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Van der Waals Attraction of Vortices in Anisotropic and Layered Superconductors
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We show that in anisotropic and layered superconductors the fluctuations of vortex lines produce a
attractive long-range vortex-vortex interaction of the van der Waals type. This attraction follows from
the anisotropic screening properties of the material and has profound consequences for the low-fie
phase diagram of these materials. [S0031-9007(96)01803-0]

PACS numbers: 74.60.Ec, 74.60.Ge
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It is general knowledge that vortices in type II supe
conductors repel one another on all scales [1]. The
pulsion follows a logarithmic law on distancesr , l and
decays exponentially on scalesr . l, wherel denotes
the magnetic penetration depth. This result remains
in the presence of thermal (or quantum) fluctuations
the vortex lines as long as the material is isotropic. In
anisotropic or layered material, however, fluctuations p
duce an attractive long-range interaction beyond the s
l. This long-range attraction is of the van der Waals ty
and leads to a variety of interesting novel phenomena
dilute vortex systems. In this Letter, we derive the van
Waals type attractive force between vortices in anisotro
and layered superconductors and investigate the p
diagram of the dilute vortex system, comprising a fir
order transition atHc1 and new generic van der Waals vo
tex solids and liquids. The work has been inspired by
study of Brandt, Mints, and Snapiro [2] of the fluctuatio
induced attraction of vortices to surfaces.

The occurrence of a van der Waals type attractive fo
between vortex lines is most simply illustrated in an e
tremely layered superconductor with no superconduc
coupling between the layers: Consider two straight v
tices1 and 2 at a distanceR. Displacing an individual
pancake vortex in the stack1 by u1 is equivalent to plac-
ing a pancake–antipancake pair, i.e., a pancake dipoled1,
onto the vortex line. The pancake dipoled1 induces a
second dipoled2 in vortex 2 within the same layer. With
two pancakes interacting logarithmically within the sam
layer, the force from dipoled1 acting on vortex2 follows
a 1yR2 law, henced2 ~ d1yR2. Finally, the interaction
potential between two vortex dipoles follows a1yR2 be-
havior as well and we obtain a long-range attractive
tential VvdW ~ 1yR4 between the vortex segments. Th
initial fluctuationd1 can be induced thermally or, at low
temperatures, quantum mechanically.

In an anisotropic material the same mechanism is
work with slight modifications. Crucial for the unde
standing of the effect are the different screening proper
of the material parallel and perpendicular to the axis
anisotropy, thec axis. Let ´2 ­ myM ø 1 denote the
anisotropy of the material, withm and M the effective
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masses parallel and perpendicular to theab plane. The
anisotropy parameteŕ quantifies the Josephson couplin
between the layers of the anisotropic material. Wher
currents flowing within theab planes are screened o
a scalel, the out-of-plane currents decay only on th
longer scalely´. Placing two vortices parallel to thec
axis at a distanceR, a fluctuation in vortex1 again in-
duces a “counterfluctuation” in vortex2 with the trans-
verse parts of the vortex lines attracting one another wit
the distanceR , ly´. Within the rangel , R , dy´

(d denotes the layer separation), the Josephson couplin
irrelevant and the van der Waals interaction follows the b
havior of the uncoupled system,VvdW ~ 1yR4. At larger
distancesdy´ , R , ly´, thec-axis currents are relevan
and the interaction drops faster,VvdW ~ 1yR5. For strong
coupling withdy´ , l, only the latter regime survives.

