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Network Domain Structure in Viscoelastic Phase Separation
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By solving a viscoelastic model of polymer solutions in two dimensions, we demonstrate that
polymer-rich regions can form a spongelike network in deeply quenched cases. In late stages the
velocity field is suppressed because the network supports stress and is rigid. As a result the domain
size grows as'/3. In an early stage the polymer-rich regions are shrunken due to desorption of
solvent, whereas in late stages they are elastically expanded perpendicularly to the interface in regions
with relatively small curvature. The viscoelastic stress then cancels the stress due to the surface tension
and stabilizes the network structure for a long time. [S0031-9007(96)01792-9]

PACS numbers: 61.25.Hq, 64.75.+g

Recently a great number of phase separation experthe elastic energy of the network;(¢) being the shear
ments have been performed on polymeric systems [1jmodulus. For simplicity we assume that the deviation
While most of them can be understood in the light ofof W;; from the equilibrium values;; (= the unit tensor
simple dynamic models for usual fluids, some experimentss small, so the elastic free energy is bilineardi;; =
have revealed unusual influence of viscoelasticity peculia;; — &;; in our model. The motion o#;; is determined
to polymers. Among them Tanaka [2] examined in detailby the polymer velocityv, and its simplest dynamic
a spongelike network structure composed of thin polymerequation is of the form [9]
rich regions by deeply quenching semidilute polymer so- 9 1
lutions into an unstable temperature region. Such patterns, W+ (v, - W=D -W+W- e W -1,
were already observed by Aubert [1] and by Song and (2)
Torkelson [1]. There, holes of solvent appear in an early
stage after an incubation time and grow until polymer-richwhere D = {9v,,;/dx;} iS the gradient tensor of the
regions become thin to form a spongelike network. Thepolymer velocityv, andD” is its transposed tensor. The
solvent regions are droplets enclosed by the network everelaxation timer(¢) is very long in the semidilute region.
if their volume fraction is considerably larger than thatFrom (1) and (2) we may calculate free energy changes
of the network. This structure coarsens in time and ulagainst infinitesimal motion of the network to obtain the
timately breaks into disconnected polymer-rich domainsnetwork stress
Tanaka also observed the same network formation in a —GW - (W =T) 3)
polymer blend in which one phase is close to glass tran- :
sition [3]. Therefore a network appears generally wherFor motions of polymers much slower than we have
the two phases have very different viscoelastic propertiesy;; — §;; = 7(D;; + D;;) and obtain the Newtonian
The aim of this paper is hence to numerically investigateviscosity », = G, which is supposed to be much larger
the role of viscoelasticity in producing such a networkthan the solvent viscosity, in the semidilute case. For
pattern in late stage spinodal decomposition in polymerapid motions, on the other hand, our system behaves as

solutions. a gel ands W;; is nearly equal to the strain tensor of the
We present a dynamic model of a semidilute polymerdisplacement, which is the time integral ob,,.
solution in which the polymer volume fractiop satisfies The solvent velocity, and the polymer velocity, are

¢ >¢. and ¢ < 1, ¢, = N~'/2 being the critical different when the diffusion is taking place. The volume
volume fraction anav being the polymerization index [4]. fraction is convected by, as

We introduce a tensor variablg, called the conformation 9

tensor, to represent chain deformations. In termg aihd a1 ¢ ==V -(ovy). (4)

W = {W;;}, the free energy is given by [5—8 . .
Wi} 1S9 y5-8 For slow motions we may neglect the acceleration of the

F = ] dr[f + %ClVg{)P + %GZ(@‘W”)Z} (1) average V6|0Cit)v = ¢vp + (1 — d))vs to obtain
ij

