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Reentrance of the Metallic Conductance in a Mesoscopic Proximity Superconductor
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We present an experimental study of the diffusive transport in a normal metal near a superconducting
interface, showing the reentrance of the metallic conductance at very low temperature. This new
mesoscopic regime comes in when the thermal coherence length of the electron pairs exceeds the
sample size. The reentrance is suppressed by a bias voltage given by the Thouless energy and can
be strongly enhanced by an Aharonov-Bohm flux. Experimental results are well described by the
linearized quasiclassical theory. [S0031-9007(96)01817-0]
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During the past few years, the proximity effect betwe
a superconductor (S) and a normal (N) metal has m
noticeable revival, thanks to spectacular progress in
fabrication of samples of mesoscopic size [1]. Expe
mental study of the transport near a S-N interface
shown that the proximity effect strongly affects electr
transport in mesoscopic S-N systems: The deviationDG
of the conductance from its normal-state value depe
strongly on temperatureT and oscillates in an applie
magnetic fieldH if a N loop is present [2–4]. Various
theoretical approaches were suggested to explain this
havior. A scattering matrix method based upon the L
dauer formula [5] as well as a numerical solution of t
Bogolubov–de Gennes equations [6] were used. Th
studies demonstrated that superconductivity does no
fect the charge transfer in the N metal if the temperaturT
and the voltageV are zero, i.e.,DG is zero at zero energy
A more powerful method based on the equations for
quasiclassical Green’s functions [7–10] was used to
tain the dependence ofDG on T andV. It has been estab
lished [9] that atV ­ 0 the deviation of the conductanc
DG increases from zero atT ­ 0 (if electron-electron in-
teraction in N is negligible) with increasingT, reaches
a maximum at approximately the Thouless temperat
ecykB ­ h̄DykBL2, and decreases to zero atT ¿ ecykB.
This constitutes the reentrance effect for the metallic c
ductance of the N metal. Similar dependence ofDGsV d
at T ­ 0 has been found in [10] both in a numerical s
lution of the Bogoliubov–de Gennes equations and in
analytical solution of the equations for the quasiclass
Green’s functions.

The physics behind this reentrance effect involv
nonequilibrium effects between quasiparticles injected
the N reservoirs and electron pairs leaking from S.
the N-S interface, and incident electron is reflected int
hole of the same energye compared to the Fermi leve
EF , but with a slight change in wave vectordk due to
the branch crossing:dkykF ­ eyEF , kF being the Fermi
950 0031-9007y96y77(24)y4950(4)$10.00
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wave vector. The phase conjugation between the elec
and the hole results in a finite pair amplitude involvin
statesskF 1 eyh̄yF , 2kF 1 eyh̄yFd, yF being the Fermi
velocity. Such a pair maintains coherence in N up to
energy-dependent diffusion lengthLe ­

p
h̄Dye [7,11]

which coincides with the well-known thermal leng
LT ­

p
h̄DykBT at e ­ 2pkBT .

In the high-temperature regimeLT , L or, equiva-
lently, ec , kBT , it is well known that the proximity ef-
fect results in the subtraction of a lengthLT of N metal
from the resistance of a S-N junction. In the low tem
peratureLT . L or ec . kBT and low voltageeV , ec,
electron pairs are coherent over the whole sample.
proximity effect on the N metal resistance is still pr
dicted to be zero. In this Letter, we report the expe
mental realization of both limits (L , LT and L . LT )
and the observation of the reentrance of the metallic c
ductance in a mesoscopic proximity superconductor. T
low-temperature reentrant regime is destroyed by incre
ing the temperature [9] or the voltage [10]. As will b
discussed below, an Aharonov-Bohm flux modifies the
fective length of the sample and therefore shifts the ene
crossover of the reentrant regime.

