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An Exactly Solvable Kondo Problem for Interacting One-Dimensional Fermions
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The single impurity Kondo problem in the one-dimensioAgbotential Fermi gas is exactly solved
for two sets of special coupling constants via Bethe ansatz. It is found that ferromagnetic Kondo
screening does occur in one case which confirms the Furusaki-Nagaosa conjecture while in the other
case it does not, which we explain in a simple physical picture. Exact expressions for the surface
energy, the low temperature specific heat and the Pauli susceptibility induced by the impurity, and the
Kondo temperature are derived. [S0031-9007(96)01785-1]
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With the development of the nanofabrication techniquesllowed the classification of all possibilities of critical be-
for quantum wires and the prediction of edge states iravior for a Luttinger liquid coupled to a Kondo impurity
the quantum Hall effect, the interest in one-dimensiona[8]. There are just two possibilities, a local Fermi lig-
(1D) electron systems has been renewed in recent yeansid with standard low-temperature thermodynamics or a
Such systems differ fundamentally from those in threenon-Fermi liquid with the anomalous scaling observed by
dimensions, where the low energy properties can bé&urusaki and Nagaosa. In this Letter, we purpose an exact
described very well by Landau’s Fermi liquid theory. solution to two cases of the Kondo problem in a Luttinger
With repulsive interactions, quasiparticle excitations ardiquid. In one case, we find a ferromagnetic Kondo effect
replaced in 1D by collective excitations [1,2], and suchsimilar to Furusaki and Nagaosa [4] but with the thermo-
systems are described as Luttinger liquids. dynamics of a local Fermi liquid, while, in the other case,

Attention has been focused on the response of ae do not find complete Kondo screening.

Luttinger liquid to localized perturbations such as the The proper starting point for the Kondo problem in a
exchange interaction between such a non-Fermi liquid anfermion chain is the Hamiltonian

a localized magnetic impurity. This Kondo problem in a H = Hy + Hypy .

Luttinger liquid was first considered by Lee and Toner [3] P

N—-1 N

who used abelian bosonization to map the problem onto a 1

. X = —t Ci,Ci + Hc) + U i1l
kink-gas action. The dependence of the Kondo tempera- ].:1’0( joitle ) J; SRS
ture Tx on the bare exchangé generically is a power ' (1)
law in J determined by the effective Luttinger coupling Hiy,, = J Z[CLCW + Cl-l\-/g.CNg./]To-g./ - S
K,, and crosses over to the familiar exponential form a0
for J large orK, — 1. Subsequently, a “poor man’s”
scaling treatment on this problem was performed by + Vg[”“’ + ol

Furusaki and Nagaosa [4]. They proposed the interestin\%

conjecture that a Luttinger liquid supports a Kondo effect here Hy is the Hamiltonian of the Hubbard chain with

even if the bare exchange interaction is ferromagneticOpen boundaries anlly,, is the interaction between the

Moreover, they showed that the excess specific heat an%]ectron gas and the local impurity;is the Pauli matrix,

. 1 .
Puali susceptibility due to the Kondo impurity differ from @ndS is the local spins operator. Even such a simple

those of a local Fermi liquid. model cannot be solved exactly. We can solve, however,
There are a few exact results on the Kondo effect ifhe relatei continuum model [9],

a Luttinger liquid, but no exact solution has been pro- _ 92

posed to date. In the absence of electron-electron inter-"" — _; Pyl ZCKZ i = x))

action (Luttinger gas), the problem can be mapped onto N /

a standard two-channel Kondo problem [5,6], but it is not + D> [6(x;) + 6(L — x)][Jr; - S + V], (2)

clear how these results are changed for a Luttirlger j=1

uid. A somewhat artificial model, where the propagationwhere ¢ > 0 is the electron-electron coupling constant,
direction of electrons is correlated with their spin direc-J and V describe the Kondo coupling constant and the
tion, does show both ferromagnetic and anitferromagnetiboundary potential, respectively, is the length of the
Kondo effects, but its thermodynamics is Fermi-liquid- system, andV is the number of electrons. Of course,
like and apparently differs from the Furusaki-Nagaosa soene would like to solve (1) or (2) with periodic boundary
lution [7]. Finally, boundary conformal field theory has conditions. However, impurities in a Luttinger liquid
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always behave like strong scattering centers at low energynd spin, respectively, (k) = 1 for case (i),s(k) = 7=
scales [4,10] and effectively enforce open boundaries. for case (ii); andM is the number of down spins. For
If a boundary is closed simply by an infinite wall, any convenience, we pu¥v odd in the following discussion.
electron impinging on this boundary will be completely Our main conclusion is that, for case (i), the ground
reflected and suffer a phase shift between incident angtate of the system is a spin singlet which supports
reflected waves ofr [11-13]. If, however, the wall is the Furusaki-Nagaosa conjecture, while, for case (ii), the
preceded by a very narrow potential well (boundary fieldgground state of the system is a spin triplet which indicates
in the lattice models [14,15]), the incident and reflectecthat the local spin can not be screened.
waves will not be exactly in opposite phase. We therefore Case (i): No bound state exists, and the ground state
specify our model by imposing the boundary conditionsis described by two sets of real parametgrs and {A}.
that the waves arriving at either end are reflected as Define the quantities

