level spacing for analytical simplicity. Even-odd parity e
fects [4,5], which can be seen in samples at least104 times
larger [6,7], and are of paramount importance here, are
cluded in their model. They find that the superconduct
gap at zero temperature should cease at critical level s
ing do

c ­ 0.89Ds0d in odd grains, andde
c ­ 4do

c in even
grains, whereDs0d is the zero-temperature bulk gap. Th
also note that although the mean-field result is subjec
several types of correction, it does give a criterion for wh
pair correlations will cease to exist. It is therefore surpr
ing that in the data of BRT from sample 4, an odd gra
that a gap is still seen although the sample is very cl
to the odd critical level-spacing. We also note that BRT
data shows no variation of the gap with level spacingd,
suggesting that their samples are still on the flat part of
Dsdd curve.

In this paper we consider the effect on the mean-fi
theory of relaxing the condition of equal level spacin
It is by now well known that the level spacing in sma
metallic grains is the Wigner-Dyson (WD) distributio
[8] obtained from random matrix theory (RMT) [9]. Thi
was first conjectured by Gor’kov and Eliashberg [10], a
later proved by Efetov [11]. The reason for consideri
this effect is that most of the other corrections to me
field theory seem to lead to a reduction indc; on the other
hand, level statistics effects lead to larger values ofkdcl,
as we shall see.
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The first thing we shall do is to reproduce the resu
of von Delft et al. [3] for do

c and de
c . We do this to

demonstrate how the positioning of the energy lev
enters into the calculation, and how this leads to the fac
of 4 in the resultde

c ­ 4do
c . Our starting point is the

mean-field self-consistency equation

1
l

­ d
X

jij,vcyd

1
2Ei

s1 2 2fid , (1)

where Ei ­
p

sei 2 md2 1 D2, with ei the ith energy
level, m the chemical potential,vc the Debye energy,
d the level spacing, andl the BCS interaction. The
occupation factorfi differs for even or odd parity
ensembles

fi ­
f1

i Z1 6 f2
i Z2

Z1 6 Z2

, (2)

where f6
i ­ 6sebEi 6 1d21 and Z6 ­

Q
s1 6 e2bEi d.

We will work at zero temperature, so thatfi ­ 1y2 if
the chemical potential lies on a level, and zero otherwi
In the case of equal level spacing the chemical poten
lies halfway between the last filled and first empty leve
in the even case, and on the half-filled level in the o
case, as shown in Fig. 1. For the case of the critical le
spacing, the solution hasDsT ­ 0d ­ 0, so that one has

1
l

­
vcyde

cX
i­1

1
i 1 1y2

;
1
l

­
vcyd0

cX
i­1

1
i

. (3)

These can be rewritten in terms of the digamma funct
to yield

1
l

­ csvcyde
c d 2 cs1y2d ø lnsvcyde

c d 2 cs1y2d,

1
l

­ csvcyd0
c d 2 cs1d ø lnsvcydo

c d 2 cs1d. (4)

Finally, since we know thatcs1d ­ 2g, cs1y2d ­
2g 2 2 ln 2, whereg is the Euler-Mascheroni constan
© 1996 The American Physical Society
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FIG. 1. The positioning of the chemical potential relative
the electronic energy levels in a superconducting grain w
(a) an even number of electrons; (b) an odd number
electrons. In the even case the chemical potential lies half
between the last filled and first empty level; in the odd cas
lies on the half-filled level. Although illustrated for the equ
level spacing case, the same occurs for randomly spaced le

it follows that

do
c ­

1
4 egvce21yl ­

1
2 egDs0d

ø 0.89Ds0d; de
c ­ 4do

c . (5)

We see that the factor of4 betweende
c anddo

c comes from
the fact thatcs1d 2 cs1y2d ­ 2 ln 2, and thus ultimately
from the positioning of the chemical potential relative
the energy levels. Furthermore if we write this out a
series for2 ln 2,

2 ln 2 ­ cs1d 2 cs1y2d ­

µ
2
1

2
2
2

∂
1

µ
2
3

2
2
4

∂
1

µ
2
5

2
2
6

∂
1 . . . , (6)

we see that only a few terms are needed before we
close to the final answer. In other words, the value of
particular factor is determined by a few energy levels n
to the Fermi surface.

