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Transport in MultiTerminal Normal-Superconductor Devices: Reciprocity Relations,
Negative and Nonlocal Resistances, and Reentrance of the Proximity Effect
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We have investigated transport in a cross-shaped two-dimensional electron gas with superconductin
electrodes coupled to two opposite arms. Multiterminal resistances, measured as a function of the
superconducting phase difference and the magnetic flux, are analyzed in terms of an extended Landaue
Büttiker transport formalism. We show that extended reciprocity relations hold. Correlations between
transport coefficients are obtained from, e.g., (negative) three-terminal and nonlocal resistances. Energ
spectroscopy reveals a reentrant behavior of the transport coefficients around the Thouless energy
[S0031-9007(96)01821-2]
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A renewed interest has grown in the proximity effe
in normal-superconductor (NS) devices [1–4] and
relation to mesoscopic transport. A striking reentr
behavior was predicted, where the resistance of a diffu
normal conductor at low energies returns to the nor
state resistance. These calculations are based on imp
averaged Keldysh Green’s function techniques.
alternative theoretical description is based on a scatte
approach [5], which incorporates not only ensemb
averaged but sample-specific transport properties as
The Landauer-Büttiker transport formalism [6] for norm
conductors describes transport in terms of reflec
coefficientsRee

ii and transmission coefficientsT ee
ij from

lead j to lead i. A multiterminal scattering approac
has been proposed for transport in NS devices base
an extension of this formalism [7], including Andre
transmission and reflection coefficientssThe

ij , Rhe
ii d. The

current flowing in leadi is expressed as

Ii ­
2e
h

∑
sNi 2 Ree

ii 1 Rhe
ii dmi 2

X
jfii

sTee
ij 2 T he

ij dmj

∏
.

(1)
Particle conservation impliesNi ­ Ree

ii 1 Rhe
ii 1

P
jfii 3

sT ee
ji 1 T he

ji d, whereNi denotes the number of quantu
channels. The electrochemical potentialsmi of the normal
leads are defined relative to the electrochemical pote
of the superconductorssm0 ­ 0d.

In this Letter, we will experimentally investigate mul
terminal transport in a diffusive, cross-shaped two-dim
sional electron gas (2DEG), where a superconducting
is attached to two opposite arms (see Fig. 1). The p
ence of three independent leads within the phase-brea
length allows us to study the average magnitude and
superconducting phase and magnetic flux sensitivity of
transport coefficients and their correlations.

The 2DEG is present in an InAs/AlSb quantum we
Prior to processing, the top barrier has been remove
0031-9007y96y77(24)y4954(4)$10.00
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wet chemical etching. The 15 nm thick exposed InA
layer hosts the 2DEG with an electron densityns . 1.5 3

1016 m22 and an electron mean free path,e . 0.2 mm.
The cross-shaped pattern in the InAs layer was defin
by insulating trenches usinge-beam lithography and we
chemical etching. An insulating Si layer was deposited
top of regions 1 and 2 to prevent a short circuit with th
subsequently deposited Nb superconducting loop. A h
transparency of about 0.9 is obtained for the NS interfa
by in situ Ar cleaning of the exposed InAs regions befo
the Nb deposition.

We first derive an expression for the multiterminal r
sistances for the geometry shown in Fig. 1. We define
transport coefficients as the difference between the nor
and Andreev transmission/reflection coefficients:Tij ­
T ee

ij 2 The
ij and Rii ­ Ree

ii 2 Rhe
ii . For the moment, we

will describe regionsA and B as reservoirs, assuming

FIG. 1. Sample layout. The left-hand panel shows
schematic picture of the cross-shaped 2DEG with the superc
ducting terminals. The contacts 1, 2, 3, and 4, are connec
to the cross-shaped 2DEG and the superconducting contac
are connected to the Nb loop. The length of the InAs chan
connecting the Nb terminals isL . 0.9 mm and its width
is W . 0.25 mm. The right-hand panel shows a scannin
electron micrograph.
© 1996 The American Physical Society



VOLUME 77, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER1996

e
es
e

(4
th

or

N
om
)]

a
e
in
t

na

tor

e-
K

nd
illa-
e
n a
tic
ed)
vi-

en

o
al of

g-
-
eir

li-

sal

ted

v
l-

-
ole

are
olt-
t of
f a

and
sis-

es
ns-
uniform electrochemical potentialsmA ­ m1 ­ m2 and
mB ­ m3 ­ m4, respectively. We then obtain [8]

R10,20 ­
h

2e2

N 2 RBB

sN 2 RAAd sN 2 RBBd 2 TABTBA
, (2)

R30,40 ­
h

2e2

N 2 RAA

sN 2 RAAd sN 2 RBBd 2 TABTBA
, (3)

R10,30 ­
h

2e2

TBA

sN 2 RAAd sN 2 RBBd 2 TABTBA
, (4)

R30,10 ­
h

2e2

TAB

sN 2 RAAd sN 2 RBBd 2 TABTBA
. (5)

The number of quantum channels is given byN ­ kFWy
p , whereW is the width of the arms of the cross. W
will refer to Eqs. (2) and (3) as “two-terminal” resistanc
since they effectively measure the resistance betw
region A (or B) and the Nb electrodes. Equations
and (5) represent “three-terminal” resistances, since
involve both regionsA andB and the Nb electrodes.

