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Van der Waals Attraction of Vortices in Anisotropic and Layered Superconductors
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We show that in anisotropic and layered superconductors the fluctuations of vortex lines produce an
attractive long-range vortex-vortex interaction of the van der Waals type. This attraction follows from
the anisotropic screening properties of the material and has profound consequences for the low-field
phase diagram of these materials. [S0031-9007(96)01803-0]

PACS numbers: 74.60.Ec, 74.60.Ge

It is general knowledge that vortices in type Il super-masses parallel and perpendicular to dieplane. The
conductors repel one another on all scales [1]. The reanisotropy parameter quantifies the Josephson coupling
pulsion follows a logarithmic law on distances< A and  between the layers of the anisotropic material. Whereas
decays exponentially on scales> A, where A denotes currents flowing within theab planes are screened on
the magnetic penetration depth. This result remains trua scaleA, the out-of-plane currents decay only on the
in the presence of thermal (or quantum) fluctuations ofonger scaler/e. Placing two vortices parallel to the
the vortex lines as long as the material is isotropic. In araxis at a distanc&, a fluctuation in vortex again in-
anisotropic or layered material, however, fluctuations produces a “counterfluctuation” in vortex with the trans-
duce an attractive long-range interaction beyond the scaleerse parts of the vortex lines attracting one another within
A. This long-range attraction is of the van der Waals typehe distanceR < A/es. Within the rangeA < R < d/¢
and leads to a variety of interesting novel phenomena iid denotes the layer separation), the Josephson coupling is
dilute vortex systems. In this Letter, we derive the van deirrelevant and the van der Waals interaction follows the be-
Waals type attractive force between vortices in anisotropitavior of the uncoupled syste,qw = 1/R*. At larger
and layered superconductors and investigate the phasiéstances//e < R < A/e, thec-axis currents are relevant
diagram of the dilute vortex system, comprising a first-and the interaction drops fastéfqw > 1/R>. For strong
order transition at., and new generic van der Waals vor- coupling withd /e < A, only the latter regime survives.
tex solids and liquids. The work has been inspired by the It is quite instructive to compare the van der Waals
study of Brandt, Mints, and Snapiro [2] of the fluctuation- attraction between vortices in anisotropic superconductors
induced attraction of vortices to surfaces. with the fluctuation-induced attraction between neutral

The occurrence of a van der Waals type attractive forcatoms. The latter decays on short distances with the
between vortex lines is most simply illustrated in an ex-famous1/r® power law, turning into a /7 behavior at
tremely layered superconductor with no superconductingarge distances when retardation effects come into play
coupling between the layers: Consider two straight vor{3]. The changeover from a/R* to a 1/R> behavior
tices1 and?2 at a distanceR. Displacing an individual in the vortex system is an analogous effect. This can
pancake vortex in the stadkby u; is equivalent to plac- be most simply understood when the vortex problem
ing a pancake—antipancake pair, i.e., a pancake diole is mapped onto the imaginary time quantum problem
onto the vortex line. The pancake dipale induces a of charged bosons, see Refs. [4] and [5]. The vortex-
second dipolel, in vortex 2 within the same layer. With vortex interaction then turns into a nonlocal in time
two pancakes interacting logarithmically within the sameinteraction between the bosons, and th&> behavior
layer, the force from dipold; acting on vortex follows is a consequence of the corresponding retardation effects.
a 1/R? law, henced, « d,/R*. Finally, the interaction Whereas the usual van der Waals interaction between
potential between two vortex dipoles followslaR? be-  atoms is due to (longitudinal) electric dipole fluctuations,
havior as well and we obtain a long-range attractive poin the vortex problem the interaction is of a transverse
tential Vygw = 1/R* between the vortex segments. The nature with current fluctuations generating the force. Such
initial fluctuationd; can be induced thermally or, at low a transverse van der Waals force also exists for the atomic
temperatures, quantum mechanically. problem; however, it involves the small parametéy c?.

