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Local Negative Shear and the Formation of Transport Barriers
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We present a set of 3D nonlinear equations describing drift-resistive ballooning modes in a
including the self-consistent modification of the local magnetic shear due to the finiteb shift of the
flux surfaces. Simulations using these equations reveal that a bifurcation of the transport occurs
the local magnetic shear on the outside midplane reverses sign. A fully self-consistent bifurc
diagram is calculated which reveals significant hysteresis, i.e., the transport barrier is maintain
lower values ofb than is required for the formation of the barrier, as expected from the experime
observations. [S0031-9007(96)00616-3]

PACS numbers: 52.30.Jb, 52.35.Kt, 52.55.Fa
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Energy confinement in tokamaks and other plasma
sion experiments is always lower than can be explained
transport by classical interparticle collisions. The obser
tion of the formation of transport barriers in tokamaks fi
in the plasma periphery during theL-H transition [1,2] and
more recently in the core [3–6] has provided strong e
dence that transport can be controlled. The developm
of an understanding of the underlying causes of these
riers is critical if we are to be able to have confidence
our ability to maximize their benefit in improving confin
ment. The leading model to explain theL-H transition is
based on sheared flow generation and the associated
bilization of turbulence [7,8]. However, experimental e
dence supporting the role of sheared flow on the transi
is contradictory [9,10]. More recently, suggestions t
negative magnetic shear would stabilize fluctuations
improve confinement [11] were dramatically confirmed
experiments in D-IIID [6] and TFTR [5] and led to renewe
interest in the role of magnetic shear on toroidal instab
ties. The mechanism for reversed shear stabilization
been identified as the poloidal twisting of radially extend
curvature driven fluctuations [12].

In this Letter we suggest that local negative magn
shear may in fact underlie the formation of transport b
riers which form both in the plasma edge during theL-H
transition and in the plasma core. It is well known that
compression of poloidal magnetic flux on the large m
jor radius side of a toroidal plasma causes the magn
shear to locally reverse if the pressure gradient is su
ciently large. We demonstrate that this toroidally induc
negative shear stabilizes drift-resistive ballooning mod
which have been identified as the likely mechanism
anomalous transport in the plasma edge [13,14]. Fur
we present a set of model equations which self-consiste
describe the full 3D evolution of drift-resistive balloo
ing modes coupled with the evolution of the ambient pr
sure gradient and the shift of the magnetic flux surfac
These equations are strictly valid only in the collision
edge plasma. Simulations completed with these equat
reveal a transport bifurcation which arises as the pres
0031-9007y96y77(3)y494(4)$10.00
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increases and the local magnetic shear on the outsid
the torus reverses. A similar idea based on the chang
the direction of precession of trapped particles is being
plored by others [15].

The calculations are carried out in a flux tube bas
coordinate system consisting of a poloidally and radia
localized domain which winds around the torus [14].
a simple shifted circle model, the coupled equations
perturbations of the densityn, potentialf, and parallel
flow yz are given by

dn
dt

1
≠f

≠y
2 enCsf 2 adnd 1

aden
≠2

≠z2
sf 2 adnd 1 g

≠yz

≠z
­ 0 , (1)

d
dt

=2
'f 1 Cn 1

≠2

≠z2 sf 2 adnd ­ 0 , (2)

dyz

dt
1 g

≠n
≠z

­ 0 , (3)

whereTi ­ 0 andTe is assumed to be a constant,C is the
curvature operator,

C ­ fcoss2pzd 1 hszd sins2pzd 2 eg
≠

≠y
1 sins2pzd

≠

≠x
,

(4)

=2
' ­

µ
≠

≠x
1 hszd

≠

≠y

∂2

1
≠2

≠y2
, (5)

hszd ­ 2p ŝz 2 a sins2pzd , (6)

d
dt

­
≠

≠t
1 ẑ 3 ===f ? === ,

wherez lies alongB, the ambient density gradient is i
thex direction and they direction is defined byB ? ===y ­
0. The equations have been normalized usingLz ­ 2pqR
as the parallel scale length,L0 ­ 2pqsneiRrsy2Ved1y2 3

s2RyLnd1y4 as the transverse scale and the ideal balloon
growth time,t0 ­ sRLny2d1y2ycs, as the time. In these
© 1996 The American Physical Society
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normalized unitsnyn0 , yzycs , L0yLn, f , BL2
0yct0

and the transport scales like

D0 ­ s2pqd2r2
eneiRyLn . (7)

Other parameters areen ­ 2LnyR, the inverse aspect ratio
e ­ ayR, the diamagnetic parameterad ­ rscst0yLnL0,
andg ­ cst0yLz with Ln the equilibrium density (or pres
sure) scale length. Realistic diffusive dissipation terms
added to each equation to model ion viscosity and cla
cal transport. The spatial-differencing and time-stepp
schemes used to advance the equations have been
scribed previously [14].