It is quite instructive to compare the van der Waa
attraction between vortices in anisotropic superconduc
with the fluctuation-induced attraction between neut
atoms. The latter decays on short distances with
famous1yr6 power law, turning into a1yr7 behavior at
large distances when retardation effects come into p
[3]. The changeover from a1yR4 to a 1yR5 behavior
in the vortex system is an analogous effect. This c
be most simply understood when the vortex proble
is mapped onto the imaginary time quantum proble
of charged bosons, see Refs. [4] and [5]. The vort
vortex interaction then turns into a nonlocal in tim
interaction between the bosons, and the1yR5 behavior
is a consequence of the corresponding retardation effe
Whereas the usual van der Waals interaction betw
atoms is due to (longitudinal) electric dipole fluctuation
in the vortex problem the interaction is of a transver
nature with current fluctuations generating the force. Su
a transverse van der Waals force also exists for the ato
problem; however, it involves the small parametery2yc2.
In the charged boson problem the effective velocity
light is smaller, and the corresponding velocity rat
squared is of the order of the two-dimensional (2
Ginzburg number. In the following we determine the v
der Waals force between two vortices and then discuss
low-field phase diagram in layered superconductors.
© 1996 The American Physical Society
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Consider two parallel flux lines directed along thez axis
and separated by a distanceR. Within the London approxi-
mation, the functionalF providing the configurationa
energy of the two vortices takes the form [5]

F fsmg ­
2X

m,n­1

´±

2

Z
dsmadsnb V int

abssm 2 snd . (1)

Here, sm ­ rm 1 umszd, m ­ 1, 2, denote the positions
of the two vortices, withumszd the fluctuating part,́ ± ­
sF±y4pld2 the basic energy scale, andV int

ab the interaction
between two vortex segments, for an isotropic mate
V int

absrd ­ dab exps2ryldyr. In a uniaxially anisotropic
material with the crystal axisc k ẑ, the interaction is
conveniently expressed through its Fourier representa

V int
absrd ­ 4pl2

Z d3k
s2pd3

eikrV int
abskd , (2)

V int
abskd ­

e2sj2K21j2
c k2

z d

1 1 l2k2

3

"
dab 2

sl2
c 2 l2dK'aK'b

1 1 l2k2 1 sl2
c 2 l2dK2

#
. (3)

Here, K ­ skx , kyd and K' ­ sky , 2kxd. We choose
r1 ­ sR, z1d, r2 ­ s0, 0, z2d, and defineds ­ tdz with the
tangential vectort ­ f≠zuszd, 1g. The energy is split into
the self-energy partF0 with m ­ n, and an interaction par
Fint with m fi n,

Fint ­
F2

±

4p

Z d3k
s2pd3

dz1dz2

3 fV int
zz skd 1 t1asz1dt2bsz2dV int

abskdg

3 eiKfR1u1sz1d2u2sz2dgeikzsz12z2d. (4)

We determine the interaction between the vortices us
conventional statistical mechanics techniques to acco
for the fluctuations. With the partition function,

ZsRd ­
Z

D fu1szdgD fu2szdg expf2F sRdyT g , (5)

the free energy takes the form (up to a constant)

FsRd ­ 2T ln ZsRd ­ 2T lnkexpf2FintsRdyTgl0 , (6)

where the averagek· · ·l0 is taken with the self-energy term
F0 describing the noninteracting vortices. Performing
cumulant expansion in (6) the expression for the effect
vortex-vortex interaction takes the form

LVeffsRd ø kFintl0 2 fkF 2
intl0 2 kFintl2

0gy2T . (7)

Here, L denotes the sample dimension along the fi
direction. We split the interaction into a longitudinal ter
Fk [involving the termVzz in Eq. (4)] and a transverse pa
F' [t1at2bVab in Eq. (4)],Fint ­ Fk 1 F'. To lowest
order inum the termkFkl0 provides the usual mean-field
type expression for the vortex-vortex interaction,

V
s0d
eff sRd ­ 2´±K0sRyld , (8)

with K0 the zero-order modified Bessel function. High
order expansions inum only renormalize the prefactor bu
al

n,
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do not change the form of the interaction. The transve
term kF'l0 vanishes, except for the situation where th
vortex is close to a surfacekz; in this latter case this
first-order term describes the van der Waals type lon
range attraction of the vortex to the surface [2]. We w
comment below in more detail on this situation.

