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Network Domain Structure in Viscoelastic Phase Separation
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By solving a viscoelastic model of polymer solutions in two dimensions, we demonstrate
polymer-rich regions can form a spongelike network in deeply quenched cases. In late stag
velocity field is suppressed because the network supports stress and is rigid. As a result the
size grows ast1y3. In an early stage the polymer-rich regions are shrunken due to desorptio
solvent, whereas in late stages they are elastically expanded perpendicularly to the interface in
with relatively small curvature. The viscoelastic stress then cancels the stress due to the surface
and stabilizes the network structure for a long time. [S0031-9007(96)01792-9]

PACS numbers: 61.25.Hq, 64.75.+g
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Recently a great number of phase separation exp
ments have been performed on polymeric systems
While most of them can be understood in the light
simple dynamic models for usual fluids, some experime
have revealed unusual influence of viscoelasticity pecu
to polymers. Among them Tanaka [2] examined in de
a spongelike network structure composed of thin polym
rich regions by deeply quenching semidilute polymer
lutions into an unstable temperature region. Such patt
were already observed by Aubert [1] and by Song a
Torkelson [1]. There, holes of solvent appear in an ea
stage after an incubation time and grow until polymer-r
regions become thin to form a spongelike network. T
solvent regions are droplets enclosed by the network e
if their volume fraction is considerably larger than th
of the network. This structure coarsens in time and
timately breaks into disconnected polymer-rich doma
Tanaka also observed the same network formation
polymer blend in which one phase is close to glass tr
sition [3]. Therefore a network appears generally wh
the two phases have very different viscoelastic proper
The aim of this paper is hence to numerically investig
the role of viscoelasticity in producing such a netwo
pattern in late stage spinodal decomposition in polym
solutions.

We present a dynamic model of a semidilute polym
solution in which the polymer volume fractionf satisfies
f . fc and f ø 1, fc ­ N21y2 being the critical
volume fraction andN being the polymerization index [4]
We introduce a tensor variableW

$
, called the conformation

tensor, to represent chain deformations. In terms off and
W
$

­ hWijj, the free energy is given by [5–8]

F ­
Z

dr
∑

f 1
1
2

Cj=fj2 1
1
4

G
X
ij

sdWijd2

∏
. (1)

Heref > skBTyy0d ff ln fyN 1 s 1
2 2 xdf2 1

1
6 f3g is

the Flory-Huggins free energy density [4], wherey0 is the
volume of a monomer andx is the interaction paramete
dependent on the temperature. In the second termCsfd ~

1yf from the scaling theory. The last term of (1)
0031-9007y96y77(24)y4910(4)$10.00
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the elastic energy of the network,Gsfd being the shear
modulus. For simplicity we assume that the deviati
of Wij from the equilibrium valuedij s­ the unit tensord
is small, so the elastic free energy is bilinear indWij ­
Wij 2 dij in our model. The motion ofWij is determined
by the polymer velocityyp and its simplest dynamic
equation is of the form [9]
≠

≠t
W
$

1 syp ? =dW$ ­ D
$

? W
$

1 W
$

? D
$T

2
1
t

sW$ 2 I
$d ,

(2)

where D
$

­ h≠ypiy≠xjj is the gradient tensor of th
polymer velocityyp andD

$T is its transposed tensor. Th
relaxation timetsfd is very long in the semidilute region
From (1) and (2) we may calculate free energy chan
against infinitesimal motion of the network to obtain t
network stress

sp ­ GW
$

? sW$ 2 I
$d . (3)

For motions of polymers much slower thant, we have
Wij 2 dij > tsDij 1 Djid and obtain the Newtonian
viscosityhp ­ Gt, which is supposed to be much larg
than the solvent viscosityh0 in the semidilute case. Fo
rapid motions, on the other hand, our system behave
a gel anddWij is nearly equal to the strain tensor of th
displacementup which is the time integral ofyp.

