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Reentrance of the Metallic Conductance in a Mesoscopic Proximity Superconductor

P. Charlat, H. Courtois! Ph. Gandit, D. Mailly,> A. F. Volkov,> and B. Pannetiér
ICentre de Recherches sur les Trés Basses Températures-C.N.R.S. associé a I'Université Joseph Fourier, 25 Av. des Martyrs,
38042 Grenoble, France
’Laboratoire de Microstructures et de Microélectronique-C.N.R.S., 196 Av. H. Ravera, 92220 Bagneux, France

3Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Mokhovaya St. 11, 103907 Moscow, Russia
(Received 14 May 1996

We present an experimental study of the diffusive transport in a normal metal near a superconducting
interface, showing the reentrance of the metallic conductance at very low temperature. This new
mesoscopic regime comes in when the thermal coherence length of the electron pairs exceeds the
sample size. The reentrance is suppressed by a bias voltage given by the Thouless energy and can
be strongly enhanced by an Aharonov-Bohm flux. Experimental results are well described by the
linearized quasiclassical theory. [S0031-9007(96)01817-0]

PACS numbers: 74.50.+r, 73.20.Fz, 73.50.Jt, 74.80.Fp

During the past few years, the proximity effect betweenwave vector. The phase conjugation between the electron
a superconductor (S) and a normal (N) metal has met and the hole results in a finite pair amplitude involving
noticeable revival, thanks to spectacular progress in thetatedkr + €/hAvr, —kr + €/hvr), vr being the Fermi
fabrication of samples of mesoscopic size [1]. Experi-velocity. Such a pair maintains coherence in N up to the
mental study of the transport near a S-N interface hasnergy-dependent diffusion length, = \/iD/e [7,11]
shown that the proximity effect strongly affects electronwhich coincides with the well-known thermal length
transport in mesoscopic S-N systems: The deviai6h L; = /hiD/kgT ate = 2wkgT.
of the conductance from its normal-state value depends In the high-temperature regimér < L or, equiva-
strongly on temperaturd and oscillates in an applied lently, e. < kgT, it is well known that the proximity ef-
magnetic fieldH if a N loop is present [2—4]. Various fect results in the subtraction of a length of N metal
theoretical approaches were suggested to explain this b&rom the resistance of a S-N junction. In the low tem-
havior. A scattering matrix method based upon the LanperatureL; > L or e, > kT and low voltageeV < e,
dauer formula [5] as well as a numerical solution of theelectron pairs are coherent over the whole sample. The
Bogolubov—de Gennes equations [6] were used. Thesgsroximity effect on the N metal resistance is still pre-
studies demonstrated that superconductivity does not aélicted to be zero. In this Letter, we report the experi-
fect the charge transfer in the N metal if the temperalure mental realization of both limitsi{ < Ly and L > Ly)
and the voltag®/ are zero, i.e.AG is zero at zero energy. and the observation of the reentrance of the metallic con-
A more powerful method based on the equations for theluctance in a mesoscopic proximity superconductor. The
quasiclassical Green’s functions [7—10] was used to oblow-temperature reentrant regime is destroyed by increas-
tain the dependence &fG on T andV. It has been estab- ing the temperature [9] or the voltage [10]. As will be
lished [9] that atv = 0 the deviation of the conductance discussed below, an Aharonov-Bohm flux modifies the ef-
AG increases from zero &t = 0 (if electron-electron in-  fective length of the sample and therefore shifts the energy
teraction in N is negligible) with increasing, reaches crossover of the reentrant regime.
a maximum at approximately the Thouless temperature Figure 1 shows a micrograph of the sample made of a
e./kg = D /kzL?, and decreases to zero™t> €./kg.  square copper (Cu) loop in contact with a single aluminum
This constitutes the reentrance effect for the metallic con¢Al) island. The loop, although not essential for the
ductance of the N metal. Similar dependenceAdt(V) occurrence of the reentrance effect, allows one to control
at T = 0 has been found in [10] both in a numerical so-boundary conditions for the pair amplitude. The Cu wire
lution of the Bogoliubov—de Gennes equations and in amvidth is 150 nm and its thickness is about 40 nm. The
analytical solution of the equations for the quasiclassicatlistance between the Cu loop and the Al island is about
Green'’s functions. 100 nm, whereas the perimeter of the loop isut.

