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Symmetry Breaking and Spectral Statistics of Acoustic Resonances in Quartz Block
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We study experimentally the spectral statistics of acoustic resonances in quartz blocks. About 140
well resolved resonances are measured. The short range fluctuations are well described by rando
matrix theory. The properties of quartz allow us to measure the gradual breaking of a point-group
symmetry. This is statistically fully equivalent to the breaking of a symmetrylike parity or isospin in a
quantum system. [S0031-9007(96)01858-3]
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The paramount importance of symmetries in quant
mechanics is made apparent by the fact that every ei
state can be classified by a set of quantum num
like angular momentum, parity, isospin, etc. A symm
try breaking is immediately reflected in the spectrum
eigenvalues, and its study can give rich information ab
the underlying interaction. The spectral fluctuation pro
erties turn out to be particularly useful since the eff
of the symmetry breaking is statistically enhanced. T
was first observed in the context of parity breaking in n
clear physics [1], confirming very general consideratio
in random matrix theory [2]. Isospin in nuclear physics
much more strongly broken than parity. Mitchellet al. [3]
measured and analyzed about 100 low lying states
known values of the isospin quantum number in the
cleus26Al. In Ref. [4] their results were interpreted in th
framework of a full-fledged random matrix model. Th
relatively low number of levels, however, although tru
impressive from a nuclear physics viewpoint, limits t
statistical significance of this analysis. We present a m
surement of about 1400 acoustic resonances in a qu
block with broken point-group symmetry. This study
statistically highly significant. Moreover, we measure
transition from fully conserved to strongly broken symm
try by externally tuning a parameter. It should be emp
sized that our system, although physically very differ
from a quantum system, exhibits identical spectral fl
tuation properties. Hence our quartz blocks are the id
experimental system to study symmetry breaking.

Our investigation follows the concept of other demo
strative experiments. In particular, experiments with m
crowaves in metal cavities have been used to study l
statistics and chaos in billiard systems [5–8]. Recen
using an experimental approach due to Weaver [9],
presented a measurement of the crossover from Poi
regularity to chaos in the spectral statistics of acou
resonances in aluminum blocks [10]. This proved,
the first time, that random matrix theory is applicab
to transitions of this type in systems for which the u
derlying wave equation is completely different from t
Schrödinger equation. In this work we switch from a
minum to monocrystalline quartz, which can give an
0031-9007y96y77(24)y4918(4)$10.00
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der of magnitude better resolution. We used rectangu
blocks with dimensions14 3 25 3 40 mm3.

In contrast to aluminum, quartz is anisotropic. Cry
talline quartz exhibitsD3 point-group symmetry, which
consists of a single threefold rotation symmetry abo
the crystal’sZ (“optical”) axis, and three twofold rotation
symmetries about the crystal’s threeX (“piezoelectric”)
axes; the latter three axes lie in a plane orthogonal to
Z axis, subtending angles of 120 degrees with respec
one another [11]. TheZ axis of the crystal lies paralle
to the block’s shortest edges, and one of the crystal’X
axes lies parallel to the block’s longest edges. Thus
only symmetry possessed by the quartz block is a tw
fold “flip” symmetry about thisX axis.

The acoustic spectrum must therefore be a superp
tion of two independent, noninteracting spectra belon
ing to the two different representations of this flip sym
metry. This coincides exactly with the situation in
quantum system when the superposition of two sp
tra is studied which belong to two different values of
quantum number, for example, isospin 0 and 1 as con
ered in Refs. [3,4]. The general theory for the superp
sition of noninteracting spectra is presented in Ref. [1
the formulas for our specific case can also be fou
in Ref. [4]. Note that our rectangular block effective
is skew because of the crystal properties. The geo
try and the crystal structure determine the dynamics a
thus the level statistics. After presenting our experime
tal data, we will discuss that our rectangular quartz blo
with conserved flip symmetry has much in common w
a scalar pseudointegrable system [13].