The solvent velocityys and the polymer velocityyp are
different when the diffusion is taking place. The volum
fraction is convected byyp as

≠

≠t
f ­ 2= ? sfypd . (4)

For slow motions we may neglect the acceleration of
average velocityy ­ fyp 1 s1 2 fdys to obtain

h0=2y ­ fCs=fd s=fd 2 = ? spg' , (5)

where f· · ·g' denotes taking the transverse part. F
simplicity we are assuming that the mass densities
the pure polymer and solvent are the same and the fl
is incompressible, so= ? y ­ 0 holds. Theny may be
© 1996 The American Physical Society
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expressed in terms off and W
$

and calculated using th
FFT scheme. Furthermore, on the assumption that
network stress acts on the polymer and not directly
the solvent [10], a two fluid model [5–8,10,11] gives t
relative velocityw ­ yp 2 ys as

z w ­ 2f=
dF
df

1 = ? s
$

p 1
1
4

G=
X
ij

sdWijd2, (6)

where z sfd is the friction coefficient of orde
6ph0b22f2, b being the monomer size. The la
two terms in (6) show how diffusion is influence
by viscoelasticity. We can see that stress imbala
(= ? s

$
p fi 0) produces diffusion. This form ofw was

originally derived for gels to analyze dynamic lig
scattering [12] and recently used for sheared polym
solutions [11]. This effect is called the stress-diffusi
coupling and is generally present in viscoelastic t
component systems, giving rise to non-exponential
cay in dynamic light scattering [10] and shear-induc
composition fluctuations [7,8,10,11]. Its effects on ea
stage spinodal decomposition have also been discu
[13,14]. As the self-consistency condition of our mod
if the system is closed, we can checkdFydt # 0 from
(1)–(6) for any disturbances. This condition assures
the system tends to a homogeneous equilibrium stat
t ! ` if it is closed.

We numerically integrate (2) and (4) usingyp >
y 1 w on a256 3 256 square lattice under the period
boundary condition. Note thaty and w have been
expressed in terms off and Wij . We measure spac
and time in the units of, ­ sNC0d1y2y4 and t0 ­
sy0N1y2ykBT d sz yf2d,2, whereCsfd in (1) is set equa
to skBTyy0dC0yf. The grid size isDx ­ 1, so the space
region is0 , x, y , 256. The time step isDt ­ 1023.
In the initial state att ­ 0, Fsx, y, td at each lattice poin
is a Gaussian random number withksF 2 kFld2l ­ 0.01.
For t . 0 we sets1 2 2xdN1y2 ­ 4.25, for which F ­
5.86 in the polymer-rich phase andF ­ 0.0026 in the
solvent-rich phase on the coexistence curve. Herea
we write F ­ fyfc. In this final polymer-rich phase
let j and Dco be the thermal correlation length (, the
interface width) and the cooperative diffusion const
[4], respectively. Then we obtain, ­ 0.81j and t0 ­
1.16j2yDco. The solvent viscosityh0 is taken to be
z C0yf2, which follows fromz , 6ph0j22. The shear
modulus is assumed to beG ­ 0.2skBTyy0df3, from
which the ratio ofG to the osmotic modulusKos is 0.66
in the final polymer-rich phase. The stress relaxation t
is given byt ­ At0sF3 1 1d with A ­ 0.1. Because of
this choice ofA, we havet , t0 in early stage phas
separation (t & 100) in our simulations. As a result th
viscoelasticity does not affect the patterns apprecia
for t & 100, but it comes into play in later times i
which t ¿ t0 within polymer-rich regions. On the othe
hand, if A * 1, the viscoelasticity is crucial from th
beginning and the initial stage of phase separation
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much decelerated as if there is some incubation ti
in accord with the experiments [2,3]. In this Letter w
set A ­ 0.1 for computational convenience. Where
the time scale of the coarsening sensitively depends
A, the characteristic features of the late stage dom
morphology are insensitive toA as long ast ¿ t0 holds
in late stages.

In Fig. 1 we show time evolution of patterns atkFl ­
1.5, in which the polymer-rich regions are elongate
droplets due to the viscoelasticity. Their shapes beco
circular after extremely long times. In fact, if we switc
off the viscoelasticity [Gsfd ­ 0] with the other condi-
tions held fixed, domain shapes quickly change into cir
lar shapes due to the surface tension fort * 150. On the
other hand, the polymer-rich regions become percola
for kFl * 1.9 with the viscoelasticity and forkFl * 2.3
without it for the present quench depth. Figure 2 d
plays patterns atkFl ­ 2, which closely resemble thos
of Tanaka. However, in the experiments desorption
solvent or the decrease of the volume fraction of the n
work continued for very long times, thus leading to th
ultimate break-up of the network. In our case the volum
fraction of the network is nearly saturated fort * 300
and no transition to a droplet state is observed. In fact
volume fraction of the network att ­ 500 is only by 6%
larger than the final volume fraction0.34 at t ! `. At
kFl ­ 2.5 in Fig. 3 the polymer-rich domains are thicke
where the solvent droplets very slowly tend to be c
cular. Note that the interfaces att ­ 150 and 300 are
mostly flat, which also occurs in phase-separating so
with elastic misfit [15].