Time-reversal symmetry implies for the transp
coefficients that TijsF, Dwd ­ Tjis2F, 2Dwd and
RiisF, Dwd ­ Riis2F, 2Dwd [7], where F is the
magnetic flux through the conductor andDw is the
superconducting phase difference across the two
terminals. The reciprocity relations can be derived fr
the extended Landauer-Büttiker formalism [Eq. (1
Rij,klsF, Dwd ­ Rkl,ijs2F, 2Dwd. Interchanging cur-
rent and voltage leads accompanied by a sign revers
bothF andDw is predicted to yield the same resistanc

The magnetoresistances for the two- and three-term
configurations are shown in Fig. 2. An applied magne
field B changes the superconducting phase differenceDw

FIG. 2. The two-terminal magnetoresistancesR10,20 (a) and
R30,40 (b). The three-terminal magnetoresistancesR10,30 (c)
and R30,10 (d) measured simultaneously with the two-termi
magnetoresistances atT . 100 mK.
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linearly:Dw ­ 2pFloopyF0, whereFloop is the magnetic
flux through the superconducting loopsarea. 13.6 mmd
and F0 is the flux quantumhy2e. Simultaneously, a
magnetic fluxF penetrates the cross-shaped conduc
itself, and changes the quantum interference.

We have investigated six nominally identical d
vices and studied two of them extensively at 100 m
with a standard four-probe ac lock-in technique a
filtered leads. The magnetoresistance shows osc
tions speriod. 1.65 Gd due to superconducting phas
modulated conductance fluctuations, superimposed o
fluctuating background resistance [4,9]. At low magne
fieldss,100 Gd a nonsample specific (ensemble-averag
contribution to the resistance oscillations is present. E
dently, the two-terminal resistancesR10,20 andR30,40, as
shown in Figs. 2(a) and 2(b), are symmetric inF andDw.
The three-terminal magnetoresistanceR10,30 [Fig. 2(c)]
is asymmetric. This asymmetry is indeed reversed wh
the current and voltage probes are interchanged [R30,10

in Fig. 2(d)]. Closer inspection of the oscillations als
shows that their phase changes sign under the revers
current and voltage probes (not displayed).

Analyzing data acquired over a large range in ma
netic field sjBj # 0.5 Td with Eqs. (2)–(5), we can es
timate the values for the transport coefficients and th
fluctuations. We obtain (withN . 35) for the aver-
age transport coefficientskRAAl . 26 and kTBAl . 1.6,
for the rms amplitude of the fluctuationsDRAA . 0.26
and DTBA . 0.07 with a correlation magnetic field [4]
Bc . 200 and 130 G, respectively, and for the rms amp
tude of the oscillationsdRAA . 0.012 anddTBA . 0.014,
both with Bc . 60 G. Both DRAA and DTBA are some-
what smaller than expected from the theory of univer
conductance fluctuations [10]. The reduction inDTBA

compared toDRAA [11] implies either that the fluctu-
ations inbothT ee

BA and T he
BA are small or, more likely, that

the fluctuations inT ee
BA andThe

BA are (partially) correlated.
Also, dRAA ø DRAA anddTBA ø DTBA, indicating that
the conductance fluctuations are only partially modula
by the superconducting phase.

A striking manifestation of the coexistence of Andree
and normal transmission is displayed in Fig. 3(a). It fo
lows from Eq. (4) thatR10,30 is proportional toTBA ­
T ee

BA 2 The
BA. This implies that when an incoming elec

tron has a higher probability to be transmitted as a h
than as an electronsT he

BA . Tee
BAd, R10,30 can becomenega-

tive [12]. Note that negative three-terminal resistances
impossible in normal transport, since, in that case, a v
age probe always measures a voltage in between tha
the current source and drain contacts. As a result o
relatively high overall resistance of this devicesR10,20 .
10 kVd, the sample-specific fluctuations are increased
become of the order of the average three-terminal re
tanceR10,30 (kTBAl . 0.024, DTBA . 0.007, anddTBA .
0.003). The three-terminal magnetoresistance becom
negative around 290 G, indicating that the Andreev tra
mission dominates over normal transmission.
4955
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FIG. 3. (a) The three-terminal magnetoresistanceR10,30 at
T . 100 mK of a device with an increased overall resistan
sR10,20 . 10 kVd. Around 290 G the resistance becom
negative. Note the cross over between two different Andre
mediated oscillation patterns in (b).

Near 170 G a crossover takes place between
different oscillation patterns [Fig. 3(b)]. Several of the
crossovers, which are sample specific, are observed
a typical separation of,160 G. At present, we do no
understand the underlying physical mechanism. Howe
this crossover cannot be described by a superpos
of independent sinusoidal oscillation patterns inTee

BA and
T he

BA. An estimation of their average magnitude (kTee
BAl .

