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The single impurity Kondo problem in the one-dimensionald-potential Fermi gas is exactly solved
for two sets of special coupling constants via Bethe ansatz. It is found that ferromagnetic Kon
screening does occur in one case which confirms the Furusaki-Nagaosa conjecture while in the
case it does not, which we explain in a simple physical picture. Exact expressions for the sur
energy, the low temperature specific heat and the Pauli susceptibility induced by the impurity, and
Kondo temperature are derived. [S0031-9007(96)01785-1]
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With the development of the nanofabrication techniqu
for quantum wires and the prediction of edge states
the quantum Hall effect, the interest in one-dimensio
(1D) electron systems has been renewed in recent ye
Such systems differ fundamentally from those in thr
dimensions, where the low energy properties can
described very well by Landau’s Fermi liquid theor
With repulsive interactions, quasiparticle excitations a
replaced in 1D by collective excitations [1,2], and su
systems are described as Luttinger liquids.

Attention has been focused on the response o
Luttinger liquid to localized perturbations such as t
exchange interaction between such a non-Fermi liquid
a localized magnetic impurity. This Kondo problem in
Luttinger liquid was first considered by Lee and Toner [
who used abelian bosonization to map the problem on
kink-gas action. The dependence of the Kondo tempe
ture TK on the bare exchangeJ generically is a power
law in J determined by the effective Luttinger couplin
Kr, and crosses over to the familiar exponential fo
for J large or Kr ! 1. Subsequently, a “poor man’s
scaling treatment on this problem was performed
Furusaki and Nagaosa [4]. They proposed the interes
conjecture that a Luttinger liquid supports a Kondo effe
even if the bare exchange interaction is ferromagne
Moreover, they showed that the excess specific heat
Puali susceptibility due to the Kondo impurity differ from
those of a local Fermi liquid.

There are a few exact results on the Kondo effect
a Luttinger liquid, but no exact solution has been pr
posed to date. In the absence of electron-electron in
action (Luttinger gas), the problem can be mapped o
a standard two-channel Kondo problem [5,6], but it is n
clear how these results are changed for a Luttingerliq-
uid. A somewhat artificial model, where the propagati
direction of electrons is correlated with their spin dire
tion, does show both ferromagnetic and anitferromagn
Kondo effects, but its thermodynamics is Fermi-liqui
like and apparently differs from the Furusaki-Nagaosa
lution [7]. Finally, boundary conformal field theory ha
0031-9007y96y77(24)y4934(4)$10.00
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allowed the classification of all possibilities of critical b
havior for a Luttinger liquid coupled to a Kondo impuri
[8]. There are just two possibilities, a local Fermi li
uid with standard low-temperature thermodynamics o
non-Fermi liquid with the anomalous scaling observed
Furusaki and Nagaosa. In this Letter, we purpose an e
solution to two cases of the Kondo problem in a Lutting
liquid. In one case, we find a ferromagnetic Kondo eff
similar to Furusaki and Nagaosa [4] but with the therm
dynamics of a local Fermi liquid, while, in the other cas
we do not find complete Kondo screening.

The proper starting point for the Kondo problem in
fermion chain is the Hamiltonian

H  H0 1 Himp ,

H0  2t
N21X

j1,s

sCy
jsCj11s 1 H.c.d 1 U

NX
j1

nj,"nj,# ,

Himp  J
X
s,s 0

fCy
1sC1s0 1 C

y
NsCNs0 gtss0 ? S

1 V
X
s

fn1s 1 nNsg ,

(1)

whereH0 is the Hamiltonian of the Hubbard chain wi
open boundaries andHimp is the interaction between th
electron gas and the local impurity;t is the Pauli matrix,
and S is the local spin-12 operator. Even such a simp
model cannot be solved exactly. We can solve, howe
the related continuum model [9],

H  2

NX
j1

≠2

≠x2
j

1 2c
X
i,j

dsxi 2 xjd

1

NX
j1

fdsxjd 1 dsL 2 xjdg fJtj ? S 1 V g , (2)

where c . 0 is the electron-electron coupling consta
J and V describe the Kondo coupling constant and
boundary potential, respectively,L is the length of the
system, andN is the number of electrons. Of cours
one would like to solve (1) or (2) with periodic bounda
conditions. However, impurities in a Luttinger liqu
© 1996 The American Physical Society
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always behave like strong scattering centers at low ene
scales [4,10] and effectively enforce open boundaries.