In an anisotropic material the same mechanism is aln the charged boson problem the effective velocity of
work with slight modifications. Crucial for the under- light is smaller, and the corresponding velocity ratio
standing of the effect are the different screening propertiesquared is of the order of the two-dimensional (2D)
of the material parallel and perpendicular to the axis ofGinzburg number. In the following we determine the van
anisotropy, ther axis. Lete?> = m/M < 1 denote the der Waals force between two vortices and then discuss the
anisotropy of the material, witlm and M the effective low-field phase diagram in layered superconductors.
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Consider two parallel flux lines directed along thaxis  do not change the form of the interaction. The transverse
and separated by a distarRe Within the London approxi- term (F, ), vanishes, except for the situation where the
mation, the functionalF providing the configurational vortex is close to a surfaclz; in this latter case this
energy of the two vortices takes the form [5] first-order term describes the van der Waals type long-

ZI . range attraction of the vortex to the surface [2]. We will
Flsl= > > ] dsuads,p Vap(sy —s,). (1) comment below in more detail on this situation.

pr=l The second-order term i, again renormalizes the
Here,s, =r, + u,(z), » = 1,2, denote the positions repulsive interaction between the vortices but does not
of the two vortices, withn,(z) the fluctuating parte. =  produce a long-range component. On the contrary, the

(®./47 A)* the basic energy scale, aﬁd‘,& the interaction term (1), produces a long-range attraction between the
between two vortex segments, for an isotropic material/ortices, thus providing the van der Waals potential

ij‘g(r_) = Oap exp(—r/A)/r. Ina lfniaxialjy anisotropic  AFLF
material with the crystal axig || z, the interaction is Viaw(R) = — “orL 9)
conveniently expressed through its Fourier representation . .
Pr To lowest order in the displacements,
Vap(r) = 4mA* | —— e™ViL(k) () ®2 [ Pk . A
ap 3 ap > _ ¥o o iKR
(2m) Fo=- anp ta(—k)tap(k;)Vap(k)e ™%,  (10)
) o~ (EK )
Vi(k) = ———
ap 1 + A2k2 DAL dk -
. FiFo = oo [ SEVERRKPE®EDE, QD)
x| s . ()lc — A )KJ_aKJ_B (3) 641 2
P+ N+ (A2 - K| where we have defined the partial Fourier transform
Here, K = (k,,k,) and K, = (k,,—k,). We choose - B a’K .. KR
rr = (R,z1),r2 = (0,0, z2), and definels = tdz with the Vap(R. ke) = (2m)? ap (K. k)e ™, (12)

tangential vectot = [d,u(z), 1]. The energy is split into

— I/ / —
the self-energy parf, with . = v, and an interaction part and we have usedia(—k:)rp(k:)ta(—k)12p (k2o =

Fo With o # v, 27L&k, — kL) a8 pp(t2 (k,))5/4. -
P2 P We first concentrate on the decoupled limgit— 0.
Fnt = — —— dzidz Using (3) in the limite — 0, the partial Fourier transform
47 (27) (12) takes the form [we usR = (R > A,0)]
X [VEUK) + t1a(z1)t2p(z2) Vig (K)] . 1 1 -
e B b VIR k) = — —— ———— ~ —VI"(R,k,), (13)
X o KR+ (z1)~ua(20)] yik:(21—22) (4) xx 2mR2 1 + )t2k12 »y

We determine the interaction between the vortices usingyhere we have dropped a small correctioaxp(—R/\)
conventional statistical mechanics techniques to accoumy the second equation (the mixed terig' and V}ig‘

for the fluctuations. With the partition function, vanish). The single vortex fluctuation amplitude
Z(R) = f Dlui(z)]D[uz(z)]exd—F(R)/T], (5) (k) = % (14)
€K,

the free energy takes the form (up to a constant) is determined by the line elasticity;(k,); in the de-
F(R) = =TInZ[R) = —T In{exd — Fint(R)/T )0, (6) coupled limit, &;(k;) = (e./2A%k2)In(1 + A%k2), i.e.,
where the average- -) is taken with the self-energy term only the electromagnetic coupling producing a strongly