Figure 1 shows a micrograph of the sample made o
square copper (Cu) loop in contact with a single alumin
(Al) island. The loop, although not essential for th
occurrence of the reentrance effect, allows one to con
boundary conditions for the pair amplitude. The Cu w
width is 150 nm and its thickness is about 40 nm. T
distance between the Cu loop and the Al island is ab
100 nm, whereas the perimeter of the loop is 2mm.
One should note that the sample geometry differs fr
all previous sample geometries with two superconduct
contacts [2–4] in that there is a single superconduct
phase and therefore no possible Josephson contribu
Two voltage probes measure the distribution at the
flows of the reservoirs, which are the wide contact pa
at both ends of the Cu wire. The Cu surface isin situ
© 1996 The American Physical Society



VOLUME 77, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER 1996

C

s
e

u

m

t
n
-

s

K
o
d
m

v
t

k
r

e

l
n

s

i

u

e

ple

ment

en-

tic
ed

ener-
tics
func-
as

at

e-
er-
ion
We
cat-

n-
to
en-
i

is
et:
FIG. 1. Micrograph of the sample made of a continuous
(­ N) loop in contact with a single Al (­ S) island. Inset:
simple model. At half-integer magnetic flux, a conditionF ­ 0
is enforced at the pointK at L0 ­ 1 mm from S. The distance
between S and the right and left N reservoirs are, respectiv
L ­ 2 mm and 0.5mm

cleaned before Al deposition in order to ensure an optim
transparency of the CuyAl interface [4].

We performed transport measurements in am-metal-
shielded dilution refrigerator down to 20 mK. Fro
the normal-state conductanceGN ­ 0.0937 S we find
a diffusion coefficientD ­ 70 cm2ys, an elastic mean
free path le ­ 13 nm, and a thermal coherence leng
LT ­ 92 nmy

p
T . Aluminum islands become superco

ducting belowTc . 1.4 K. The behavior of the con
ductance in the high-temperature regimeLT , L (i.e.,
above 500 mK) is very similar to the two-island ca
[4]. At lower temperatures, so thatLT . L, and zero
magnetic field, we observe adecreaseof the low-voltage
conductance [Fig. 2(inset)]. This occurs below 50 m
at the temperature where a Josephson coupling w
be expected in a two-island geometry. The voltage
pendence of the measured conductance shows the
striking behavior, i.e., anincrease of the conductance
when the bias voltage isincreased(Fig. 2). This non-
linear behavior discards an interpretation in terms
weak localization, which is known to be insensiti
to voltage. The conductance peak is observed a
bias voltage (about 1.7mV) of the order of the cal-
culated Thouless energyec ­ 1.1 mV related with a
sample lengthL ­ 2 mm. In the Fig. 2 inset, the pea
position is also consistent with the Thouless tempe
ture ecykB ­ 13 mK. One can note that the discuss
energies are much smaller than Al energy gapD.

Let us now analyze the effect of the magnetic fie
Figure 3 shows oscillations of the magnetoconducta
with a periodicity of one flux quantumf0 ­ hy2e in
the loop area. Here the reentrance effect can be
very clearly atf ­ f0y2, 3f0y2, and at higher field. As
previously observed in two-island samples, the oscillat
amplitude decays slowly with a 1yT power law down to
200 mK [Fig. 3(inset)]. Figure 4 shows the temperat
dependence of the conductance for various values of
magnetic flux in the loop. On this scale, the reentranc
u

ly,

m

h
-

e

,
uld
e-
ost

of
e

a

a-
d

d.
ce

een

on

re
the
at

FIG. 2. Non-monotonous voltage dependence of the sam
conductance atT ­ 22 mK; the normal-state conductanceGN
is 0.0937 S. Inset: temperature dependence. Measure
current of 70 nA in both curves.

zero field is hardly distinguishable [12]. Atf ­ f0y2,
the conductance maximum is near 500 mK and the re
trance has a much larger amplitude. Atf ­ f0, the
curve is close to the zero-field case, and, atf ­ 3f0y2,
close to thef0y2 case. Increasing further the magne
field [Fig. 4(left part)], the conductance peak is displac
to higher temperature and thef0 periodic modulation is
suppressed. Figure 5 shows the conductance peaks
gies obtained from both the current-voltage characteris
and temperature dependence of the conductance as a
tion of the magnetic flux. Hence the magnetic field h
two effects on the reentrance: (i) a largef0 oscillation of
the peak position at low field; (ii) a monotonous shift
higher fields.