If a boundary is closed simply by an infinite wall, an
electron impinging on this boundary will be complete
reflected and suffer a phase shift between incident
reflected waves ofp [11–13]. If, however, the wall is
preceded by a very narrow potential well (boundary fie
in the lattice models [14,15]), the incident and reflect
waves will not be exactly in opposite phase. We theref
specify our model by imposing the boundary conditio
that the waves arriving at either end are reflected as

eikjx ! Rj0skjde2ikj x sx  0d ,

eikjx ! Rj0skjde2ikj x22ikjL sx  Ld ,
(3)

whereRj0skjd is the reflection matrix of the electrons
the boundary. In our case,Rj0skjd is an operator rathe
than ac number because the electron-boundary scatte
involves a spin-exchange process between the elect
and the local impurity. The Yang-Baxter equation,

Sjlskj 2 kldRj0skjdRl0skld  Rl0skldRj0skjdSjlskj 2 kld ,
(4)

constrains the integrability of our model.Sjlskj 2 kld is
the electron-electron scattering matrix in the bulk. M
nipulating these equations, we find that the Hamilton
(2) can be solved exactly by including an irrelevant loc
counterterm proportional to

PN
j1fd0sxjd 2 d0sxj 2 Ldg

(ensuring that the wave function vanishes outside the
main 0 # x # L), and for the following sets of param
eters: (i) J  22V  2cy2; (ii) J  2Vy3  2cy2;
(iii) J  0. Case (iii) is just the open boundary pro
lem with boundary potentials of thed-potential Fermi gas
model which has been discussed by Woynarovich [1
and we shall not repeat the discussion here. Case
corresponds to a repulsive boundary potential which,
lowing Luttinger liquid theory, would not influence th
occurrence of the antiferromagnetic Kondo effect [
Nothing is known about is influence on the ferromagne
Kondo effect. Case (ii) represents an attractive bound
potential which has not been considered previously.

The eigenvalue problem of Hamiltonian (2) is simil
to those of other integrable models [11–13,16] and gi
the following Bethe ansatz equations:

e2ikj L  s2skjd
MY

a1

kj 2 la 1 i
c
2

kj 2 la 2 i
c
2

kj 1 la 1 i
c
2

kj 2 la 2 i
c
2

,

NY
j1

la 2 kj 1 i c
2

la 2 kj 2 i
c
2

la 1 kj 1 i c
2

la 1 kj 2 i
c
2

√
la 1 i

c
2

la 2 i
c
2

!2

(5)


Y

bfia

la 2 lb 1 ic

la 2 lb 2 ic

la 1 lb 1 ic

la 1 lb 2 ic
,

with the eigenvalue of the Hamiltonian (2) as

E 
NX

j1

k2
j , (6)

where kj ’s and la ’s are the “rapidities” of the charge
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and spin, respectively,sskd  1 for case (i),sskd 
k2ic
k1ic

for case (ii); andM is the number of down spins. Fo
convenience, we putN odd in the following discussion
Our main conclusion is that, for case (i), the grou
state of the system is a spin singlet which suppo
the Furusaki-Nagaosa conjecture, while, for case (ii),
ground state of the system is a spin triplet which indica
that the local spin can not be screened.

Case (i): No bound state exists, and the ground s
is described by two sets of real parametershkj and hlj.
Define the quantities

Zc
Lskjd 

1
p

(
kj 2

1
2L

u

√
kj,

c
2

!

1
1

2L

MX
a2M

u

√
kj 2 la,

c
2

!)
,

Zs
Lslad 

1
p

(
1

2L

"
2u

√
la ,

c
2

!
1 usla , cd

#

1
1

2L

NX
j2N

u

√
la 2 kj ,

c
2

!

2
1

2L

MX
b2M

usla 2 lb , cd

)
,

(7)

whereusx, cd  2 tan21xyc, and we have used the reflec
tion symmetry of the Bethe Ansatz to include solutio
with negativek2j  2kj and l2a  2la . The Bethe
ansatz (5) is solved byZc

Lskjd  IjyL andZs
Lslad 

Ja

L ,
whereIj andJa are nonzero integers. In the ground sta
Ij and Ja must be consecutive integers to minimize t
energy. The rootskj and la become dense in the ther
modynamic limit, and we define their densities as

rc
Lskd 

dZc
Lskd

dk
, rs

Lsld 
dZ2

Lsld
dl

(8)

for lengthL. Their finite size corrections are [14,17]

rc
Lskd  rcskd 1

1
L

drcskd 1 O

√
1

L2

!
,

rs
Lsld  rssld 1

1
L

drssld 1 O

√
1

L2

!
.