The second-order term inFk again renormalizes the
repulsive interaction between the vortices but does
produce a long-range component. On the contrary,
term kF 2

'l0 produces a long-range attraction between t
vortices, thus providing the van der Waals potential

VvdW sRd ­ 2
kF'F'l0

2TL
. (9)

To lowest order in the displacements,

F' ­
F2

±

4p

Z d3k
s2pd3

t1as2kzdt2bskzdV int
abskdeiKR, (10)

kF'F'l0 ­
F4

±L

64p2

Z dkz

2p
fV int

absR, kzdg2kt2skzdl2
0 , (11)

where we have defined the partial Fourier transform

V int
absR, kzd ­

Z d2K
s2pd2 V int

absK, kzdeiKR, (12)

and we have usedkt1as2kzdt2bskzdt1a0s2k0
zdt2b0 sk0

zdl0 ­
2pLdskz 2 k0

zddaa0dbb0kt2skzdl2
0y4.

We first concentrate on the decoupled limit´ ! 0.
Using (3) in the limit´ ! 0, the partial Fourier transform
(12) takes the form [we useR ­ sR . l, 0d]

V int
xx sR, kzd ­ 2

1
2pR2

1
1 1 l2k2

z
ø 2V int

yy sR, kzd , (13)

where we have dropped a small correction~exps2Ryld
in the second equation (the mixed termsV int

xy and V int
yx

vanish). The single vortex fluctuation amplitude

kt2skzdl0 ­
T

´lskzd
(14)

is determined by the line elasticitýlskzd; in the de-
coupled limit, ´lskzd ­ s´±y2l2k2

z d lns1 1 l2k2
z d, i.e.,

only the electromagnetic coupling producing a strong
dispersive line tension is relevant. Combining the abo
elements, we arrive at the final expression for the van
Waals potential in thedecoupled limit,

V dc
vdW sRd ­ 2

´±

ln2slpydd
T

d´±

µ
l

R

∂4

. (15)

We turn to the continuous anisotropic case with´ . 0.
The partial transform (12) now reads

V int
xx ­

s21d
2pR

´

l
p

1 1 l2k2
z

K1

µ
´R

q
1 1 l2k2

z yl

∂
, (16)

with K1 the first-order modified Bessel function,K1sz !

0d , 1yz, K1sz . 1d ,
p

py2z exps2zd. Again,V int
yy ø

2V int
xx up to a small correction. Within the regim
4959
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l , R , dy´ the expression (16) reduces to (13), a
the van der Waals potential remains unchanged. On
other hand, forl, dy´ , R, the Bessel functionK1 cuts
off the kz integral at1y´R, and we obtain the result fo
thecontinuous anisotropiccase (see Ref. [6])

VvdW ­

8>>><>>>:
s2´±d

ln2splydd
T

d´±

l4

R4 , l , R ,
d
´

,

s23py32d´±

ln2sply´Rd
T

´l´±

l5

R5 , l,
d
´

, R ,
l

´
.

(17)
The van der Waals attraction involves largekz values and
thus derives from distancesdz , d and dz , ´R , l

on smallsl , R , dy´d and largesl, dy´ , Rd vortex
separations, respectively. Also note that, throughout
regimekz , 1y´R , 1y´l, the single vortex elasticity is
dominated by the electromagnetic coupling.

We briefly discuss the van der Waals attraction of
individual vortex 1 to a parallel surface, which we choo
to be theyz plane. The vortex 2 then represents t
mirror image of vortex 1, and hencer2 ­ s2R, 0, z2d,
u2 ­ s2u1x , u1yd. The van der Waals potential originate
from the transverse interaction

kF'l0 ­
F2

±L

16p

Z dkz

2p
fV int

xx 2 V int
yy g kt2skzdl0 (18)

[we have usedkt1as2kzdt2askzdl0 ­ 6Lkt2skzdl0y2 and
have included a minus sign to account for the oppo
circulation of the image vortex]. In the decoupled lim
the van der Waals surface attraction takes the form