JFo describing the noninteracting vortices. Performing adispersive line tension is relevant. Combining the above
cumulant expansion in (6) the expression for the effectiveelements, we arrive at the final expression for the van der

vortex-vortex interaction takes the form Waals potential in thelecoupled limit
LVest(R) = (Findo — U Fado — (Fus)/2T . (7) Vi (R) = — g6 L(i)“ (15)
Here, L denotes the sample dimension along the field vaw IN*>(A7/d) de.\R /)~

direptionl. _Wehsplit the infteraction intoda longitudinal term  \y/a turn to the continuous anisotropic case wth- 0.
Fi [involving t e termV;. in Eq. (4)] and a transverse part 11,4 partial transform (12) now reads
Fi [tiat2pVap INEQ. (B)], Fine = F + F1. To lowest

order inu,, the term(fj)o provides the usual mean-field- y/int _ (=1) & K <8R 1+ A2k2 A) 16

type expression for the vortex-vortex interaction, 2R A1+ A2 ! ¢/4). (16)
(0) . . . .

Vert (R) = 2&.Ko(R/A), (8)  with K, the first-order modified Bessel functiok; (z —

with K, the zero-order modified Bessel function. Higher0) ~ 1/z, Ki(z > 1) ~ /7 /2z exp(—z). Again, V' =~
order expansions in, only renormalize the prefactor but —V¥' up to a small correction. Within the regime
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A < R < d/e the expression (16) reduces to (13), andrenormalized lower critical field. The free energy den-
the van der Waals potential remains unchanged. On thgity F is composed of an interaction tery2)V, (a.)/a>
other hand, forA,d/e < R, the Bessel functiork; cuts  and an entropic contributior T[S; — S, (a.)]/a2. Here,
off the k, integral atl/eR, and we obtain the result for 4, = \/®,/B denotes the distance between the flux lines

the continuous anisotropicase (see Ref. [6]) andz is the number of nearest neighbarss= 6 in a trian-
(—e.) T A d gular lattice. .The vortex-vortex interaction, is the sum
W To. R4 A<R<< p of the.repulswe ternﬁsoK_o(ao/)L). [see Eg. (8)] and' the
Viaw = (=37 /32)e OT It J A attractive van der Waals interactior2e .y, (A/a.) with
. ° L LS <RrR< & Yo = [37/64In*(m\/ea.)](T/ee.A) [see Eq. (17); this
In*(mA/eR) eAeo R & & approximation underestimates the attraction in the dilute

(17) case]. The entropic term consists of an irrelevant single
vortex contributionS;, which does not depend on the
vortex density and merely renormalizes the lower criti-
cal field H: — H[ . The second tern§,(a,) describes
éhe reduction of the line entropysS; due to the confine-
ment of an individual vortex within the cage set up by its

The van der Waals attraction involves largevalues and
thus derives from distance$z; < d and 6z < eR < A

on small(A < R < d/e) and large(A, d/e < R) vortex
separations, respectively. Also note that, throughout th

:jeognlwneaﬁ;cf b;// tf\lé ;elc{ri))r\]’q;gies':incgcl:%l\jglritr?; elasticity is neight_)ors [4]. Mal_<ing use of the equivalence between the
We briefly discuss the van der Waals attraction of anStatlSt'CEil mechanics of lines and the quantum m.echan-

individual vortex 1 to a parallel surface, which we choose'®S of 2D bosons [4], we have to calculate the binding

to be theyz plane. The vortex 2 then represents the

mirror image of vortex 1, and hence = (—R,0, 2»),

u, = (—uy, uiy). The van der Waals potential originates

from the transverse interaction

2L [ dk, . :