We describe the experimental setup only briefly;
more detailed presentation is given in Ref. [14].
Hewlett-Packard HP-3589A network analyzer provid
a sine wave of a known frequency and voltage.
high-frequency power amplifier is used to raise t
signal to approximately 200 V peak-to-peak in ord
to drive a piezoelectric transducer made of Ferrope
Pz34 (modified lead-titanate) with dimensions5 3 2.5 3

0.43 mm3, which converts the alternating voltage into
mechanical vibration. This vibration is coupled to th
quartz block via a sapphire stylus. The subsequent mo
© 1996 The American Physical Society
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of the quartz block is measured by an identical transduc
stylus combination, which converts the displacement
the block at a point of its surface into an electric
signal. The outgoing signal is pre-amplified close
the receiving transducer, then further amplified and f
back into the network analyzer. We use the analyz
in swept-spectrum mode to measure the response of
block in transmission. The quartz block is supporte
by the two styli plus a third, passive stylus. Thus th
acoustic coupling between the transducer and the qu
block is made through tiny point contacts to minimiz
the damping of the resonances. To reduce the acou
coupling between the quartz block and the surroundi
air, the pressure is held below1022 Torr . Any further
reduction of the air pressure does not lower the damp
significantly. Our block is thus as near as possible
elastomechanical system with free boundary conditio
The quality of the spectra is characterized by the ra
Q ­ fyDf, wheref is the frequency andDf the width
of a given resonance. A section of a typical spectru
is displayed in Fig. 1. The averageQ was roughly105,
which is about ten times better than the experimen
with aluminum blocks [9,10]. In billiard systems, this
is second only to the experiments with superconducti
microwave cavities, for which a better resolution wa
obtained [7].

To accumulate data, we found it useful to measu
in the frequency range between 600 and 900 kHz
which about 1400 well resolved resonances were fou
For the determination of the eigenmodes, three spec
were measured with different positions of the styli, s
as to reduce the chance of missing a peak when
stylus is located close to a node. The extracted
of 1424 eigenfrequencies was analyzed as described
Ref. [10]. The cumulative eigenfrequency density show
in Fig. 1 behaves as a third-order polynomial since o
system is three dimensional. For the unfolding procedu
we used a fit of a third order polynomial to the data. T

FIG. 1. Cumulative eigenfrequency density for the rectangu
block. On this figure the curves corresponding to each of t
other five systems measured would be indistinguishable fr
the curve shown. The inset displays on a linear-logarithm
plot the section of the spectrum between 820 and 825 kHz.
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the best of our knowledge, no Weyl-type formula exis
for our system. Such a formula is extremely difficult
obtain since our system is, first, elastomechanical, seco
anisotropic, and, third, since mode conversion takes pl
at the boundaries and corners.

In Fig. 2(a), the nearest neighbor spacing distribution
plotted. The theoretical predictions on the figure are, fi

FIG. 2. The nearest neighbor spacing distributionsPssd for
the different radiir of the removed octant: (a)r ­ 0, the flip
symmetry is fully conserved, (b)r ­ 0.5 mm, (c)r ­ 0.8 mm,
(d) r ­ 1.1 mm, (e) r ­ 1.4 mm, (f) r ­ 1.7 mm, (x) the
block with the huge defocusing structures, these data w
derived from a spectrum ranging from 720 to920 kHz. The
dotted and the dashed curves are the theoretical prediction
a chaotic system containing no or one symmetry, respective
4919
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the Wigner distribution and, second, the nearest ne
bor spacing distribution for two noninteracting spec
constructed from two Wigner distributions [4,12]. Th
data follow the latter distribution closely. Notice that t
distribution differs from zero for zero spacing becau
the eigenmodes belonging to different representation
the flip symmetry do not repel each other. Since we
pect an equal number of eigenmodes in each of the
noninteracting spectra, the numerical value of the sp
ing distribution at zero spacing should be12 , which is
in agreement with the experiment. The spectral rigid
displayed in Fig. 3(a) follows the prediction [4,12] fo
a chaotic system for smaller interval lengths but de
ates for larger ones. We will come back to this po
later.

In order to break the flip symmetry gradually, w
used an ISEL AutomationXYZmilling machine equipped
with high-quality dental tools. An octant of a sphe
with a successively larger radius was removed from
corner of the rectangular quartz block, thereby makin
three dimensional Sinai billiard out of it. We performe
measurements as described above for radii of 0.5,
1.1, 1.4, and 1.7 mm. We found 1414, 1424, 1414, 14
and 1419 eigenmodes, respectively. The resulting nea
neighbor spacing distributions and spectral rigidities
shown in Figs. 2 and 3 from (a) to (f).