The key new ingredient in these equations is t
toroidal shift induced magnetic shear which appears in
function hszd in (6). The standard flux surface averag
magnetic shear̂s ­ sdqydxdayq is now combined with
the magnetic shear induced by the toroidal shift of the fl
surfaces, proportional toa ­ aedbpydx. The toroidally
induced shear is negative on the outside of the to
(z , 0) and positive on the inside (z , 0.5). Thus, for
a . ŝ the local magnetic shear on the outside of the to
becomes negative. Negative magnetic shear gene
has a stabilizing impact on both ideal and kinetic mod
driven by curvature. The local negative shear produc
by the toroidal shift of the flux surfaces is one of th
factors causing second stability of ideal modes [16,17]

Since the impact of the pressure induced shear on
transport driven by resistive-ballooning modes has
been explored, we first present the results of such a stu
Equations (1)–(3) are seeded with small perturbations
then advanced in time until the average properties
the turbulence reach a steady state. The particle
G ­ knyxl can then be evaluated, wherek l denotes a
spatial average over the entire volume of the simulat
domain. In Fig. 1 we plotG as a function ofa from
a series of simulations with parametersLz ­ 3.0, Ly ­
8.0, Lx ­ 7.64, ŝ ­ 1.0, ad ­ 0.25, en ­ 0.1, andg ­
0.02. The flux first increases with increasinga and then
drops off sharply. The mechanism for stabilization is t

FIG. 1. The particle fluxG versusa from a series of 3D
simulations.
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poloidal twisting of radial flows as discussed previous
[12]. Thus, the pressure induced toroidal shift of the fl
surfaces strongly reduces the transport driven by resist
ballooning modes.

We now want to couple the transport with the toroid
shift of the surfaces calculated consistently with the loc
transport to explore how and when a bifurcation occu
Specifically the bifurcation occurs as follows: a loc
increase of the plasma pressure gradient causes an inc
of the toroidal shift and associated local negative she
the increased negative shear stabilizes the turbulence
reduces transport; reduced transport causes the pres
gradient to increase. The critical value ofbp required for
the bifurcation must be calculated from a more spec
model, which we now present. Because of the perio
boundary conditions imposed in the radial direction, o
edge turbulence code allows local evolution of the dens
profile but does not describe the evolution of a glob
profile. To study self-steepening, we therefore need
solve a separate model equation for the average grad
n0. For simplicity we treat the barrier as a region o
fixed width, Ln, the density gradient scale length in th
L mode, but with a time varying gradientn0. The total
particle number in the layer isN ­ n0L2

ny2. The rate of
change ofn0 is calculated from≠Ny≠t, which is given
by the difference between the flux into the edge fro
the central core,Gc 1 D0n0

c, and the flux through the
edge,G 1 D0n0, whereD0 is the neoclassical diffusion
rate, n0

c is the gradient in the core just inside the edg
Gc being the anomalous flux in the same location, a
G is the anomalous flux in the edge calculated from t
3D simulation. The resulting evolution equation forn0 in
dimensionless form is then

d
dt

n0 ­ sGc 1 D0n0
c 2 G 2 D0n0dytn , (8)

where tn is the confinement time of the edge. I
dimensionless unitstn ­ L2

nyL2
0 ¿ 1 where the inequal-

ity follows because the characteristic time required f
the gradient in the edge to change is much longer than
characteristic time scale of the turbulence. To feed
evolution of the gradient into the code,n0 is inserted in
front of the ≠fy≠y in the continuity equation (1) and
a ­ ân0 in the equation for the shear in (6). The contr
parameter in the nonlinear system is nowâ. Increasingâ
corresponds to increasingbp in the physical system. We
take the fluxGc from the core into the edge to be fixe
at the level given bya ­ 0.0 in Fig. 1 with n0

c ­ 1 also
fixed. The normalization is to the pretransition gradie
With n0 ­ 1.0 initially, we then ramp upâ either very
slowly in time or in small increments. Equation (8
evolvesn0 in time. If the flux through the edge drop
below that from the core, the right side of (8) is positiv
and the gradient increases. In a stable situation
increased gradient increases the edge particle flux u
495
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th
the equilibrium condition

G 1 D0n0 ­ Gc 1 D0 (9)

is satisfied andn0 remains stationary at a higher valu
The stability of this equilibrium can be simply calculate
by varying Eq. (8) with respect to a perturbation of t
density gradient. The system is unstable if

dG

dn0
­

≠G

≠n0
1

≠G

≠a

≠a

≠n0
, 2D0 . (10)