(9)

The densitiesrcskd andrssld in the infinite system limit
follow from the integral equations

rcskd 
1
p

1
Z L

2L
K

√
k 2 l,

c
2

!
rssld dl ,

rssld 
Z k0

2k0

K

√
l 2 k,

c
2

!
rcskd dk

2
Z L

L
Ksl 2 l0, cdrssl0d dl0 ,

(10)

and the finite-size correctionsdrcskd, drssld are solu-
tions of
4935
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drcskd  2K

√
k,

c
2

!
1

Z L

2L

K

√
k 2 l,

c
2

!
drssld dl ,

drssld  22K

√
l,

c
2

!
1 Ksl, cd

1
Z k0

2k0

K

√
l 2 k,

c
2

!
drcskd dk

2
Z L

2L

Ksl 2 l0, cddrssl0d dl0 ,

(11)

with Ksx, cd  p21cysx2 1 c2d; k0 and L are cutoffs
of k andl, respectively, for the ground state and satiRk0

2k0
r

c
Lskd dk  sN 1 1y2dyL and

RL
2L r

s
Lsld dl 

sM 1 1y2dyL. Notice thatL ! ` when L ! `. Fi-
nally, one can also derive similar integral equations
the dressed energies for the finitefec

Lskd, e
s
Lsldg and

infinite systems [17]. Their finite size corrections beha
as

ec
Lskd  ecskd 1 O

√
1

L2

!
,

es
Lsld  essld 1 O

√
1

L2

!
,

(12)

where ecskd and essld are the dressed energies for t
infinite system.

We now discuss the physical properties of the sys
by evaluating its thermodynamics. The boundary ene
induced by the impurity is

f 
Z k0

2k0

k2drcskd dk . (13)

The magnetization of the ground state in the thermo
namic limit is

Ms 
1
4

lim
L!`

(
2L

Z k0

2k0

rc
Lskd dk

2 4L
Z L

2L
rs

Lsld dl 1 3

)
 0 , (14)

where a prefactor1y2 comes from our use of reflectio
symmetry (cf. above), and the last term is included to c
cel the contributions from the holes atk  0 and l  0
in the distributionsZc

Lskd andZs
Lsld, respectively, and tha

of the impurity. We therefore have a complete scre
ing of the Kondo impurity for ferromagnetic exchange,
agreement with the Furusaki-Nagaosa conjecture [4].
result implies that a repulsive boundary potential is
detrimental to the ferromagnetic Kondo effect—at le
up to the magnitude considered here.

We now determine the Kondo contribution to t
specific heat and the Kondo temperature. While
thermodynamics of Bethe ansatz solvable models ca
calculated directly, an alternative, both more practical
more physical, is provided by exploiting the picture
a Landau-Luttinger liquid put forward by Carmelo a
co-workers [18]. Here, the densities of states of
4936
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quasiparticles at the Fermi energyEF  0 are

Nc
Ls0d 

dZc
Lsk0d

de
c
Lsk0d


1

2pyc
1

1
L

drcsk0d
e0

csk0d
1 O

√
1

L2

!
,

Ns
Ls0d 

dZs
Ls`d

de
s
Ls`d


1

2pys
1

1
L

drss`d
e0

ss`d
1 O

√
1

L2

!
,

(15)

where yc and ys are the velocities of the charge an
spin fluctuations, respectively. The densities of states
rectly determine the low-temperature specific heat a
magnetic susceptibility, and, using standard express
from Fermi-liquid theory, we obtain the additional contr
butions due to the Kondo effect as

dC 
pdrcsk0d

3Lycrcsk0d
T 1

pdrss`d
3Lysrss`d

T ,

dx 
drss`d
Lrss`d

x0 ,

(16)

where x0 is the susceptibility of the bulk. Here, w
have used the fact that the finite-size corrections to
densities of states in absence of the Kondo impurity
of Os1yL2d, implying that all the contributionsOs1yLd
are due to the potential scattering in the charge and
Kondo effect in the spin sector. The Kondo temperat
TK , playing the role of the Fermi temperature in th
local Fermi liquid generated by the impurity [19], can b
deduced from the spin part of the impurity specific heat