The most spectacular result is the spacing distribu
for the smallest radius of 0.5 mm in Fig. 2(b), in whic
the three following features are seen: the distribut
dips at zero spacing, for slightly larger spacings
“overshoots” the prediction, and for larger spacings
change is seen. The breaking of the flip symme
causes the eigenmodes belonging to the two diffe
representations to interact. Thus the probability of find
degeneracies, i.e., the value of the spacing distribu
at zero spacing, decreases sharply. However, since
symmetry breaking is only very weak, this “gap”
the distribution for very small spacings is immediate
compensated through a considerably higher probab
of finding slightly larger spacings. This “overshoot” ca
be viewed as the restoration of the normalization. T
weakness of the symmetry breaking implies that lar
spacings are not affected. This has never been obse
experimentally before.

As the radius is made bigger, the gap and the ov
shoot broaden, and the spacing distribution makes a
transition towards the distribution of one chaotic syst
without symmetries. The volume of the removed octan
5 3 1026 and2 3 1024 of the total volume forr ­ 0.5
and 1.7 mm, respectively. Because of the statistical
hancement effect [1,2], a very small symmetry breakin
sufficient to change the fluctuation properties considera
Our experimental results confirm the numerical sim
lations of Ref. [4] very well. As can be seen from Fig.
the spectral rigidity, unlike the spacing distribution for ze
spacing, changes continuously and smoothly for all inte
lengths as the symmetry is broken. The spectral rigid
4920
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FIG. 3. The spectral rigidityD3sLd for the different radiir
of the removed octant, letters as in Fig. 2. The lower and
upper solid curves are the theoretical predictions for a cha
system containing no or one symmetry, respectively.

is a smoothing double integral [2] over the spectral tw
point correlation function, which does behave discontin
ously [4]. Thus for the spectral rigidity, it takes larger rad
to make the symmetry breaking visible than for the sp
ing distribution. However, for both observables, shor
scales are more strongly affected than larger ones.
parameter for the transitions of the spectral fluctuations
the unfolded energy scale is the root mean square stre
of the symmetry breaking normalized to the mean le
spacing. This parameter has a relatively weak freque
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dependence [15] which was found to have a negligible
fect in the frequency interval measured.

We will now comment on the striking rise of the spe
tral rigidity for larger interval lengths over the theoretic
prediction [4,12] in the case of conserved flip symmet
and on the continuation of this when the symmetry is b
ken. A subtraction of “bouncing ball” orbits as in Ref. [7
does not remove this effect. Thus our findings indic
that the block with conserved flip symmetry has mu
in common with a scalar pseudointegrable system [1
Note that, first, mode mixing due to mode conversion i
strong effect [16] and, second, due to the crystal struc
and the anisotropy, one cannot simply deduce the dyn
ics from the shape of the block alone. A further me
surement supports these considerations. A sphere w
radius of 10 mm was removed from a quartz block wh
was originally identical to the one mentioned above. T
center of this sphere lies inside the block, but close
one of the corners. The resulting geometry contains h
defocusing structures and thus should yield fully chao
statistics. Indeed, this is confirmed by the experimen
results displayed in Figs. 2(x) and 3(x). Hence the s
cial properties of acoustic waves in an anisotropic crys
cannot cause deviations from chaotic behavior of the t
discussed above. Therefore it is fair to say that we m
sured symmetry breaking in a system which is similar
a scalar pseudointegrable one. A study of this from
viewpoint of periodic orbit theory is in progress. Sinc
on scales of only a few mean level spacings, a sys
with pseudointegrable features is known to behave lik
chaotic one, our findings are on those scales indistingu
able from the symmetry breaking in a chaotic system.

In conclusion, we have presented a measuremen
symmetry breaking in acoustic experiments. This is
first time that the whole transition has been studied
externally tuning the symmetry breaking. Moreover, th
is also the first time that this transition has been measu
in a three dimensional billiard geometry.

We acknowledge fruitful discussions with P. Cv
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