= ° 7z th _ V{nt 12 k 18
<TL>0 167T ] 277_ [ XX yy ]< ( Z)>O ( )

[we have usedt,(—k.)tra (k)Y = =L{t*(k.))/2 and
have included a minus sign to account for the opposite
circulation of the image vortex]. In the decoupled limit
the van der Waals surface attraction takes the form

s,dc _ &, T i)z
Viaw(R) = In(A7r/d) d80<R ’ (19)
where we have made use of (13). For finite coupling
e > 0 we use the partial transform (16) and arrive at

0 | Bao Buo :
—&,/2 T A A
Siw = (—&./2) /\’i <R < — (20) oy T T T T T
& & )

In(rA/eR) eAeo, R3’
. FIG. 1. Low-field phase diagram for a layered superconduc-
[fqr short distancest < R < d/s, the result (19) ap- tor. Parameters ap?)ropriate f%rZBiZCqCUZOZ have bepen used
plies]. The results (19) and (20) differ from those ob-(x = 1800 A, = 1/300,c; = 0.3, see Ref. [7]). Continuous
tained in Ref. [2], where no thermal van der Waals typdines denote first-order transitions (note the associated jumps in
vortex-surface attraction has been found. The origin of); the dashed line is a second-order transition. At low tem-
the discrepancy can be traced back to the different agperatures’” < T, Tuy, the MO phaséBuo) becomes unstable

. . wards a vortex solidB > B,) at H., < H! . At the tem-
proaches taken in Ref. [2] and here: Whereas Bran eratureT, a new vortex gas phase appears at low densities

et al. determine the energy of the vortex as it approachegg < p,), rendering the MO phase unstablerat > H’ . At
the surface, we derive the van der Waals potential from a higher magnetic field., > H,, a transition to a_spli’d phase
calculation of thefree energy The entropic contribution takes place(B > B,). The latter melts at,,, giving way

to the free energy then produces a nonvanishing vortex? @ sliver of vortex liquid in the high-density region above
surface attraction ». At temperatureg’ > T,. larger than critical, we can no

. longer distinguish between the low-density vortex gas and the
~ The appearance of an attractive van der Waals typgigh-density vortex liquid regimes—we call the resulting phase
interaction between vortex lines has interesting consea vortex gas. With increasing external fiettl this gas trans-
quences for the low-fieldB ~ a few Gauss) phase dia- forms into a vortex solidB > B,,). With increasing anisotropy
gram of anisotropidayered superconductors, see Fig. 1_the critical temperatureg, and7,, move towards higher tem-

. o . peratures. The reentrant nose closel'tois only a schematic
With the external magnetic field fixed, we have t0 ana-  grawing. The inset shows the free enegyversus induction

lyze the Gibbs free energy densityH,T) = F(B,T) +  p at fixed temperatur& > T, for three values of the magnetic
B(H: — H)/4m, whereH; = 4me.Ink/®, is the un- field H.
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energy E, of a particle in a circular hard-wall well fluctuations. Within a Lindemann melting scenario we
and obtain the entropy reductidf§,(a.) = E, — V —  can easily determine the phase bound&p(T) of the
2(T?/&0a2), with z, = 7x30/2, andxgy = 2.405 the first ~ vortex solid [8]. When the mean squared fluctuations
zero of the Bessel function,. Combining the above el- (u?) = T//2me.ces reach a fraction:? of the unit cell
ements and introducing = a./A as our dimensionless areaa? the lattice becomes unstable and melts. In the
variable, we arrive at the following expression for thelow-field region considered here the melting transition is