1 D Vv =[C(V$)(V$) —V 0,1, (5)
Heref = (ksT/vo)[¢INd/N + (; — x)$> + 54°]is
the Flory-Huggins free energy density [4], whergis the  where [---], denotes taking the transverse part. For
volume of a monomer ang is the interaction parameter simplicity we are assuming that the mass densities of
dependent on the temperature. Inthe second &f#n) «  the pure polymer and solvent are the same and the fluid
1/¢ from the scaling theory. The last term of (1) is is incompressible, s¥ - v = 0 holds. Thenv may be
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expressed in terms ap and W and calculated using the much decelerated as if there is some incubation time
FFT scheme. Furthermore, on the assumption that thiem accord with the experiments [2,3]. In this Letter we
network stress acts on the polymer and not directly orset A = 0.1 for computational convenience. Whereas
the solvent [10], a two fluid model [5-8,10,11] gives thethe time scale of the coarsening sensitively depends on
relative velocityw = v, — v, as A, the characteristic features of the late stage domain
SF o 1 morphology are insensitive té as long asr > 7 holds
fw=—¢Vss TV o T OV 26w ©®) i ate sta%)(/es. ’

Y In Fig. 1 we show time evolution of patterns (@) =
where ((¢) is the friction coefficient of order 1.5, in which the polymer-rich regions are elongated
6mmob 2¢>, b being the monomer size. The last droplets due to the viscoelasticity. Their shapes become
two terms in (6) show how diffusion is influenced circular after extremely long times. In fact, if we switch
by viscoelasticity. We can see that stress imbalanceff the viscoelasticity {(¢) = 0] with the other condi-
(V- E'p # 0) produces diffusion. This form o was tions held fixed, domain shapes quickly change into circu-
originally derived for gels to analyze dynamic light lar shapes due to the surface tensionifer 150. On the
scattering [12] and recently used for sheared polymeother hand, the polymer-rich regions become percolated
solutions [11]. This effect is called the stress-diffusionfor (®) = 1.9 with the viscoelasticity and fof®) = 2.3
coupling and is generally present in viscoelastic twowithout it for the present quench depth. Figure 2 dis-
component systems, giving rise to non-exponential deplays patterns at®) = 2, which closely resemble those
cay in dynamic light scattering [10] and shear-inducedof Tanaka. However, in the experiments desorption of
composition fluctuations [7,8,10,11]. Its effects on earlysolvent or the decrease of the volume fraction of the net-
stage spinodal decomposition have also been discussegrk continued for very long times, thus leading to the
[13,14]. As the self-consistency condition of our model,ultimate break-up of the network. In our case the volume
if the system is closed, we can chedk/dr = 0 from fraction of the network is nearly saturated for= 300
(1)—(e) for any disturbances. This condition assures thadnd no transition to a droplet state is observed. In fact the
the system tends to a homogeneous equilibrium state aslume fraction of the network at= 500 is only by 6%

t — o ifitis closed. larger than the final volume fractioh34 at t — . At

We numerically integrate (2) and (4) using, =  (®) = 2.5in Fig. 3 the polymer-rich domains are thicker,
v + w on a256 X 256 square lattice under the periodic where the solvent droplets very slowly tend to be cir-
boundary condition. Note thav and w have been cular. Note that the interfaces at= 150 and 300 are
expressed in terms o and W;;. We measure space mostly flat, which also occurs in phase-separating solids
and time in the units of¢ = (NCy)'/2/4 and 7o =  with elastic misfit [15].
(voN'2/kgT) (£ p2)€%, whereC(¢) in (1) is set equal
to (kgT/vo)Co/d. The grid size isAx = 1, so the space
region is0 < x,y < 256. The time step i\t = 1073,
In the initial state at = 0, ®(x, y, r) at each lattice point
is a Gaussian random number Wit — (®))2) = 0.01.
Fort > 0 we set(l — 2y)N'/2 = 4.25, for which® =
5.86 in the polymer-rich phase and® = 0.0026 in the
solvent-rich phase on the coexistence curve. Hereafter
we write ® = ¢/¢.. In this final polymer-rich phase,
let £ and D, be the thermal correlation length-(the
interface width) and the cooperative diffusion constant
[4], respectively. Then we obtaifi = 0.81¢ and 7y =
1.16£%/D.,. The solvent viscosityn, is taken to be Y
{Co/ ¢, which follows from{ ~ 67 noé 2. The shear ‘
modulus is assumed to b6 = 0.2(kzT/vo)¢>, from
which the ratio ofG to the osmotic moduluk, is 0.66
in the final polymer-rich phase. The stress relaxation time