The physics behind this reentrance effect involvesOne should note that the sample geometry differs from
nonequilibrium effects between quasiparticles injected byll previous sample geometries with two superconducting
the N reservoirs and electron pairs leaking from S. Atcontacts [2—4] in that there is a single superconducting
the N-S interface, and incident electron is reflected into ghase and therefore no possible Josephson contribution.
hole of the same energy compared to the Fermi level Two voltage probes measure the distribution at the out
Er, but with a slight change in wave vectérk due to  flows of the reservoirs, which are the wide contact pads
the branch crossingik/kr = €/Er, kr being the Fermi  at both ends of the Cu wire. The Cu surfacdrissitu
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FIG. 2. Non-monotonous voltage dependence of the sample
FIG. 1. Micrograph of the sample made of a continuous Cuconductance al' = 22 mK; the normal-state conductanc¢g,

(= N) loop in contact with a single Al S) island. Inset: is 0.0937 S. Inset: temperature dependence. Measurement
simple model. At half-integer magnetic flux, a conditiBn= 0 current of 70 nA in both curves.

is enforced at the poif atL’ = 1 um from S. The distances

between S and the right and left N reservoirs are, respectively,

L =2 pmand 0.5um zero field is hardly distinguishable [12]. At = ¢o/2,

the conductance maximum is near 500 mK and the reen-
trance has a much larger amplitude. &t= ¢y, the
Murve is close to the zero-field case, andgat 3¢ /2,
close to theg,/2 case. Increasing further the magnetic
field [Fig. 4(left part)], the conductance peak is displaced
to higher temperature and thi, periodic modulation is
suppressed. Figure 5 shows the conductance peaks ener-
gies obtained from both the current-voltage characteristics
and temperature dependence of the conductance as a func-
tion of the magnetic flux. Hence the magnetic field has
two effects on the reentrance: (i) a largg oscillation of

the peak position at low field; (ii) a monotonous shift at
higher fields.

o Most of our observations can be analyzed in the frame-
magnetic field, we opservediecre_asa)f the low-voltage work of the quasiclassical theory for inhomogenous super-
conductance [Fig. 2(inset)]. This occurs below 50 MK, - 5nductors [7,9—-11]. We present here a simplified version
at the temperature Where a Josephson coupling WOUlﬁHat, however, keeps the essential physical features. We
be expected in a two-island geometry. The voltage deéonsider the mesoscopic regime where the inelastic scat-
qg}ing length is larger than the sample lengthbetween

the reservoirs. The flow of electrons at a particular en-

. . . ) [ fergy € is then uniform over the sample, and one has to
linear behavior discards an interpretation in terms Olconsider transport through independent channels at the en-

weak localization, which is known tq be insensitive ergy e. In a perfect reservoir, electrons follow the Fermi
to voltage. The conductance peak is observed at a

bias voltage (about 1.4V) of the order of the cal-
culated Thouless energy, = 1.1 uV related with a
sample lengthL = 2 um. In the Fig. 2 inset, the peak 1.08 ¢
position is also consistent with the Thouless tempera- G/G,
ture e./kg = 13 mK. One can note that the discussed
energies are much smaller than Al energy dap 1.04
Let us now analyze the effect of the magnetic field.
Figure 3 shows oscillations of the magnetoconductance
with a periodicity of one flux quantung, = 4/2e in ;
the loop area. Here the reentrance effect can be seen 1L RN '
very clearly atp = ¢o/2,3¢0/2, and at higher field. As -10 S 0 o/, 5 10
previously observed in two-island samples, the oscilIationFIG 3. Magnetoconductance  oscillations  showirg
; ; . 3. u illati wing, =
S e e w2 ¢ erodicy at T S0mK. (ol ne) and
: : . = 500 mK (dashed line). Reentrance of the resistance is
dependence of the conductance for various values of thgsible at half-integer magnetic flux and at high field. Inset:
magnetic flux in the loop. On this scale, the reentrance aiscillations amplitude together with &L power law fit.

cleaned before Al deposition in order to ensure an optimu
transparency of the QW interface [4].