Most of our observations can be analyzed in the fram
work of the quasiclassical theory for inhomogenous sup
conductors [7,9–11]. We present here a simplified vers
that, however, keeps the essential physical features.
consider the mesoscopic regime where the inelastic s
tering length is larger than the sample lengthL between
the reservoirs. The flow of electrons at a particular e
ergy e is then uniform over the sample, and one has
consider transport through independent channels at the
ergy e. In a perfect reservoir, electrons follow the Ferm

FIG. 3. Magnetoconductance oscillations showingF0 ­
hy2e flux periodicity at T ­ 50 mK (solid line) and
T ­ 500 mK (dashed line). Reentrance of the resistance
visible at half-integer magnetic flux and at high field. Ins
oscillations amplitude together with a 1yT power law fit.
4951
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FIG. 4. Left: measured temperature dependence of the
ductance at different values of the magnetic fluxF in units
of the flux quantum:FyF0 ­ 0; 1y2; 1; 3y2; 2; 3.8; 5.6; 7.4.
Measurement current is 200 nA. Right: calculated conducta
in the linear approximation for the sample model of the Fig
inset and at the same values of the flux. The only adjust
parameter is the effective width of the wires.

equilibrium distribution at temperatureT and chemical po-
tential m. Charges are injected in the system from o
reservoir atm ­ eV and transferred to the other, so th
the current is carried by electrons within an energy w
dow f0, m ­ eV g with a thermal broadeningkBT . Let us
assume that the proximity effect can be accounted for
conductivity enhancementdsse, xd depending on both th
energye and the distancex from the S interface. From th
behavior ofdsse, xd it is then straightforward to calculat
the excess conductancedgsed for the precise geometry o
the sample. The excess conductancedGsV , T d at voltage
V and temperatureT writes as

dGsV , T d ­
Z `

2`

dgsedPsV 2 ed de , (1)

wherePsed ­ f4kBTcosh2sey2kBTdg21 is a thermal ker-
nel which reduces to the Dirac function atT ­ 0. Hence,
the low-temperature differential conductancedIydV ­
GN 1 dG probes the proximity-induced excess cond
tancedgsed at energye ­ eV with a thermal broadening

FIG. 5. Energy of the conductance maximum as a func
of the magnetic fluxf in units of F0. The black square
dots are obtained from the voltage-conductancedIydV sV d
characteristics atT ­ 100 mK, except forFyF0 ­ 0 and 1
(T ­ 22 and 45 mK). The white circles are obtained fro
Fig. 4. The discrepancies in between reflect the imperfect
of the reservoirs at low energies.
4952
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kBT . Independent measurements of the excess con
tance as a function ofT andV agree with Eq. (1) for not
too low temperatures and voltages, provided the chem
potential in the reservoirs is taken as equal to the m
sured voltage times a geometrical factor of 1.05. This c
respondence, however, fails for energies less than a
5 meV: we believe that, at these energies, the inela
collision rate is too small to ensure a good thermalizat
in the reservoirs [13].

In N and at zero magnetic field,Fse, xd follows the
Usadel equation that for smallF can be linearized as

h̄D≠2
xF 1

√
2ie 2

h̄D
L2

w

!
F ­ 0 . (2)

The linearization used above is a very crude appro
mation, since near the interface, which is believed to
clean, the pair amplitude should be large [in this appro
mation, we haveFse ø D, 0d ­ 2ipy2 for a perfectly
transparent interface [13]]. At the contact with a N res
voir, F is assumed to be zero. However, this simple f
mulation enables a straightforward understanding of
physical root of the conductance enhancement in a pr
mity system. Indeed, Eq. (2) features simply a diffusi
equation for the pair amplitudeF at the energye with a
decay lengthLe and a cutoff atLw . At a particular en-
ergy e, the real part of the pair amplitude is zero at the
interface, maximum at a distanceLe if Le ø Lw , L, and
then decays in an oscillating way. The pair amplitudeF is
responsible for the local enhancement of the conducti
dsse, xd ­ sN sssRefFse, xdgddd2 for small F, sN being the
normal-state conductivity [7,9–11]. It involves two co
tributions: a positive and dominant one which is similar
the Maki-Thompson fluctuation term in superconduct
aboveTc [14] and a negative one related to the decre
of the density of states. The two contributions cancel e
other at zero energy [15].

