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Local Negative Shear and the Formation of Transport Barriers
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We present a set of 3D nonlinear equations describing drift-resistive ballooning modes in a torus
including the self-consistent modification of the local magnetic shear due to the finsteift of the
flux surfaces. Simulations using these equations reveal that a bifurcation of the transport occurs when
the local magnetic shear on the outside midplane reverses sign. A fully self-consistent bifurcation
diagram is calculated which reveals significant hysteresis, i.e., the transport barrier is maintained at
lower values ofg than is required for the formation of the barrier, as expected from the experimental
observations. [S0031-9007(96)00616-3]

PACS numbers: 52.30.Jb, 52.35.Kt, 52.55.Fa

Energy confinement in tokamaks and other plasma fuincreases and the local magnetic shear on the outside of
sion experiments is always lower than can be explained bthe torus reverses. A similar idea based on the change in
transport by classical interparticle collisions. The observathe direction of precession of trapped particles is being ex-
tion of the formation of transport barriers in tokamaks firstplored by others [15].
in the plasma periphery during ttheH transition [1,2] and The calculations are carried out in a flux tube based
more recently in the core [3—6] has provided strong evicoordinate system consisting of a poloidally and radially
dence that transport can be controlled. The developmembcalized domain which winds around the torus [14]. In
of an understanding of the underlying causes of these baa simple shifted circle model, the coupled equations for
riers is critical if we are to be able to have confidence inperturbations of the density, potential ¢, and parallel
our ability to maximize their benefit in improving confine- flow v, are given by
ment. The leading model to explain theH transition is dn 9
based on sheared flow generation and the associated sta- — + — — ,C(¢p — ayn) +
bilization of turbulence [7,8]. However, experimental evi- dt dy

dence supporting the role of sheared flow on the transition 92 v,

is contradictory [9,10]. More recently, suggestions that ®d€n a—zz(d’ ~aqn) +y 9z 0, ()
negative magnetic shear would stabilize fluctuations and

improve confinement [11] were dramatically confirmed on d 2

d
“ o2 - — =
experiments in D-11ID [6] and TFTR [5] and led to renewed dt Vi +Cn+ 972 (¢ = aan) =0, (2)

interest in the role of magnetic shear on toroidal instabili-

ties. The mechanism for reversed shear stabilization has dv; + on _ 0 3)

been identified as the poloidal twisting of radially extended dt 0z '

curvature driven fluctuations [12]. . .whereT; = 0 andT, is assumed to be a consta€tjs the
In this Letter we suggest that local negative magnetic.,ature operator

shear may in fact underlie the formation of transport bar- '

riers which form both in the plasma edge during thel ~ ~ _ [co927z) + h(z)sin2mz) — E]i + sin27z) 9 )

transition and in the plasma core. It is well known that the dy ax

compression of poloidal magnetic flux on the large ma- ()]
jor radius side of a toroidal plasma causes the magnetic P 9 \2 92
shear to locally reverse if the pressure gradient is suffi- V2 = <— + h(z) —> + . (5)
ciently large. We demonstrate that this toroidally induced ox dy dy
negative shear stabilizes drift-resistive ballooning modes, h(z) = 278z — a sin2wz), (6)

which have been identified as the likely mechanism for d 3
anomalous transport in the plasma edge [13,14]. Further —=—+5XVep-V,

we present a set of model equations which self-consistently dr 9t

describe the full 3D evolution of drift-resistive balloon- wherez lies alongB, the ambient density gradient is in
ing modes coupled with the evolution of the ambient presthe x direction and the direction is defined bB - Vy =
sure gradient and the shift of the magnetic flux surfaced). The equations have been normalized uding= 27 ¢R
These equations are strictly valid only in the collisionalas the parallel scale lengthy = 27 g(veiRps/20.)" /% X
edge plasma. Simulations completed with these equatio@R/L,)'/* as the transverse scale and the ideal ballooning
reveal a transport bifurcation which arises as the pressuigrowth time, 7y, = (RLn/2)1/2/cs, as the time. In these
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normalized units:/ny ~ v, /c; ~ Lo/L,, ¢ ~ BL}/cty  poloidal twisting of radial flows as discussed previously

and the transport scales like [12]. Thus, the pressure induced toroidal shift of the flux
surfaces strongly reduces the transport driven by resistive-
Do = 2mq)*p2veiR/L, . (7)  ballooning modes.