Let us now see how we can extend the above appro
to the case of nonequally spaced energy levels. Cons
first the odd case, so that the chemical potential lies on
half-filled levele0. The gap equation can then be writt
as

1
l

­ d
X

i

1

2
p

sei 2 e0d2 1 D2

­
Z vc

2vc

dv

2
p

v2 1 D2
d

X
i

dsv 2 ei 1 e0d. (7)

We can then take the average of this equation over
disorder ensemble, so that all the statistical informat
about the level spacing occurs in the average over the
of delta functions. This can be related to the two-le
correlation function (TLCF) of the system as follows. T
th
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TLCF is defined by

Rse 2 e0d ­ d2

øX
i,j

dse 2 eiddse0 2 ejd
¿

. (8)

Since this is a function only of the energy differenc
e 2 e0, we may sete0 ­ 0 to obtain the result

Rsed ­ d2

øX
i,j

dse 2 eiddsejd
¿

­ d2

øX
i,j

dse 2 ei 1 ejddsejd
¿

ø d

øX
i

dse 2 ei 1 e0d
¿

. (9)

The averaged odd-gap equation can finally be written

1
l

­
Z pvcyd

0

dxp
x2 1 spDydd2

Rsxd, (10)

where x ­ pvyd. Since the system has time-revers
invariance, the TLCF given by RMT is that for th
orthogonal ensemble [9],

Rsxd ­ 1 2
sin2 x

x2
2

d
dx

µ
sinx

x

∂ Z `

x
dt

sint
t

, (11)

and the average critical level spacingkdo
c l is then the

solution of

1
l

­
Z pvcyd

0

Rsxd
x

. (12)

This integral can then be performed analytically to give

kdo
c l ­ peg1p2y1627y4Ds0d ­ 1.80Ds0d , (13)

and we see that the average odd critical level spacing
factor2 larger than in equal level spacing model.

Next let us consider the even case. The chem
potential is now halfway between the last filled lev
e0, and the first filled level,e1. It follows that the gap
equation can now be written in the form

1
l

­ d
X

i

1

2
q

sei 2
e01e1

2 d2 1 D2
, (14)

where the sum overi includes bothe0 ande1. For ei not
equal toe0 or e1, we can rewrite

ei 2
e0 1 e1

2
­ sei 2 e1d 1

e1 2 e0

2
. (15)

We know from the odd case that the distribution of t
ei 2 e1 is described by the TLCF,Rsxd. The distribution
of the e1 2 e0 is given by the nearest level spacin
distribution, Ps yd. There is no analytic expression fo
Ps yd, but it is well approximated by the “Wigner surmise
[9],

Ps yd ­
y

2p
e2y2y4p , (16)
4963
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wherey ­ pse1 2 e0dyd. Let us now assume that th
distributions of ei 2 e1 and e1 2 e0 may be treated
independently. The actual distribution function we ne
is a three-level function fore0, e1, and ei , but such a
function is not discussed in the RMT literature. T
equation for the critical level spacing,de

c , is then

1
l

­
Z `

0
dy Ps yd

2p

y

1
Z pvcyde

c

0
dx

Z `

0
dy

RsxdPs yd
x 1 yy2

, (17)

where the first term comes from the levelse0 and e1,
which have to be treated separately, and the second
comes from all other levels. Note that if we were
replace the denominatorx 1 yy2 by x in the second term
we should recover the odd integral. It follows that
should evaluate the difference between the second
and the odd integral, from which we obtain the result

kde
c l ­ expsp 2 2Iypd kd0

cl, (18)

whereI is the integral

I ­
Z `

0
dt t2e2t2p

Z `

0

1
xsx 1 td

3

∑
1 2

sin2 x
x2 1 sisxd

d
dx

µ
sinx

x

∂∏
. (19)

This integral cannot be performed analytically, and has
numerical valueI ø 1.7343. We can therefore summa
rize the results for the mean critical spacings in terms
the bulk BCS gapDs0d or the critical spacing for equidis
tant levels in odd grainsdo

c by

kdo
c l ­ 1.80Ds0d ø 2.0do

c ,

kde
c l ­ 7.67kdo

c l ø 15.5do
c . (20)

We see that the consideration of level statistics not o
makes both the odd and even critical level spacings lar
it also increases the ratio between them. The reason
this is that both the individual gap equations, and
difference between the gap equations, involve the inv
of energy level spacings. The fluctuations to smaller le
spacings are thus weighted more than those to larger
average level spacings, i.e.,k1ydEl . 1ykdEl.