We performed transport measurements incanetal-
shielded dilution refrigerator down to 20 mK.  From
the normal-state conductanagy = 0.0937 S we find
a diffusion coefficientD = 70 cn?/s, an elastic mean
free pathl, = 13 nm, and a thermal coherence length
Ly = 92 nm/y/T. Aluminum islands become supercon-
ducting belowT, = 1.4 K. The behavior of the con-
ductance in the high-temperature regime < L (i.e.,
above 500 mK) is very similar to the two-island case
[4]. At lower temperatures, so thdiy = L, and zero

striking behavior, i.e., arincrease of the conductance
when the bias voltage isicreased(Fig. 2). This non-
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oi0.20 kgT. Independent measurements of the excess conduc-
\\ tance as a function of andV agree with Eq. (1) for not
[N]SR, ] 1 01 too low temperatures and voltages, provided the chemical
/wE@w e potential in the reservoirs is taken as equal to the mea-
G(©S) | e G(S) sured voltage times a geometrical factor of 1.05. This cor-
/Z/DD """ respondence, however, fails for energies less than about
//';D B 5 ueV: we believe that, at these energies, the inelastic
BB collision rate is too small to ensure a good thermalization
0.095r ﬁ 1 0.095 in the reservoirs [13].
5 300 490 0~ 200 200 In N and at zero magnetic field; (e, x) follows the
T (mK) T(mK) Usadel equation that for smdtlcan be linearized as
FIG. 4. Left: measured temperature dependence of the con- EDO2F + [ 2ie — E_D F=0. (2)
ductance at different values of the magnetic fl@xin units * L%P

of the flux quantum®/®, = 0; 1/2; 1; 3/2; 2; 3.8; 5.6; 7.4. . o . .
Measurement current is 200 nA. Right: calculated conductancdN€ linearization used above is a very crude approxi-
in the linear approximation for the sample model of the Fig. 1mation, since near the interface, which is believed to be

inset and at the same values of the flux. The only adjustablelean, the pair amplitude should be large [in this approxi-
parameter is the effective width of the wires. mation, we haveF(e < A,0) = —iw/2 for a perfectly
transparent interface [13]]. At the contact with a N reser-
voir, F is assumed to be zero. However, this simple for-
equilibrium distribution at temperatufieand chemical po- mulation enables a straightforward understanding of the
tential x. Charges are injected in the system from onephysical root of the conductance enhancement in a proxi-
reservoir atu = ¢V and transferred to the other, so thatmity system. Indeed, Eq. (2) features simply a diffusion
the current is carried by electrons within an energy win-equation for the pair amplitude at the energy with a
dow[0, u = eV]with athermal broadeninkzT. Letus decay lengthL. and a cutoff atL,,. At a particular en-
assume that the proximity effect can be accounted for asergy e, the real part of the pair amplitude is zero at the S
conductivity enhancemento (e, x) depending on both the interface, maximum at a distanée if L. < L, L, and
energye and the distancefrom the Sinterface. From the then decays in an oscillating way. The pair amplit&de
behavior ofé o (e, x) it is then straightforward to calculate responsible for the local enhancement of the conductivity
the excess conductanég (e) for the precise geometry of So(e,x) = on(RgF(€,x)])* for smallF, oy being the
the sample. The excess conductad¢HV,T) at voltage normal-state conductivity [7,9—11]. It involves two con-