We now want to couple the transport with the toroidal

Other parameters aeg = 2L, /R, the inverse aspectratio shift of the surfaces calculated consistently with the local
€ = a/R, the diamagnetic parametey = p,c,to/L,Lo,  transport to explore how and when a bifurcation occurs.
andy = c,to/L with L, the equilibrium density (or pres- Specifically the bifurcation occurs as follows: a local
sure) scale length. Realistic diffusive dissipation terms arégncrease of the plasma pressure gradient causes an increase
added to each equation to model ion viscosity and classbf the toroidal shift and associated local negative shear;
cal transport. The spatial-differencing and time-steppinghe increased negative shear stabilizes the turbulence and
schemes used to advance the equations have been deduces transport; reduced transport causes the pressure
scribed previously [14]. gradient to increase. The critical value ®f required for

The key new ingredient in these equations is thethe bifurcation must be calculated from a more specific
toroidal shift induced magnetic shear which appears in thenodel, which we now present. Because of the periodic
function 2(z) in (6). The standard flux surface averagedboundary conditions imposed in the radial direction, our
magnetic sheaf = (dg/dx)a/q is now combined with edge turbulence code allows local evolution of the density
the magnetic shear induced by the toroidal shift of the fluxprofile but does not describe the evolution of a global
surfaces, proportional ta = aedf,/dx. The toroidally profile. To study self-steepening, we therefore need to
induced shear is negative on the outside of the torusolve a separate model equation for the average gradient
(z ~ 0) and positive on the insidez (~ 0.5). Thus, for /. For simplicity we treat the barrier as a region of
a > § the local magnetic shear on the outside of the torusixed width, L,,, the density gradient scale length in the
becomes negative. Negative magnetic shear generally mode, but with a time varying gradient. The total
has a stabilizing impact on both ideal and kinetic modegarticle number in the layer & = n/L2/2. The rate of
driven by curvature. The local negative shear producedhange ofn’ is calculated fromdN/a¢, which is given
by the toroidal shift of the flux surfaces is one of theby the difference between the flux into the edge from
factors causing second stability of ideal modes [16,17]. the central corel'. + Don’, and the flux through the

Since the impact of the pressure induced shear on thedge,I" + Dyn/, where D, is the neoclassical diffusion
transport driven by resistive-ballooning modes has notate, »!. is the gradient in the core just inside the edge,
been explored, we first present the results of such a study:, being the anomalous flux in the same location, and
Equations (1)—(3) are seeded with small perturbations antt is the anomalous flux in the edge calculated from the
then advanced in time until the average properties 08D simulation. The resulting evolution equation fgdrin
the turbulence reach a steady state. The particle flugimensionless form is then
I' = (nv,) can then be evaluated, whete denotes a
spatial average over the entire volume of the simulation d

“ o I _ /
domain. In Fig. 1 we plof” as a function ofa from ar (e + Done = I' = Don')/ 7, (8)
a series of simulations with parametdrs = 3.0, L, =
8.0, Ly = 7.64,8 = 1.0,y = 025, €, = 0.1, andy =  where 7, is the confinement time of the edge. In

0.02. The flux first increases with increasimgand then dimensionless units, = L%/L% > 1 where the inequal-
drops off sharply. The mechanism for stabilization is theity follows because the characteristic time required for
the gradient in the edge to change is much longer than the
0.12 , , , characteristic time scale of the turbulence. To feed the
evolution of the gradient into the code) is inserted in
0.09 " | front of the a¢/dy in the continuity equation (1) and
* A ! . .
a = an’ in the equation for the shear in (6). The control
. parameter in the nonlinear system is n@w Increasingx
0.06 . I corresponds to increasing, in the physical system. We
take the fluxI'. from the core into the edge to be fixed
0.03} . E at the level given byr = 0.0 in Fig. 1 withn! = 1 also
. fixed. The normalization is to the pretransition gradient.
0.00 . . s With »’ = 1.0 initially, we then ramp up& either very
0 1 2 3 4 slowly in time or in small increments. Equation (8)
evolvesn’ in time. If the flux through the edge drops
o below that from the core, the right side of (8) is positive
FIG. 1. The particle fluxI' versusa from a series of 3D and the gradient increases. In a stable situation the
simulations. increased gradient increases the edge particle flux until
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the equilibrium condition in (9) was satisfied. Figure 2 clearly demonstrates that
the transport undergoes a bifurcation due to the figite
I' + Don' =T, + Dy (9)  shift of the flux surfaces in a torus. Following the usual