Normally, ≠Gy≠n0 . 0 so this term is stabilizing. Spe
cifically, in the resistive-ballooning regime where diama
netic effects are small,G , n02. Figure 1 indicates tha
for a above 0.5 the toroidally induced shear reduces tra
port and therefore drives the bifurcation. In Fig. 2 w
plot the diffusion rateD ­ D0 1 Gyn0 andn0 from a se-
ries of simulations with varying values of̂a, D0 ­ 0.2,
and other parameters as in Fig. 1. The diffusion rema
high up toâ ­ 0.85 and then begins to slowly decrea
in parallel with a gradual rise inn0. Above â ­ 0.972
no steady state solution is found with high diffusion.
this regime the diffusion drops andn0 increases until a
new equilibrium is reached with low diffusion and a larg
gradient, i.e.,n0 . 3. The low diffusion solutions remain
stable for values of̂a down to 0.87. In this low diffu-
sion regime the neoclassical and fluctuation driven dif
sion contribute at comparable levels. The plus in Fig
corresponds to an unstable equilibrium point, which w
obtained by sweepingn0 until the equilibrium condition

FIG. 2. The diffusion rateD and density gradientn0 versusâ
across the bifurcation.
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in (9) was satisfied. Figure 2 clearly demonstrates t
the transport undergoes a bifurcation due to the finiteb

shift of the flux surfaces in a torus. Following the usu
convention, we refer to the high and low confinement s
lutions as theH andL modes. The bifurcation occurs fo
a ­ ân0 ­ 1.2 which for ŝ ­ 1 corresponds to a slightly
negative local shear on the outside midplane. Surp
ingly, the fluctuation level in theL andH modes at a fixed
value ofâ is virtually the same. Of course, in theH mode
the density gradient is much larger than in theL mode and
the rate of diffusion is much smaller. With increasingâ

in the H mode the amplitude of the fluctuations rapid
decreases. The turbulence undergoes a change in ch
ter across the transition. The difference in the charac
of the turbulence can be seen in the grey-scale plots
the density fluctuations in thex-y plane shown in Fig. 3.
The plots are both from simulations witĥa ­ 0.96 with
(a) and (b) corresponding to theL andH modes, respec-
tively. The fluctuations in (a) exhibit radially extende
disturbances with distinct mushroomlike structures typi
of resistive-ballooning driven turbulence [14]. In (b) th
disturbances are smoother and have a shorter radial
relation length. In this regime, the fluctuationsn and f

are also more strongly correlated, reducing the transp
If the curvature in the simulation in (b) is turned off, th
fluctuations actually increase in amplitude. Linear stab
ity calculations reveal that the strong modulation of t
shear in the system allows drift waves to grow even in
absense of curvature. The instability therefore is disti
from the toroidal drift waves explored previously [18
The transport associated with these instabilites is weak

There is already substantial experimental evidence
local shear reversal plays a role in the formation of bo

FIG. 3. Density fluctuations in (a) theL mode and (b) the
H mode forâ ­ 0.96.



VOLUME 77, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JULY 1996

e

t

g

t

a

a

l

o

l
e

e
e
in
ed
o-
rt

t-

-

s.

tt.
edge and central transport barriers. Direct measurem
of the radial profile of the vertical magnetic fieldBz on
the outside midplane of the DIII-D tokamak using th
motional Stark effect (MSE) reveal that in theL mode
the local magnetic shear in the edge is positive while i
negative in theH mode [19]. Analysis of pellet induced
transport barriers in JET reveals that local reversed sh
is produced by the steep pressure gradients in the core
gion [3]. The core highbp transport barriers on JT60-U
are observed to form near the magnetic axis and propa
outwards [4]. The genesis of the barrier in this region
weak average magnetic shear is qualitatively consis
with the thresholda , ŝ for the local shear to reverse
i.e., a small pressure gradient is required to reverse
local shear and form the barrier in a region where the
erage magnetic shear is small. Once the barrier forms
pressure induced reversed shear is large and the ba
can move radially outwards where the average posit
shear is larger. Of course, this cannot be the whole st
because there is still a power threshold which must be
ceeded for the formation of internal barriers in tokam
discharges with negative average shear [5,6]. We emp
size again that resistive-ballooning modes are not unsta
in the hot central core of tokamaks so that application
the present theory to this region can be only qualitative

Two final issues concern the role of sheared flow a
the stability of ideal pressure driven ballooning mode
Resistive-ballooning modes are unstable and drive tra
port in the edge of tokamaks at small values ofa. The
present theory suggests that these modes are stabi
by the local reversed magnetic shear whena exceeds a
threshold. This theory requires that the stability thresh
for ideal ballooning modes be above thea threshold for
stabilization of the resistive modes. In a simple circu
cross-section machine this gap may not even exist whil
machines with modest elongation and triangularity the g
is substantial since the idealb limit increases significantly
or is absent [20]. The most complete models of theL-H
nts
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transition are based on the stabilization of turbulenc
by sheared flow [7,8]. The present simulations includ
sheared flow but do not properly model the shear layer
the edge region. Thus our point is not to claim that shear
rotation cannot cause a bifurcation but to show that the l
cal reversed shear is important in the formation of transpo
barriers.
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