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Effect of Level Statistics on Superconductivity in Ultrasmall Metallic Grains
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We examine the destruction of superconducting pairing in metallic grains as their size is decreased
for both even and odd numbers of electrons. This occurs when the average level spéiafythe
same order as the BCS order parameter The energy levels of these grains are randomly distributed
according to random matrix theory, and we must work statistically. We find that the average value
of the critical level spacing is larger than that for the model of equally spaced levels for both parities,
and derive numerically the probability densiti€s.(d) that a grain of mean level spacintj shows
pairing. [S0031-9007(96)01831-5]

PACS numbers: 74.80.Bj, 71.23.—k, 73.20.Dx

A recent experiment by Black, Ralph, and Tinkham The first thing we shall do is to reproduce the results
(BRT) [1] involving the observation of a superconductingof von Delft et al.[3] for d2 and d¢. We do this to
gap in ultrasmall Al grains (of size between 5 and 13 nm)demonstrate how the positioning of the energy levels
has led to the reconsideration of an old but fundamentanters into the calculation, and how this leads to the factor
theoretical question—how small can a superconductor bedf 4 in the resultd¢ = 4d?. Our starting point is the
It is also of interest that in a previous experiment [2] on amean-field self-consistency equation
smaller Al grain, the same group saw no sign of a gap (al- ! )
though, as they noted, there are experimental difficulties in —=d Z
observing an energy gap of similar magnitude to the aver- A lil<w./d 2E;
age level spacing). von Del#t al. [3] have considered
a simple mean-field model for such a grain which usesvhere E; = /(e; — u)? + A2, with ¢; the ith energy
the standard BCS pairing interaction and assumes equkgvel, u the chemical potentialw. the Debye energy,
level spacing for analytical simplicity. Even-odd parity ef- d the level spacing, and the BCS interaction. The
fects [4,5], which can be seen in samples at lé&stimes ~ occupation factorf; differs for even or odd parity
larger [6,7], and are of paramount importance here, are inrensembles
cluded in their model. They find that the superconducting i -

P frz, = fiz-
gap at zero temperature should cease at critical level spac- fi="—">+""
ing d° = 0.89A(0) in odd grains, andi¢ = 44? in even Zy £ Z-
glralns, whehre&(ol)rl]s th(er]z?]ro—tempefra':gre bUIlk gap.bTheywhere FE = +(ePE = 1)) and Z. = [](1 + e BE),
also note that although the mean-field result is subject tQy i \york at zero temperature, so that = 1/2 if
several types of correction, it does give a criterion for Wher{he chemical potential lies on a level, and zero otherwise.

pair correlations will cease to exist. Itis therefore surpris-ln the case of equal level spacing the chemical potential
ing that in the data of BRT from sample 4, an odd grainyieg halfway between the last filled and first empty levels

e : ,
. X h the even case, and on the half-filled level in the odd
to the odd critical level-spacing. We also note that BRT Scase, as shown in Fig. 1. For the case of the critical level

data Sh(.)WS no variation of the 9ap with level spacihg spacing, the solution has(T = 0) = 0, so that one has
suggesting that their samples are still on the flat part of the e a0
w./d 1 w./d; 1
-

(1 =2fi), 1)

: (2)

A(d) curve. 1 1

In this paper we consider the effect on the mean-field P Zi P+ 1/2; P Zl
theory of relaxing the condition of equal level spacing. . .
It is by now well known that the level spacing in small These can be rewritten in terms of the digamma function
metallic grains is the Wigner-Dyson (WD) distribution to yield
[8] obtained from random matrix theory (RMT) [9]. This
was first conjectured by Gor’kov and Eliashberg [10], and
later proved by Efetov [11]. The reason for considering
this effect is that most of the other corrections to mean-
field theory seem to lead to a reductiondy on the other
hand, level statistics effects lead to larger valuesdp}, Finally, since we know thaty(l) = —y, ¢(1/2) =
as we shall see. —y — 2In2, wherevy is the Euler-Mascheroni constant,

3)

= = Ploc/d9) = p(1/2) = e /dS) = 9(1/2),
1

y Yo /d)) = ¢(1) = In(w./d?) — ¢(1).  (4)
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- I d - TLCF is defined by