In the analytic discussions above we have evaluated
mean value of the critical level spacing. We note that
mean is only one statistical measure of a probability
tribution, and may not actually be the one we want.
would therefore like to look at the probability distrib
tionsPo,esdd of there being a superconducting gap in od
and even grains with average level spacingd. We might
imagine an experiment in which many grains of the sa
nominal size are produced and examined for the pres
of a superconducting gap; the experimental results w
then yieldPe,osdd. To obtainPe,osdd we proceed numeri
4964
d

e

rm
o

e
rm

he

of

ly
er,
for
e
se
el
an

the
e

s-
e

s

e
nce
ld

cally, obtaining sets of energy levelsheij by diagonalizing
N 3 N random matrices. Since the eigenvalues produ
have a semicircular density of states [9],

rsed ­
1
p

p
2N 2 e2 us2N 2 e2d , (21)

whereusxd is the Heaviside function, we use the rescali

e !
1

2p
f2N sin21sey

p
2Nd 1 e

p
2N 2 e2g (22)

to obtain eigenvalues with average spacing unity [1
From the gap equations we see that the criterion
a grain to have a nonzero superconducting gap is
energies now in units ofd)

1
l

,
X

jei 2mj,vcyd

1
2jei 2 mj

, (23)

wherem ­ e0 in the odd case, andm ­ se0 1 e1dy2 in
the even case. As in the analytical calculations,d enters
only in the upper cutoffvcyd. We choose the value
l ­ 0.193 corresponding tovcydo

c ­ 100 in the equal
level spacing case, andd is measured in units of thisdo

c .
For d points from 0.5 to 1.0 we use 1000 realizations
500 3 500 matrices; ford points from 1.0 to 4.0 we use
1000 realizations of300 3 300 matrices; and ford-points
from 4.0 to 20.0 we use 10 000 realizations of100 3 100
matrices. We note that for largerd, where we need more
realizations to get good statistics, we are fortunate
that we require smaller matrices. The results are sho
in Fig. 2.

We see that for both odd and even cases there
significant chance of superconductivity persisting beyo

FIG. 2. The probability densitiesPe,osdd of a metallic grain
with mean level spacingd, and an even (1 symbols) or
odd (3 symbols) number of electrons, having a nonze
superconducting energy gap.d is measured relative tod0

c ­
0.89Ds0d, the critical level spacing for the equidistant mod
with an odd number of electrons.
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the critical level spacings deduced from the equal lev
spacing model. Both curves also show long tails whi
we believe are due to the nonzero probability of findin
two levels very close together. These long tails make
hard to estimate the mean value of the critical spaci
from the numerical data—though it is worth noting tha
Fig. 2 is quite consistent with the analytic results
Eq. (20). The long tails also imply that the mean
perhaps not the best measure for a typical critical spaci
If instead we use the value ofd wherePsdd ­ 0.5, we
get about1.7do

c for the odd case, and6.5do
c for the even

case. So, using this measure we recover a factor of or
4 between the two critical spacings.

Let us now discuss the implications of the abov
calculation for experiment. First let us ask the questi
of what the BRT experiment actually measures for t
cases of even and odd grains. In both these cases, s
an electron tunnels onto and then off the island, t
result involves some sort of comparison between o
and even states. So do we see the odd gap, even
or some mixture thereof? We will always work in th
zero-temperature limit, which is effectively where th
experiment is performed. Consider the case of the ev
grain. The lowest state an electron can tunnel into is t
first unoccupied level, so the energy cost should be
energy difference between ground states of the syst
with 2N and 2N 1 1 electrons. From theT ­ 0 limit
of Eq. (4.9) of Ref. [4], this is given by

Es2N 1 1d 2 Es2Nd ­ m 1 D . (24)

To see whichD is involved, note thatD arose from
formulas (2.19) of Ref. [4] which give

Vo 2 Ve ­
1
b

ln

µ
Z1 1 Z2

Z1 2 Z2

∂
­

1
b

ln

µ
1 1 s1 2 2Neffe2bDe d
1 2 s1 2 2Neffe2bDo d

∂
. (25)

At zero temperature we see that it is the odd gap,Do , that
is measured.

For the case of an odd grain, the lowest state for t
electron to go into is the singly occupied state, and w
measure the energy difference

Es2N 1 2d 2 Es2N 1 1d ­ m 2 Do . (26)
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It follows that the lower branch of the odd grain curv
should be the mirror image of the even grain curve,
that Do appears in experiments on both even and o
grains. We note that the first excited state of an o
grain is obtained by putting the extra electron into the fi
unoccupied state, thus giving a state with two unpai
electrons. This should have an energy roughly2D above
the ground state, but the evaluation is complicated
the quasiparticles reducing the phase space for pai
correlations [13].
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