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In this paper a new type of crisis in random maps is studied. The trigger of this new crisis is th
tunnel effect induced by a backward tangent bifurcation. This is different from the formerly reporte
crises caused by the collision of the chaotic attractor with an unstable orbit. The reasons why
characteristic time of this new crisis is super long are given. Another case of crisis triggered by t
random collision of the attractor with the system’s trapping region boundary can also be found in th
model. The two cases of crisis can transform into each other by continuously varying the contr
parameter. [S0031-9007(96)01842-X]
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For a dynamical system, one of the most fundame
problems is to study the change in its behavior
some parameters of the system are varied. The su
qualitative change in the chaotic dynamical behav
induced by variations of the parameters, named a cr
has been found to be common in dynamical syste
and many works have been done on this subject [1–
Three prototypes of crises are given by Grebogiet al. [2–
6]. The first one is the sudden destruction of a cha
attractor, caused by the collision with an unstable orbi
the boundary of this attractor. It was called a bound
crisis. The second one is the sudden increase of the
of a chaotic attractor in the phase space, named an int
crisis. It occurs when the chaotic attractor collides wit
periodic orbit in the interior of its basin. The third one
the merging of more than one chaotic attractor, name
merging crisis. It is caused by the simultaneous collis
of the attractors with the boundary which separates th
For a properly defined characteristic time, it exhibits
perfect power law relation with the variation of the cont
parameter. A quantitative theory for the determinat
of the critical exponents is developed in Ref. [2]. Fo
system under the influence of a random noise, a crisis
even appear when the control parameter does not r
the critical value [4,5]. This is the noise induced crisis

It should be noted that for all these types of crises
is the collision of the chaotic attractor with an unsta
orbit, or equivalently, its stable manifold, that triggers t
crisis. In this paper, a new type of crisis in a rando
system caused by the backward tangent bifurcation
reported. For this case, the phase points are bounde
separated bands of the attractor before the occurrenc
crisis. With the increasing of the control parameter
stable fixed point (node) on the attractor and an unst
fixed point (saddle) on the tapping region boundary w
come closer and closer together. And they will annihil
0031-9007y96y77(24)y4899(4)$10.00
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finally due to a tangent (saddle-node) bifurcation. As
result, a narrow tunnel will appear occasionally betwe
the map functiony  Fsy, zn, zn11d and the 45± line.
Then, the phase points in one band will be able to trans
to other bands through this randomly appearing narr
tunnel. Since the tunnel is induced by a backward tang
bifurcation, we call this new crisis a tunnel crisis induc
by a backward tangent bifurcation. Here, the tunn
effect, instead of the collision of the attractor with a
unstable orbit in former cases, is the trigger of crisis. W
will use a simple example below to illustrate the cau
and properties of this new crisis.

The model we studied is just a random map [7–15],

yn11  fs yn, znd, (1)

where zn is a time dependent random number. O
of our motivations to study such a system driven
a random noise is to understand the mechanism of
synchronization in chaotically driven systems [11]. F
the chaotic synchronization, there is always an ensem
of identical nonlinear systems driven by a chaotic sign
So, the study of a single random system will be importa
to the understanding of its mechanism. This work is a
motivated by the attempt to study the domain loss
a multiperiodic system under the influence of a rando
driving [7–10]. Some authors have even noted that it i
crisislike phenomenon [7–9].

In this paper, we just study the simplest logistic m
driven by a random noise,

fs yn, znd  znyns1 2 ynd, (2)

zn  b 1 axn , (3)

where a, b are two positive real constants, andxn is a
random number homogeneously distributed in the inter
© 1996 The American Physical Society 4899
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f0, 1g. To keep the value ofyn bounded in the interval
f0, 1g, the inequalities

a . 0, b . 0, a 1 b , 4 (4)

should be satisfied. These conditions define a trian
in the sa, bd plane (cf. Fig. 1). Two curves formed b
zero points of the Lyapunov exponent divide the triang
into three regions. As reported before, just beyo
these two curves, two different manifestations of on-
intermittency can be found [12–15]. Fora, b lying in the
region between the two curves, an ensemble of differ
initial points will clap to a single one after a long period o
transient iterations. On the other hand, just on theb axis,
there is a cascade of period doubling bifurcations as w
as many period windows. They disappear completely
the strong influence of random driving. What will b
the crossover of these two situations? The behavior
a period-2 system under the influence of a random driv
with increasing strength is shown below.