R(e — €') = d2<z (e — €)6(e' — ej)>. (8)

i,j

l’l‘ ..................
Mo | Since this is a function only of the energy difference,
€ — €', we may sek’ = 0 to obtain the result

R(e) = d2<z S(e — Ei)5(5j)>
ij

(a) (b) - d2<z5(f —€& t 6j)5(6j)>

i,j

FIG. 1. The positioning of the chemical potential relative to ~ d<Z 6(e — € + 60)>- (C)]
the electronic energy levels in a superconducting grain with i

(@ an even number of electrons; (b) an odd number o . . .
electrons. In the even case the chemical potential lies halfwa he averaged odd-gap equation can finally be written as

between the last filled and first empty level; in the odd case it 1 ww./d dx
lies on the half-filled level. Although illustrated for the equal — = R(x), (20)
level spacing case, the same occurs for randomly spaced levels. A 0 Va2 + (wA/d)?

wherex = ww/d. Since the system has time-reversal
it follows that invariance, the TLCF given by RMT is that for the
orthogonal ensemble [9],

iy 1 - S5 (s [

x2 dx \ x

We see that the factor éfbetweend¢ andd? comes from and the average critical level spacig?) is then the

the fact thaty(1) — ¢(1/2) = 2In2, and thus ultimately solution of

from the positioning of the chemical potential relative to 1 fm(./d R(x)
. —.

1

d° =3¢’ wee V= %eVA(O)

~ 0.89A(0); d¢ = 4d’. (5)

the energy levels. Furthermore if we write this out as a - = (12)

A
This integral can then be performed analytically to give

series for2In 2, *

2 2
22 =) = w172 = (§ - 3) (2) = wer TN 0) = 180A),  (13)
+ (3 _ 2) + <£ _ E) +..., (6) and we see that the_ average odd criti(;al level spacing is a
3 4 5 6 factor2 larger than in equal level spacing model.

we see that only a few terms are needed before we are NexF lle_t us corr:s;gsr thbe even Cﬁsel' Trf'.ﬁ ghlemuial
close to the final answer. In other words, the value ofthisPOtent'a Is now haltway between the last filled level,

particular factor is determined by a few energy levels neafo: @nd the first filled levele,. It follows that the gap
to the Fermi surface. equation can now be written in the form

Let us now see how we can extend the above approach 1 1
i —=d> .1
to the case of nonequally spaced energy levels. Consider A ‘ e, 5
first the odd case, so that the chemical potential lies on the ! 2\/(61' -7 P +A

half-filled level ;. The gap equation can then be written yhare the sum oveirincludes bothe, ande;. Fore; not

as equal toeg or €;, we can rewrite
1 1 €+ € €1 — €
- = d i = i + . 15
A Z 2/(ei — €)? + A2 ¢ 2 (& — ) 2 (15)
o, do We know from the odd case that the distribution of the
= f_ mdz 0(w — € + €). (7) € — € isdescribed by the TLCRR(x). The distribution

of the €; — ¢y is given by the nearest level spacing
We can then take the average of this equation over thdistribution, P(y). There is no analytic expression for
disorder ensemble, so that all the statistical informatiorP (), butitis well approximated by the “Wigner surmise”
about the level spacing occurs in the average over the suffll,

of delta functions. This can be related to the two-level

Y yam
correlation function (TLCF) of the system as follows. The P(y) = eyl s (16)

4963



VOLUME 77, NUMBER 24 PHYSICAL REVIEW LETTERS 9 BCEMBER 1996

wherey = 7(e; — €p)/d. Let us now assume that the cally, obtaining sets of energy levels;} by diagonalizing
distributions of ¢; — €; and €; — ¢y may be treated N X N random matrices. Since the eigenvalues produced
independently. The actual distribution function we needhave a semicircular density of states [9],

is a three-level function fokq, €;, and ¢;, but such a |

function is not discussed in the RMT literature. The p(e) = —V2N — €2 02N — €?), (21)
equation for the critical level spacind;, is then ™

{ " 5 whered(x) is the Heaviside function, we use the rescaling

v

3 [ dy P(y) —
0 y

€— ZL[ZNSinfl(e/\/W) + eV2N — €2] (22)

mod 0% ROP(y) T | -
+ f dx[ dy ———=, (17) to obtain eigenvalues with average spacing unity [12].