V and temperatur@& writes as tributions: a positive and dominant one which is similar to
o the Maki-Thompson fluctuation term in superconductors
SG(V,T) = f og(e)P(V — €)de, (1) aboveT. [14] and a negative one related to the decrease

of the density of states. The two contributions cancel each

other at zero energy [15].

nel which reduces to the Dirac function&t= 0. Hence, . We model the sampl_e as tW.O mdepend.ent S-N CI.I’CU.ItS
in series as shown in the inset of Fig. 1. This is

the low-temperature differential conductandé/dV = our main approximation. It describes the main physics
Gy + 6G probes the proximity-induced excess conduc- P . phy

- ) . of our particular geometry and illustrates more general
tancedg(e) at energye = eV with a thermal broadening situations. Both circuits consist of a N wire between

a superconductor S and a normal reservoir N. Along

whereP(e) = [4kgTcosh(e/2kzT)]"! is a thermal ker-

60 . . . the wire, the excess conductivityo(e,x) at a given
E EEEEI energy € increases from zero at the N-S interface to
(ueV) - a maximum of about.3oy at a distancel. from the
or * P ] interface (ifL < L) and then decays exponentially with
N X. The integrated excess conductaidgde) of the whole
¢ sample rises from zero with ae’ law at low energy,
04 1 2 o, 3 4 reaches a maximum di.15Gy at about5e., and goes

back to zero at higher energy with 1&./e law. This
FIG. 5. Energy of the conductance maximum as a functiorbehavior is indeed confirmed in the experimental results
of the magnetic flux¢ in units of ®,. The black square in Fig. 2. We observe a conductance peak as a function
dots are obtained from the voltage-conductantigdV(V)  of photh a temperature and voltage. The conductance

characteristics af” = 100 mK, except for®/®, =0 and 1 . .
(T =22 and 45 mK). The white circles are obtained from IS maximum for a temperature (50 mK) close to the

Fig. 4. The discrepancies in between reflect the imperfection§alculated crossover temperatife. /kp = 65 mK), see
of the reservoirs at low energies. the Fig. 2 inset. Only qualitative agreement between
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the observed (1.V) and calculated energy5e. =  when all energies involved are below the Thouless energy
5.5 uV) is obtained. This discrepancy is believed toof the sample. In contrast with a very recent similar ob-
be due to insufficient energy relaxation efficiency at lowservation [17], the energy crossover has been tracked as a
energy in the Cu reservoirs. function of temperature, voltage, and magnetic field. Our
Because of the loop geometry, a magnetic field inducesxperimental results are well described by the linearized
an Aharonov-Bohm flux, which changes the boundaryUsadel equations from the quasiclassical theory.
conditions on the pair amplitudg(e). At zero magnetic We thank P. Butaud, M. Dévoret, D. Esteve, B. Spi-
flux, F(e) is zero only at contact with the normal vak, T. Stoof, A. Zaikin, and F. Zhou for stimulating dis-
reservoirs. At half-magnetic flux, destructive interferencecussions. A.F.V. thanks P. Monceau for hospitality, the
of the pair functions in the two branches enforces a zer&kussian Fund for Fundamental Research, and the collab-
in F(e) at the node K [see Fig. 1(inset)]. Consequently,oration program between the Ecole Normale Superieure
the pair amplitude is also zero between the loop and the e Paris and the Landau Institute for Theoretical Physics
reservoir. Half a flux quantum then reduces the effectivdor support. We also acknowledge financial support from
sample size to the lengtih’ between the S interface Région-Rhone-Alpes and D.R.E.T.
and the poinK. In the intermediate temperature regime
kgT > €. (or Ly < L), this modulates the conductance
with a relative amplitude of the order ef./kzT [13], in
qualitative agreement with the experiment.
As an additional effect of the magnetic field, the  [1] See references in “Mesoscopic Superconductivity”, ed.
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