Gibbs free energy density: driven by the exponential decay of the shear modulus

. 2y y ces & €Xp(—a./A). The solid-liquid transition along the
G(x,H,T) = A2—°2[1K0(x) - 5” + —5 + yHi|, high-density phase linB, (T') can be determined from the
X X X condition B, (Ty,) = Byu(Tym) = By, and results in a
(21) melting temperature

with y, = z.(T/.4)* and yz = In(A/€) (1 — H/H), 4 A

¢ denoting the planar coherence length. In order to find Tom = CL — By Po. (22)

the magnetic inductioB = ®,/A%x? at given external 323In* (7 /eaym) €

parametersl’” and H, we have to minimizeG with re-
spect toB. The most general behavior @ versusB
at fixed temperatur@ and for various field$Z is shown

The various vortex phases and phase boundaries are
illustrated in Fig. 1. The attraction between the vortices
removes the dilute liquid phase at low temperatures,

in the inset of Fig. 1Ty < T < Ty.). The low-density and the vortex system enters the specimen in a solid
minimum atB, results from the competition between the X SY 1€ sp : :
state. For highly layered materials the residual dilute

entropic repulsion and the van der Waals attraction be- . .
tween the vortices. At the high-density minimum, gas phase_ IS removgd altqget_hel’[gsTve - TC,_Ieadlng

the entropic repulsion has been overcome, and the vaR @ considerable simplification of the low-field phase
der Waals attraction is balanced by the hard core repu clagram. __— .
sion (x Kp) between the flux lines. The transition be- Experlmental consequences of our new findings in-
tween the two phases takes placeHat= H., rendering volve a first-order jump in the magnetization M, and_

Glg, = Glp,, while the densities are found from the con—the appearance of phase separatlon phgn_omena in the
ditions dpGlp,, = 0. Typical vortex separations in the Iovy—temperaturg regime. Besu_jes a S“ﬁ'9'e’.‘“y strong
high-density phase are of the order .of =~ 20A. Re- anisotropy, a h'gh sample quality (weak p!n_nmg) IS re-
ducing H below H.,, the low-density minimum aB, quired, with BpSr,CaCl,0g and NbSg providing pos-

smoothly shifts towards smaller field values, and, finaIIy,Slble cand|dates.

the Meissner-Ochsenfeld (MO) phase Wiy, = 0 is ‘We wish to thank E.H. Brandt, Ch. Bruder, M.P.A.
stabilized atfl,,, H' < H.,, < H.,. Similarly, reducing Flsher, H Katzg.raber,_D.R. Nelson, and A. van Otterlo
the temperaturg towardsT , the low-density minimum for illuminating discussions.

at B, approaches zero induction, such thafatthe low-

density phase is lost, with the MO and the dense vortex

phase remaining the only two available phases. The tem-

peratureT, is determined by the conditiof|z, = 0, re- [1] M. Tinkham, Introduction to SuperconductivitgKrieger,
sulting in the expressioi? = (z/2z.)aze.|V,(a,)| with Huntington, NY, 1980).

B, = Bv(Tg)- Furthermore, we havél,., = HCV1 at T,. [2] E.H. Brandt, R.G. Mints, and I.B. Snapiro, Phys. Rev.
For low temperature§ < T, the surviving high-density Lett. 76, 827 (1996).

phase is determined by the conditiofif;, = Glg,, = 0 [3] L.D. Landau and E.M. Lifshitz,Course in Theoretical
and 0G|z = 0. However, increasind the temperature Physics(Pergamon Press, London, 1958), Vols. 4 and 9.
towardsT,., the low- and high-density phases approach [4] D.R. Nelson, Phys. Rev. Let€0, 1973 (1988).

[5] G. Blatteret al., Rev. Mod. Phys66, 1125 (1994).
one another and merge at the temperatlyge the lat- [6] I.S. Gradshteyn and I.M. RyzhikTable of Integrals,

te}r being determined by the condition$G = 93G = Series, and ProductéA\cademic Press, New York, 1980).
d5G = 0. [7] L. Xing and Z. Tesanovi¢ Phys. Rev. Lett65, 794 (1990).
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