We model the sample as two independent S-N circ
in series as shown in the inset of Fig. 1. This
our main approximation. It describes the main phys
of our particular geometry and illustrates more gene
situations. Both circuits consist of a N wire betwe
a superconductor S and a normal reservoir N. Alo
the wire, the excess conductivitydsse, xd at a given
energy e increases from zero at the N-S interface
a maximum of about0.3sN at a distanceLe from the
interface (ifL ø Lw) and then decays exponentially wit
x. The integrated excess conductancedgsed of the whole
sample rises from zero with ane2 law at low energy,
reaches a maximum of0.15GN at about5ec, and goes
back to zero at higher energy with a1y

p
e law. This

behavior is indeed confirmed in the experimental res
in Fig. 2. We observe a conductance peak as a func
of both a temperature and voltage. The conducta
is maximum for a temperature (50 mK) close to t
calculated crossover temperatures5ecykB ­ 65 mKd, see
the Fig. 2 inset. Only qualitative agreement betwe
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the observed (1.7mV) and calculated energys5ec ­
5.5 mVd is obtained. This discrepancy is believed
be due to insufficient energy relaxation efficiency at lo
energy in the Cu reservoirs.

Because of the loop geometry, a magnetic field indu
an Aharonov-Bohm flux, which changes the bound
conditions on the pair amplitudeFsed. At zero magnetic
flux, Fsed is zero only at contact with the norma
reservoirs. At half-magnetic flux, destructive interferen
of the pair functions in the two branches enforces a z
in Fsed at the node K [see Fig. 1(inset)]. Consequen
the pair amplitude is also zero between the loop and th
reservoir. Half a flux quantum then reduces the effect
sample size to the lengthL0 between the S interfac
and the pointK. In the intermediate temperature regim
kBT . ec (or LT , L), this modulates the conductanc
with a relative amplitude of the order ofecykBT [13], in
qualitative agreement with the experiment.

As an additional effect of the magnetic fieldH, the
phase-memory lengthLw is renormalized due to the finit
width w of the Cu wire [16]:

L22
w sHd ­ L22

w s0d 1
p2

3
H2w2

F
2
0

. (3)

When smaller than the sample lengthL, the phase-
memory lengthLwsHd plays the role of an effective
length for the sample. As a result, the conductance p
is shifted to higher temperatures and energies when
magnetic field increases, see Figs. 4 and 5. At h
magnetic field, the position of the conductance maxi
does not increase as rapidly as would be expec
because of the field-induced depletion of the gapD.
In the right part of Fig. 4, we show the calculate
conductance using Eqs. (1)–(3) in the modeled geom
of the Fig. 1 inset in the case of a fully transpare
interface. The only free parameter is the width of t
wires which has been adjusted so that the experime
damping of the amplitude of the magnetoconducta
oscillations by the magnetic field, see Fig. 3, is w
described by the calculation. The discrepancy betw
the fitted value w ­ 65 nm and the measured valu
is attributed to deviations of sample geometry fro
our simple model. Our calculation accounts for bo
the global shape and amplitude of the curves, and
their behavior as a function of the magnetic flux. Th
is particularly remarkable with respect to the stro
assumptions of the model. One should note that the qu
tative shape and amplitude of the curves are conse
if nonlinearized Usadel equations or slightly differe
geometrical parameters are used.

In conclusion, we have measured the energy dep
dence of the proximity effect on the conductance nea
N-S junction. As predicted in recent works [9,10], w
have observed the reentrance of the metallic conducta
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when all energies involved are below the Thouless ene
of the sample. In contrast with a very recent similar o
servation [17], the energy crossover has been tracked
function of temperature, voltage, and magnetic field. O
experimental results are well described by the lineariz
Usadel equations from the quasiclassical theory.
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