ikjx —ik;x
e’ — Rj()(kj)e 7 (x = O), 1 1
ik;x —ik;x—2ik;L (3) Zf(ki) = ki — 570l k; e
e — Rjo(kj)e ™ i (x=1L), : T 2L 2
whereR y(k;) is the reflection matrix of the electrons at 1 o ¢
the boundary. In our cas®;y(k;) is an operator rather YA >, 0k = Aa S0
than ac number because the electron-boundary scattering a=-M
involves a spin-exchange process between the electrons 11 c
and the local impurity. The Yang-Baxter equation, Z1(Aa) = 12z | 20\ A5 ) T 0Aaic) | (7)
Sj(k; — kp)Rjo(kj)Rio(ki) = Rio(kp)Ro(k;)Sji(k; — ki), 1 X c
4) + o7 > 0| Aa ki
j=—N
constrains the integrability of our model;;(k; — k;) is ] / M
the electron-electron scattering matrix in the bulk. Ma- - — Z 0Ny — A,;,c)},
nipulating these equations, we find that the Hamiltonian 2L ==y

(2) can be solved exactly by including an irrelevant Iocalwheree(x, ¢) = 2tan~'x/c, and we have used the reflec-

. N
counterterm proportional t¢_;_[8'(x;) — 8'(x; = L)] " tion symmetry of the Bethe Ansatz to include solutions
(ensuring that the wave function vanishes outside the dQ/'vith negativek_; = —k; andA_, = —A,. The Bethe

main 0 = x = L), and for the following sets of param- ansatz (5) is solved byl (k;) = I;/L andZ}(As) = JT

eters: () J = —2V = ~¢/2; (i) J =2V/3 = —c/2; wherel; andJ,, are nonzero integers. In the ground state,

I((Ie”r)n \{wt:h gé)ug:asf ("(I))telr?tijzlajlztoﬁ‘ht?@op(()etr:anbt%"llde?zi p;osb- I; andJ, must be consecutive integers to minimize the
y P b J energy. The root%; and A, become dense in the ther-

model which has been discussed by Woynarovich [16] odynamic limit, and we define their densities as
and we shall not repeat the discussion here. Case (B] ’
dz; (k) dZi (M)

corresponds to a repulsive boundary potential which, fol- . s

lowing Luttinger liquid theory, would not influence the pi(k) = BT pL(A) = A (8)

occurrence of the antiferromagnetic Kondo effect [6]. o )

Nothing is known about is influence on the ferromagnetidor lengthZ. Their finite size corrections are [14,17]

Kondo effect. Case (ii) represents an attractive boundary 1 1

potential which has not been considered previously. prk) = pc(k) + I dpc(k) + 0<ﬁ>
The eigenvalue problem of Hamiltonian (2) is similar

to those of other integrable models [11-13,16] and gives

the following Bethe ansatz equations:

M . C .
A ki— Ay Ti5 ki + Ay T
2L _ 2 j a 2 Kj a
it = k; =
‘ s(")cglkj—/\a—i?kj—)\a—i

| | 9)
pi(A) = ps(A) + i Sps(A) + 0(ﬁ>

The densitiep.(k) and p,(A) in the infinite system limit
follow from the integral equations

b

~ ST ISR

N dy =k + i otk +is (Ag +i%) { A .
j:l_[l/\a—kj—i% /\a+k.f—i%<x\a—i% ®) pc(k)=;+f_AK(k—A,3>ps(/\)dA,
_ Ao — Ag +ic Ay + Ag + ic ko c
Bta Ao — /\,3 —ic Ay + )\B —ic’ ps(/\) = [—koK</\ — k, E)pc(k) dk (10)
with the eigenvalue of the Hamiltonian (2) as A
N - j KA — M, co)ps(X)dN,
E=> k&, (6) A
j=1 " and the finite-size correction8p.(k), ps(A) are solu-

where k;’'s and A,’s are the “rapidities” of the charge tions of
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A uasiparticles at the Fermi enerffy = 0 are
Spo(k) = —K(k,%) + ] K(k - /\,%)cﬁps(/\)d/\, quasip 8y

“A . dz; (ko) 1 1 6p.(ko) 1
N (0) dei(koy) 2mv. L €l(ko) o L2)’

Spy(A) = —2K<A,§) + K(A¢)

dz; 1 1 8p; 1
: W o - S L 128 o L),
+f KA = k< )6p.(k) dk del(»)  2mv, L &) L
ko 2 (15)
A
— f KA — N,c)8ps(X)dX, where v, and v, are the velocities of the charge and
-A ‘ spin fluctuations, respectively. The densities of states di-

with K(x,c) = 7 le/(x2 + ¢2); ko and A are cutoffs rectly determine the low-temperature specific heat and
of k and A, respectively, for the ground state and satisfymagnetic susceptibility, and, using standard expressions