V
s,dc
vdW sRd ­ 2

´±

lnslpydd
T

d´±

µ
l

R

∂2

, (19)

where we have made use of (13). For finite coupl
´ . 0 we use the partial transform (16) and arrive at

V s
vdW ­

s2´±y2d
lnsply´Rd

T
´l´±

l3

R3 , l,
d
´

, R ,
l

´
(20)

[for short distancesl , R , dy´, the result (19) ap-
plies]. The results (19) and (20) differ from those o
tained in Ref. [2], where no thermal van der Waals ty
vortex-surface attraction has been found. The origin
the discrepancy can be traced back to the different
proaches taken in Ref. [2] and here: Whereas Bra
et al. determine the energy of the vortex as it approac
the surface, we derive the van der Waals potential from
calculation of thefree energy. The entropic contribution
to the free energy then produces a nonvanishing vor
surface attraction.

The appearance of an attractive van der Waals t
interaction between vortex lines has interesting con
quences for the low-field (B , a few Gauss) phase dia
gram of anisotropicylayered superconductors, see Fig.
With the external magnetic fieldH fixed, we have to ana
lyze the Gibbs free energy densityGsH, T d ­ FsB, Td 1

BsH±
c1

2 Hdy4p, whereH±
c1

­ 4p´± ln kyF± is the un-
4960
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renormalized lower critical field. The free energy de
sity F is composed of an interaction termszy2dVysa±dya2

±

and an entropic contribution2T fSl 2 Sysa±dgya2
±. Here,

a± ­
p

F±yB denotes the distance between the flux lin
andz is the number of nearest neighbors,z ­ 6 in a trian-
gular lattice. The vortex-vortex interactionVy is the sum
of the repulsive term2´±K0sa±yld [see Eq. (8)] and the
attractive van der Waals interaction22´±gyslya±d5 with
gy ­ f3py64 ln2sply´a±dg sTy´´±ld [see Eq. (17); this
approximation underestimates the attraction in the dil
case]. The entropic term consists of an irrelevant sin
vortex contributionSl, which does not depend on th
vortex density and merely renormalizes the lower cr
cal field H±

c1
! Hr

c1
. The second termSysa±d describes

the reduction of the line entropySl due to the confine-
ment of an individual vortex within the cage set up by
neighbors [4]. Making use of the equivalence between
statistical mechanics of lines and the quantum mech
ics of 2D bosons [4], we have to calculate the bindi

FIG. 1. Low-field phase diagram for a layered supercond
tor. Parameters appropriate for Bi2Sr2Ca1Cu2O8 have been used
(l ­ 1800 Å, ´ ­ 1y300, cL ­ 0.3, see Ref. [7]). Continuous
lines denote first-order transitions (note the associated jump
B); the dashed line is a second-order transition. At low te
peraturesT , Tg , Tym, the MO phasesBMOd becomes unstable
towards a vortex solidsB . Byd at Hc1 , Hr

c1
. At the tem-

peratureTg a new vortex gas phase appears at low densi
sB , Bed, rendering the MO phase unstable atHc1 . Hr

c1
. At

a higher magnetic fieldHcy . Hc1 a transition to a solid phase
takes placesB . Byd. The latter melts atTym, giving way
to a sliver of vortex liquid in the high-density region abov
By . At temperaturesT . Tye larger than critical, we can no
longer distinguish between the low-density vortex gas and
high-density vortex liquid regimes—we call the resulting pha
a vortex gas. With increasing external fieldH this gas trans-
forms into a vortex solidsB . Bmd. With increasing anisotropy
the critical temperaturesTg andTye move towards higher tem-
peratures. The reentrant nose close toTc is only a schematic
drawing. The inset shows the free energyG versus induction
B at fixed temperatureT . Tg for three values of the magneti
field H.
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energy Eg of a particle in a circular hard-wall wel
and obtain the entropy reductionTSysa±d ­ Eg 2 V !