is given byr = Aro(®3 + 1) with A = 0.1. Because of ®
this choice ofA, we haver ~ 7y in early stage phase ®
separation < 100) in our simulations. As a result the ®

viscoelasticity does not affect the patterns appreciably e

for + < 100, but it comes into play in later times in 300 500
which 7 > 7, within polymer-rich regions. On the other ;5 1 patterns o (x,y,1) = b(x,y,1)/b. at (®) = 1.5

hand, if A = 1, the viscoelasticity is crucial from the jn which the solvent region is percolated. The numbers are the
beginning and the initial stage of phase separation ifimes after quenching.
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hydrodynamic interaction (dotted line), the velocity field
quickens the growth as(r) « ¢~/ in the region100 <

t = 400. In this case, however, solvent droplet shapes
tend to be circular for = 400 and a crossover to the
droplet growth lawL(r) « t~'/3 appears to take place

in later times. Notice that the growth expone%lthas
been obtained in the critical quench of the symmefic
model with hydrodynamic interaction in two dimensions
[16]. (iii) If we remove v by settingv, = w in (4) in
the presence of the last two terms in (6), the coarsening
is slowed down from the early stage and the growth
law L(r) ~ +~'/3 holds fors = 200 (broken line). These
J results indicate that in the presence of viscoelasticity the
hydrodynamic interaction is suppressed. We can see that
the backbones of the network in Figs. 2 and 3 do not move
as a whole andr almost vanish in the network.
u Then we explain why polymer-rich domains do not
change their elongated shapes for such a long time in the
presence of viscoelasticity. In Figure 5 we displdy, —
1 atr = 70 and 140 for (@) = 1.5. In the solvent region
300 500 7 is taken to be short in (2) an;; = §;;. In the early
FIG. 2. Patterns of®(x,y, 1) = ¢(x,y,1)/¢. at (®) =2.  stage polymer-rich regions are elastically compressed
This |skthe caﬁelclo_se to the boundary between the droplet angl,e to desorption of solvent (as in deswelling gels).
network morphologies. This means thaw,, — 1 and W,, — 1 are negative in
polymer-rich regions. Figure 5(a) shows that they are
In Fig. 4 we show the interface line densityr), which ~ on the order of-0.1 atz = 70. After a transient time,
is the total perimeter length divided by the system areahowever, the surface tension force becomes effective at
at (®) = 2.5 for the following three cases: (i) In the the ends of the stripelike polymer-rich regions, where
presence of viscoelasticity (bold line) we obtairf with the curvature is largest. If there were no viscoelasticity,
a ~ 1/3 for + = 200. The same dynamic exponent is circular domains would then appear. In our viscoelastic
obtained for the other two compositions. (i) Without case, let us consider a stripe elongated alongytlasis;

viscoelasticity or for the Flory-Huggins free energy with then subsequent shape changes produce elastic expansion
in the direction perpendicular to the stripe (theaxis)

and elastic compression in the direction of the stripe
(the y axis). Fig. 5(b) atr = 140 evidently shows that

Wy — 1> 0 (andW,, — 1 < 0) in the stripes elongated

along they axis and vice versa for those elongated along
the x axis. The resultant network stress largely cancels
the stress originating from the surface tension (or that
from V¢). Thus the viscoelastic stress strongly prevents

100 t 300 500

FIG. 4. Time evolution of perimeters divided by the system
area af®) = 2.5. In the bottom (dotted) curve viscoelasticity

is absent and the fluid is Newtonian. The middle (bold) curve
is the case of viscoelastic fluids. In the top (broken) curve
v=¢uv, + (1 — ¢)v, is made to vanish but the viscoelastic

FIG. 3. Patterns of®(x,y,t) = ¢(x,y,t)/P. at(®) = 2.5. terms inw = v, — v, are retained.
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