TK 
3
2

pnys
rss`d

drss`d
, (17)

wheren is the density of electrons in the system.
The low-temperature thermodynamics is that of

local Fermi liquid, in agreement with one of the tw
alternatives permitted by conformal field theory [8]. O
results also fall into the framework of the Furusak
Nagaosa analysis of thermodynamics [4]. To see t
notice that the term responsible for the anomalous sca
of the specific heat in their work is generated by tunnel
(in order J21) across the Kondo impurity. In our cas
however, the open boundary conditions exclude s
tunneling processes at all energy scales. Putting
respective coupling constant to zero will produce
excess specific heat linear in temperature, as we h
found. This also suggests that the two alternatives gi
by conformal field theory [8] could, in fact, just reflec
one generic type of scaling behavior and be connected
simply varying this effective tunneling matrix element.

Case (ii): The ground state is described byN 2 2 real
k’s and two imaginaryk’s at 6ic and a real set ofl. The
two imaginaryk’s correspond to bound states of electro
around the impurity. In the thermodynamic limit, we ca
again define densities for thereal roots as in (8) and thei
finite-size corrections as in (9). They satisfy the set
integral equations
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√
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rssld dl ,

rssld 
Z k0

2k0

K

√
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rcskd dk
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Ksl 2 l0, cdrssl0 d dl0 ,
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√
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c
2

!
2 2Ksk, cd

2
Z `

2`
K

√
k 2 l,

c
2

!
drssld dl ,

drssld  2K

√
l,

3c
2

!
2 Ksl, cd

1
Z k0

2k0

K

√
l 2 k,

c
2

!
drcskd dk

2
Z `

2`
Ksl 2 l0, cddrssl0d dl0 . (18)

The magnetization at zero temperature can be calcul
as above.

Ms 
1
4

lim
L!`

(
2L

Z k0

2k0

rc
Lskd dk

2 4L
Z L

2L
rs

Lsld dl 1 7

)
 1 . (19)

Here, k0 is determined from
Rk0

2k0
r

c
Lskd dk  sN 2

1y2dyL. We have accounted for the contribution
the two bound electrons in the last term of (19). T
ground state is now a spin triplet which apparen
violates the Furusaki-Nagaosa conjecture. The pre
case corresponds to an attractive potential scatte
by the impurity, in addition to ferromagnetic Kond
exchange. Two electrons then bind to the impurity
x ø 0 and x ø L, and form a spin-32 complex with
the impurity spin. However, the Coulomb interacti
is repulsive, and induces an indirect antiferromagn
exchange coupling between the conduction electrons
the S  3y2 complex. The indirect Kondo couplin
between the local composite and the conduction elect
is equivalent to a spin-32 single impurity Kondo problem
in a Luttinger liquid. Our exact results then indica
that, as in the Fermi liquid, anS  3y2 impurity is
only partially screened [20] in a Luttinger liquid and a
effective, unscreened spin-1 results.

The specific heat and the Pauli magnetic susceptib
can also be calculated with the procedure as discu
in case (i). The total susceptibility is divergent at ze
temperature due to the nonvanishing moment in
ground state.
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The absence of complete Kondo screening and
associated changes in the thermodynamics do not
into the two universality classes found by conformal fie
theory [8]. They are, however, a direct consequence
the attractive potential scattering from the Kondo impur
included in our model in the present case. Our results t
imply that new universality classes for the Kondo effe
in a Luttinger liquid should exist once potential scatter
is included in the conformal field theory.

In summary, we have studied the low energy proper
of a ferromagnetic Kondo problem in the 1Dd-potential
Fermi gas. The model Hamiltonian is exactly solva
for two special sets of coupling constants. In one c
(repulsive potential scattering off the impurity), the loc
magnetic moment is completely screened in the gro
state which confirms the Furusaki-Nagaosa conject
while in the other case (attractive potential scatterin
the ground state is a spin triplet. To the best of o
knowledge, this is the first exact solution of the Kon
problem in an interacting many-body system.
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