FIG. 1. Patterns ofFsx, y, td ­ fsx, y, tdyfc at kFl ­ 1.5,
in which the solvent region is percolated. The numbers are
times after quenching.
4911



VOLUME 77, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER1996

t a

re
e

is
u
ith

ld

es

s

ing
th

the
that
ve

ot
the

sed
s).

re

at
re

ity,
tic

nsion

pe

ng
els
hat
nts

m
y
ve
ve
ic
FIG. 2. Patterns ofFsx, y, td ­ fsx, y, tdyfc at kFl ­ 2.
This is the case close to the boundary between the drople
network morphologies.

In Fig. 4 we show the interface line densityLstd, which
is the total perimeter length divided by the system a
at kFl ­ 2.5 for the following three cases: (i) In th
presence of viscoelasticity (bold line) we obtaint2a with
a , 1y3 for t * 200. The same dynamic exponent
obtained for the other two compositions. (ii) Witho
viscoelasticity or for the Flory-Huggins free energy w

FIG. 3. Patterns ofFsx, y, td ­ fsx, y, tdyfc at kFl ­ 2.5.
4912
nd

a,

t

hydrodynamic interaction (dotted line), the velocity fie
quickens the growth asLstd ~ t22y3 in the region100 &

t & 400. In this case, however, solvent droplet shap
tend to be circular fort * 400 and a crossover to the
droplet growth lawLstd ~ t21y3 appears to take place
in later times. Notice that the growth exponent2

3 has
been obtained in the critical quench of the symmetricf4

model with hydrodynamic interaction in two dimension
[16]. (iii) If we remove y by settingyp ­ w in (4) in
the presence of the last two terms in (6), the coarsen
is slowed down from the early stage and the grow
law Lstd , t21y3 holds fort * 200 (broken line). These
results indicate that in the presence of viscoelasticity
hydrodynamic interaction is suppressed. We can see
the backbones of the network in Figs. 2 and 3 do not mo
as a whole andy almost vanish in the network.

Then we explain why polymer-rich domains do n
change their elongated shapes for such a long time in
presence of viscoelasticity. In Figure 5 we displayWxx 2

1 at t ­ 70 and140 for kFl ­ 1.5. In the solvent region
t is taken to be short in (2) andWij > dij. In the early
stage polymer-rich regions are elastically compres
due to desorption of solvent (as in deswelling gel
This means thatWxx 2 1 and Wyy 2 1 are negative in
polymer-rich regions. Figure 5(a) shows that they a
on the order of20.1 at t ­ 70. After a transient time,
however, the surface tension force becomes effective
the ends of the stripelike polymer-rich regions, whe
the curvature is largest. If there were no viscoelastic
circular domains would then appear. In our viscoelas
case, let us consider a stripe elongated along they axis;
then subsequent shape changes produce elastic expa
in the direction perpendicular to the stripe (thex axis)
and elastic compression in the direction of the stri
(the y axis). Fig. 5(b) att ­ 140 evidently shows that
Wxx 2 1 . 0 (andWyy 2 1 , 0) in the stripes elongated
along they axis and vice versa for those elongated alo
the x axis. The resultant network stress largely canc
the stress originating from the surface tension (or t
from =f). Thus the viscoelastic stress strongly preve

FIG. 4. Time evolution of perimeters divided by the syste
area atkFl ­ 2.5. In the bottom (dotted) curve viscoelasticit
is absent and the fluid is Newtonian. The middle (bold) cur
is the case of viscoelastic fluids. In the top (broken) cur
y ­ fyp 1 s1 2 fdys is made to vanish but the viscoelast
terms inw ­ yp 2 ys are retained.
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FIG. 5. Wxx 2 1 (the xx component of the strain) produce
in polymer-rich regions att ­ 70 (a) and att ­ 140 (b). The
region40 , x , 120 and5 , y , 85 is shown.

the tendency of morphology changes from elongated
circular shapes due to the surface tension. It goes with
saying that the surface tension remains the driving force
coarsening because the viscoelastic stress slowly rela
in contrast to the solid case [15].

In summary, we have examined the effects of viscoel
ticity in phase-separating polymer solutions. Interestin
the network morphologies obtained here resemble thos
phase-separating solid binary mixtures in the presenc
elastic misfit (or when the two phases have different sh
moduli) [15], although softer regions form a network
the solid case.
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