zesT2y´±a2
±d, with ze ­ px2

00y2, andx00 ø 2.405 the first
zero of the Bessel functionJ0. Combining the above el
ements and introducingx ­ a±yl as our dimensionles
variable, we arrive at the following expression for th
Gibbs free energy density:

Gsx, H, Td ­
´±

l2x2

∑
zK0sxd 2

zgy

x5
1

ge

x2
1 gH

∏
,

(21)
with ge ­ zesTy´±ld2 and gH ­ lnslyjd s1 2 HyHr

c1
d,

j denoting the planar coherence length. In order to fi
the magnetic inductionB ­ F±yl2x2 at given external
parametersT and H, we have to minimizeG with re-
spect toB. The most general behavior ofG versusB
at fixed temperatureT and for various fieldsH is shown
in the inset of Fig. 1sTg , T , Tyed. The low-density
minimum atBe results from the competition between th
entropic repulsion and the van der Waals attraction
tween the vortices. At the high-density minimumBy

the entropic repulsion has been overcome, and the
der Waals attraction is balanced by the hard core re
sion s~ K0d between the flux lines. The transition b
tween the two phases takes place atH ­ Hcy rendering
GjBe

­ GjBy
, while the densities are found from the co

ditions ≠BGjBe ,By
­ 0. Typical vortex separations in th

high-density phase are of the order ofxy ø 20l. Re-
ducing H below Hcy, the low-density minimum atBe

smoothly shifts towards smaller field values, and, fina
the Meissner-Ochsenfeld (MO) phase withBMO ­ 0 is
stabilized atHc1 , Hr

c1
, Hc1 , Hcy. Similarly, reducing

the temperatureT towardsTg, the low-density minimum
at Be approaches zero induction, such that atTg the low-
density phase is lost, with the MO and the dense vor
phase remaining the only two available phases. The t
peratureTg is determined by the conditionGjBy

­ 0, re-
sulting in the expressionT 2

g ­ szy2zeda2
g´±jVysagdj with

Bg ­ BysTgd. Furthermore, we haveHcy ­ Hr
c1

at Tg.
For low temperaturesT , Tg the surviving high-density
phase is determined by the conditionsGjBy

­ GjBMO ­ 0
and ≠BGjBy

­ 0. However, increasing the temperatu
towardsTye, the low- and high-density phases approa
one another and merge at the temperatureTye, the lat-
ter being determined by the conditions≠BG ­ ≠

2
BG ­

≠
3
BG ­ 0.
In order to complete our analysis we have to determ

the stability of the vortex lattice with respect to therm
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fluctuations. Within a Lindemann melting scenario w
can easily determine the phase boundaryBmsTd of the
vortex solid [8]. When the mean squared fluctuation
ku2l ­ Ty

p
2p´±c66 reach a fractionc2

L of the unit cell
areaa2

± the lattice becomes unstable and melts. In t
low-field region considered here the melting transition
driven by the exponential decay of the shear modul
c66 ~ exps2a±yld. The solid-liquid transition along the
high-density phase lineBysT d can be determined from the
condition BysTymd ­ BmsTymd ­ Bym, and results in a
melting temperature

Tym ø
c4

L

32
p

3 ln2spy´aymd
l

´
BymF± . (22)

The various vortex phases and phase boundaries
illustrated in Fig. 1. The attraction between the vortice
removes the dilute liquid phase at low temperature
and the vortex system enters the specimen in a so
state. For highly layered materials the residual dilu
gas phase is removed altogether asTg, Tye ! Tc, leading
to a considerable simplification of the low-field phas
diagram.

Experimental consequences of our new findings i
volve a first-order jump in the magnetization atHc1 and
the appearance of phase separation phenomena in
low-temperature regime. Besides a sufficiently stron
anisotropy, a high sample quality (weak pinning) is re
quired, with Bi2Sr2Ca1Cu2O8 and NbSe2 providing pos-
sible candidates.

We wish to thank E. H. Brandt, Ch. Bruder, M. P. A
Fisher, H. Katzgraber, D. R. Nelson, and A. van Otter
for illuminating discussions.
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