_ o / ' ' _ convention, we refer to the high and low confinement so-
is satisfied and:’ remains stationary at a higher value. |utions as thed andL modes. The bifurcation occurs for
The stability of this equilibrium can be simply calculated ¢ = a4n’ = 1.2 which for§ = 1 corresponds to a slightly

by varying Eg. (8) with respect to a perturbation of thenegative local shear on the outside midplane. Surpris-

density gradient. The system is unstable if ingly, the fluctuation level in thé andH modes at a fixed
dr ol ol oa value ofé& is virtually the same. Of course, in themode
a7 o aman =Dy . (10)  the density gradient is much larger than in thenode and

the rate of diffusion is much smaller. With increasifg
Normally, 9I'/dn’ > 0 so this term is stabilizing. Spe- in the H mode the amplitude of the fluctuations rapidly
cifically, in the resistive-ballooning regime where diamag-decreases. The turbulence undergoes a change in charac-
netic effects are small] ~ »’2. Figure 1 indicates that ter across the transition. The difference in the character
for & above 0.5 the toroidally induced shear reduces transsf the turbulence can be seen in the grey-scale plots of
port and therefore drives the bifurcation. In Fig. 2 wethe density fluctuations in the-y plane shown in Fig. 3.
plot the diffusion rateD = Dy + I'/n’ andn’ from a se- The plots are both from simulations with = 0.96 with
ries of simulations with varying values @, Dy = 0.2, (&) and (b) corresponding to theand H modes, respec-
and other parameters as in Fig. 1. The diffusion remainsively. The fluctuations in (a) exhibit radially extended
high up toa = 0.85 and then begins to slowly decrease disturbances with distinct mushroomlike structures typical
in parallel with a gradual rise in’. Above & = 0.972  of resistive-ballooning driven turbulence [14]. In (b) the
no steady state solution is found with high diffusion. Indisturbances are smoother and have a shorter radial cor-
this regime the diffusion drops and increases until a relation length. In this regime, the fluctuationsand ¢
new equilibrium is reached with low diffusion and a large are also more strongly correlated, reducing the transport.
gradient, i.e.n’ > 3. The low diffusion solutions remain If the curvature in the simulation in (b) is turned off, the
stable for values oftr down to 0.87. In this low diffu- fluctuations actually increase in amplitude. Linear stabil-
sion regime the neoclassical and fluctuation driven diffu4ty calculations reveal that the strong modulation of the
sion contribute at comparable levels. The plus in Fig. 2Zhear in the system allows drift waves to grow even in the
corresponds to an unstable equilibrium point, which wasabsense of curvature. The instability therefore is distinct
obtained by sweeping’ until the equilibrium condition from the toroidal drift waves explored previously [18].
The transport associated with these instabilites is weak.

0.14 : : There is already substantial experimental evidence that

local shear reversal plays a role in the formation of both
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FIG. 2. The diffusion ratéd and density gradient’ versusa FIG. 3. Density fluctuations in (a) the mode and (b) the
across the bifurcation. H mode fora = 0.96.

496



VOLUME 77, NUMBER 3 PHYSICAL REVIEW LETTERS 154dLy 1996

edge and central transport barriers. Direct measurementiansition are based on the stabilization of turbulence
of the radial profile of the vertical magnetic fieRL on by sheared flow [7,8]. The present simulations include
the outside midplane of the DIII-D tokamak using the sheared flow but do not properly model the shear layer in
motional Stark effect (MSE) reveal that in themode the edge region. Thus our pointis not to claim that sheared
the local magnetic shear in the edge is positive while it igotation cannot cause a bifurcation but to show that the lo-
negative in theH mode [19]. Analysis of pellet induced cal reversed shear is important in the formation of transport
transport barriers in JET reveals that local reversed shed&arriers.

is produced by the steep pressure gradients in the core re-This work was supported in part by the U.S. Depart-

gion [3]. The core highs, transport barriers on JT60-U ment of Energy.
are observed to form near the magnetic axis and propagate

outwards [4]. The genesis of the barrier in this region of

weak average magnetic shear is qualitatively consistent

with the thresholde ~ § for the local shear to reverse,

i.e., a small pressure gradient is required to reverse the *permanent address: Max-Planck-Institut fiir Plasma-
local shear and form the barrier in a region where the av-  physik, EURATOM Association, 85748 Garching,

erage magnetic shear is small. Once the barrier forms the  Germany.
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