I pitkydk = (N + 1/2)/L and [, pi(A)dA = from Fermi-liquid theory, we obtain the additional contri-
(M + 1/2)/L. Notice thatA — « when L — «. Fi- butions due to the Kondo effect as

nally, one can also derive similar integral equations for 78 pe(ko) w8 py(o0)

the dressed energies for the finife;(k), ;7 (A)] and oC = m m )

infinite systems [17]. Their finite size corrections behave ePeifo ohs (16)
as _ 8ps(=)

X Lo X
where y, is the susceptibility of the bulk. Here, we
1 (12)  have used the fact that the finite-size corrections to the
e (1) = (1) + 0<—2>, densities of states in absence of the Kondo impurity are
L of O(1/L?), implying that all the contribution®(1/L)
where e.(k) and €,(A) are the dressed energies for theare due to the potential scattering in the charge and the
infinite system. Kondo effect in the spin sector. The Kondo temperature
We now discuss the physical properties of the systenTx, playing the role of the Fermi temperature in the
by evaluating its thermodynamics. The boundary energjocal Fermi liquid generated by the impurity [19], can be

€ (k) = e (k) + 0(%)

induced by the impurity is deduced from the spin part of the impurity specific heat as
k
_ [ 3 (=)
= K28 p.(k) dk . 13 -2 Ps'®)
f f_ko p (13) Tx = 5 mnv; 5p.()° (17)

The magnetization of the ground state in the thermodyy heren is the density of electrons in the system.

namic limit is . The low-temperature thermodynamics is that of a
|- 0 local Fermi liquid, in agreement with one of the two

Ms =5 l@m[u f pi(k) dk alternatives permitted by conformal field theory [8]. Our

’ A results also fall into the framework of the Furusaki-
- 4L[ pr(A)dA + 3} =0, (14) Nagaosa analysis of thermodynamics [4]. To see this,
—A notice that the term responsible for the anomalous scaling
where a prefactoi /2 comes from our use of reflection of the specific heat in their work is generated by tunneling
symmetry (cf. above), and the last term is included to can¢in orderJ~!) across the Kondo impurity. In our case,
cel the contributions from the holes &t= 0 andA = 0  however, the open boundary conditions exclude such
in the distributionsZ; (k) andZ; (A), respectively, and that tunneling processes at all energy scales. Putting the
of the impurity. We therefore have a complete screenrespective coupling constant to zero will produce an
ing of the Kondo impurity for ferromagnetic exchange, inexcess specific heat linear in temperature, as we have
agreement with the Furusaki-Nagaosa conjecture [4]. Ouiound. This also suggests that the two alternatives given
result implies that a repulsive boundary potential is notby conformal field theory [8] could, in fact, just reflect
detrimental to the ferromagnetic Kondo effect—at leastone generic type of scaling behavior and be connected by
up to the magnitude considered here. simply varying this effective tunneling matrix element.

We now determine the Kondo contribution to the Case (ii): The ground state is describedy- 2 real
specific heat and the Kondo temperature. While the’s and two imaginary’s at +=ic and a real set oi. The
thermodynamics of Bethe ansatz solvable models can k&o imaginaryk’s correspond to bound states of electrons
calculated directly, an alternative, both more practical anéround the impurity. In the thermodynamic limit, we can
more physical, is provided by exploiting the picture of again define densities for theal roots as in (8) and their
a Landau-Luttinger liquid put forward by Carmelo and finite-size corrections as in (9). They satisfy the set of
co-workers [18]. Here, the densities of states of thentegral equations
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1 The absence of complete Kondo screening and the

pelk) = - ] (k - A )ps()‘)d)‘ associated changes in the thermodynamics do not fall
into the two universality classes found by conformal field

ps(A) = f (A —k )pc(k) dk theory [8]. They are, however, a direct consequence of
ko the attractive potential scattering from the Kondo impurity

included in our model in the present case. Our results then
KA = A, e)ps(A)dN, imply that new universality classes for the Kondo effect
in a Luttinger liquid should exist once potential scattering
is included in the conformal field theory.
In summary, we have studied the low energy properties
of a ferromagnetic Kondo problem in the 1&potential
K(k - A, )5p (A)da, Fermi gas. The model Hamiltonian is exactly solvable
* for two special sets of coupling constants. In one case

-/
sp.k) = —K|[ k, %) — 2K (k, ¢)
f

3c (repulsive potential scattering off the impurity), the local
dps(A) = 2K()" 7) KA, ¢) magnetic moment is completely screened in the ground
state which confirms the Furusaki-Nagaosa conjecture,
[ (/\ =k, >5pc(k) dk while in the other case (attractive potential scattering),
ko the ground state is a spin triplet. To the best of our

knowledge, this is the first exact solution of the Kondo
problem in an interacting many-body system.
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