0.32 and kT he
BAl . 0.29 [13]) for this device shows tha

they are equally important. In principle, eitherTee
BA or

T he
BA could still dominate the amplitude of the oscillation

More likely, their amplitudes have the same order
magnitude, which implies that the crossovers should
present in bothTee

BA andT he
BA [14].

A further interesting phenomenon in normal mes
scopic transport was the occurrence of nonlocal transp
The resistance of a phase-coherent metal strip conne
at one end to a loop revealed Aharonov-Bohm osci
tions, although no net current was flowing through
loop itself [15]. We searched for the superconductin
phase modulation of the nonlocal resistance by measu
the resistanceR10,34. If region B is phase coherent, w
have to treat contact3 and 4 explicitly. A current flow
from regionA to the Nb contacts then yields the follow
ing nonlocal (four-terminal) resistance:

R10,34 .
h

2e2

2sT3A 2 T4Ad
T43 1 T34

. (6)

A nonlocal resistance is thus expected ifT3A fi T4A.
Figure 4 shows that, indeed, a nonlocal resistance
observed. From the rms amplitude of the fluctuatio
in R10,34, we obtain DsT3A 2 T4Ad . 0.003 with an
estimated kT34l . kT43l ø 20, which is much smaller
than the fluctuations in the total transmission fromA to B
sDTBA . 0.07d. Therefore, either the fluctuations inT3A

andT4A are (strongly) correlated, or the phase-cohere
length does not fully extend to the contacts3 and4.
4956
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FIG. 4. The nonlocal four-terminal magnetoresistanceR10,34
at T . 100 mK (whereR10,20 . 3.5 kV).

The above analysis, based on transport at the Fe
energy, has shown that the modulation in the two-termi
resistances is dominated byRAA or RBB, respectively
[Eq. (2) or (3)]. In Fig. 5(a) the energy dependence of t
magnitude of the oscillations inR10,20 is plotted, which
reflects mainly the energy dependence ofdRAA. The
oscillations inRAA exhibited aminimumat Dw ­ 0 as
expected for coherent Andreev backscattering [2,5]. D
phasing of coherent quantum interference is expected
occur above the Thouless energy, estimated to beET ­
h̄yF,ey2L2 . 0.1 meV, which explains qualitatively the
decrease indR10,20 [Fig. 5(a)] for applied biasesVDC
exceeding ET . For eVDC , ET , dR10,20 is reduced
(a similar reduction was observed in Ref. [4]) an

FIG. 5. The energy dependence of the (top-top) magnitu
of the oscillations inR10,20 (a) and R10,30 (b) around zero
magnetic field atT . 100 mK (whereR10,20 . 2.2 kV). In
(b) the squares correspond to the component, which ha
maximum inR10,30 at Dw . 0.05p. The circles correspond
to the component, which has a minimum inR10,30 at Dw .
20.01p. (c) This showsR10,30 for three applied dc biases
VDC: 1—0 mV, 2—0.07 mV (offset210V), and 3—0.13 mV
(offset 220V).
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simultaneously, the nonsinusoidal shape of the oscill
tions increases (not displayed). Calculations [2] sho
that for energies smaller than aboutET the amplitude
of the oscillations is reduced, and a nonsinusoidal pha
dependence develops [16].

The energy dependence ofdR10,30 is governed by the
energy dependence ofdTBA [Eq. (4)]. Near zero applied
bias, the oscillations inR10,30 showed amaximumat
Dw . 0.05p. For energieseVDC $ ET these oscillations
disappear [Fig. 5(b)]. Simultaneously, however, a contr
bution to the oscillations inR10,30 appears, which dis-
plays aminimumwhen Dw . 20.01p and reaches its
full magnitude ateVDC . ET . A similar behavior was
observed in a second device with slightly different value
for Dw (20.03p and0.02p, respectively). We conclude
that these oscillations are dominated by an ensemb
averaged contribution with a small sample-specific co
tribution, which can account for the small deviations from
Dw ­ 0. We have plotted in Fig. 5(b) the magnitude o
both types of oscillations. In Fig. 5(c) this crossover is il
lustrated by magnetic field traces for applied biases of
0.07, and 0.13 mV. Note that the middle tracesVDC .
0.07 mVd exhibits both types of oscillations. Presently
no calculations for the energy dependence of transm
sion coefficients are available. We note, however, th
these results are not in agreement with existing theories
for diffusive conductors. These predict that the position
dependent diffusion constant at zero energy is equal to
normal state value. This implies that the oscillation ampl
tude should vanish completely foreVDC ø ET , irrespec-
tive of the geometry. We conjecture that this discrepanc
is related to the fact that the ratio ofLy,e is not large in
our devices.

We thank P. W. Brouwer, J. P. Heida, and A. F. Mor
purgo for valuable discussions. This work is financiall
supported by FOM/NWO and KNAW (B. J. v. W.).

Note added.—A circuit theory analysis [2], in which
we accounted for the finite ratio ofLy,e by including
ballistic point contacts in a series with the arms of th
cross structure, can explain the observed magnitude a
opposite phase of the oscillations inR10,30 nearB ­ 0 at
zero energy.
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