0 0 x+y/2 From the gap equations we see that the criterion for
where the first term comes from the levals and €;, a grain to have a nonzero superconducting gap is (all
which have to be treated separately, and the second teremergies now in units of)
comes from all other levels. Note that if we were to
replace the denominatar + y/2 by x in the second term 1 < _
we should recover the odd integral. It follows that we A lei—pl<w./d 2le; — ul
should evaluate the difference between the second term

and the odd integral, from which we obtain the result ~ Whereu = ¢, in the odd case, and = (e + €1)/2 in
the even case. As in the analytical calculatiah®nters

(d®) = exp(m — 2I/w){d°), (18)  only in the upper cutoffo./d. We choose the value
A = 0.193 corresponding taw./d? = 100 in the equal
level spacing case, antlis measured in units of thig?.
P 1 For d points from 0.5 to 1.0 we use 1000 realizations of
1= /;) dite ]0 xx + 1) 500 X 500 matrices; ford points from 1.0 to 4.0 we use
_ _ 1000 realizations 0300 X 300 matrices; and for-points
« [1 _ sirx N si(x)i<w>} (19) from 4.0 to 20.0 we use 10 000 realizations166 X 100
x2 dx ' matrices. We note that for large;, where we need more
éealizations to get good statistics, we are fortunate in
that we require smaller matrices. The results are shown
in Fig. 2.
We see that for both odd and even cases there is a
significant chance of superconductivity persisting beyond

. (23)

wherel is the integral

This integral cannot be performed analytically, and has th
numerical valuel = 1.7343. We can therefore summa-
rize the results for the mean critical spacings in terms o
the bulk BCS gap\(0) or the critical spacing for equidis-
tant levels in odd graing? by

(d?) = 1.80A(0) = 2.0d°, 1.0

‘;...llllllll’llllllllk

(d®)y = 7.67(d%) ~ 15.5d° . (20)

We see that the consideration of level statistics not only 0.8
makes both the odd and even critical level spacings larger,
it also increases the ratio between them. The reason for

this is that both the individual gap equations, and the - 06 ,
difference between the gap equations, involve the inverse ': ““"x
of energy level spacings. The fluctuations to smaller level 04 T

spacings are thus weighted more than those to larger than

T T | T T T | T T T T I T T 7T | T
[ .4 | I I
[ PE I ] L1 1441 I 1

average level spacings, i.€l/6E) > 1/(SE). ) B
In the analytic discussions above we have evaluated the 0.2 .
mean value of the critical level spacing. We note that the =
mean is only one statistical measure of a probability dis- MWWWW
tribution, and may not actually be the one we want. We 0.00 e £|> S |1|ol — '15' — '20

would therefore like to look at the probability distribu-

tions P, .(d) of there being a superconducting gap in odds
and even grains with average level spacihgWe might  FIG. 2. The probability densitie®, ,(d) of a metallic grain
imagine an experiment in which many grains of the samdith mean level spacing/, and an even £ symbols) or

4 . d odd (X symbols) number of electrons, having a nonzero
nominal size are produced and examined for the Presen@perconducting energy gapd is measured relative ta® =

of a superconducting gap; the experimental results woulg.g9A(0), the critical level spacing for the equidistant model
then yieldP, ,(d). To obtainP, ,(d) we proceed numeri- with an odd number of electrons.

Mean level spacing d/d,°
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the critical level spacings deduced from the equal levelt follows that the lower branch of the odd grain curve
spacing model. Both curves also show long tails whichshould be the mirror image of the even grain curve, so
we believe are due to the nonzero probability of findingthat A, appears in experiments on both even and odd
two levels very close together. These long tails make igrains. We note that the first excited state of an odd
hard to estimate the mean value of the critical spacingrain is obtained by putting the extra electron into the first
from the numerical data—though it is worth noting thatunoccupied state, thus giving a state with two unpaired
Fig. 2 is quite consistent with the analytic results inelectrons. This should have an energy roughlyabove
Eq. (20). The long tails also imply that the mean isthe ground state, but the evaluation is complicated by
perhaps not the best measure for a typical critical spacinghe quasiparticles reducing the phase space for pairing
If instead we use the value aof where P(d) = 0.5, we  correlations [13].
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