For a  0; 3.0 , b , 3.449 . . ., the system we studied
is just of period two. If we fixb  3.2, and slowly
increasea from zero, the two fixed points will be slowly
blurred into two bands of continuously changed siz
With further increaseda, the two bands will suddenly
expand their sizes and merge into one whena passes
through a critical valueap

3  0.175. The bifurcation
diagram is shown in Fig. 2. Since the parameters
interest for us are limited in the period 2 interval, we sh
only consider the double iteration of the original map
below,

y  Fs y, zn, zn11d ; fsssfs y, znd, zn11ddd. (5)

For random variations ofzn and zn11, the maps
Fs y, zn, zn11d at different steps are blurred into a ban
bounded by Fs y, b, bd, Fs y, b, a 1 bd, Fs y, a 1 b, bd,
and Fs y, a 1 b, a 1 bd. So the two fixed points of the
deterministic map are blurred into two bands correspo
ingly. The boundaries of the two bands can be calcula
rigorously [16]. For example, the boundaries of the low

FIG. 1. The phase diagram of the random logistic map. T
curves I and II are formed by zero points of the Lyapuno
exponent. The curveIII is the critical curve of a new type o
crisis.
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B1 

8<: yb,a1b,1, if 0 # a , ap
1 ,

yb,a1b,1, if ap
1 # a , ap

2 ,
FsB2, b, a 1 bd, if ap

2 # a , ap
3 ,

(6)

B2 

8<: ya1b,b,1, if 0 # a , ap
1 ,

Fs0.5, a 1 b, bd, if ap
1 # a , ap

2 ,
Fs0.5, a 1 b, bd, if ap

2 # a , ap
3 ,

(7)

where B1 (or B2) is the upper (or lower) boundary o
this band, andyb,a1b,i is the ith root of the equation
Fs y, b, a 1 bd 2 y  0 when all its nonzero roots are
arranged in ascending order. Other symbols ofy with
subscripts of similar meaning will be used in this pap
The critical values ofa satisfy

F0s yap
11b,b,1, ap

1 1 b, bd  0 ,

FsB2, b, ap
2 1 bd  yb,ap

21b,1 , (8)

yb,ap
31b,1  yb,ap

31b,2 ,

where F0s y, a 1 b, bd ; ≠yFs y, a 1 b, bd. For b 
3.2, the three critical values ofa are, respectively,
ap

1  0.024, ap
2  0.092, ap

3  0.175. While for b 
3.1, the three critical values degenerate into a sin
one ap

1  ap
2  ap

3  0.051. For values ofa smaller
than ap

3, the system has two trapping regions distribut
separately in two intervalsfFs0.5, a 1 b, bd, yb,a1b,2g
and f ya1b,b,2, fs0.5, a 1 bdg [cf. Fig. 3(a)]. All points
iterated into these regions will stay there forever.
the attractor of the system can only be two separa
bands. With increasing values ofa, the stable fixed
point yb,a1b,1 on the attractor and the unstable fixed po
yb,a1b,2 on the trapping region boundary will come clos

FIG. 2. The bifurcation diagram of the random map wi
b  3.2. The solid curves on the boundary are calculated fr
Eqs. (6)–(8). The dashed linesI andII are formed by unstable
fixed pointsyb,a1b,2 andya1b,b,2, respectively. They annihilate
at the crisis point due to a backward tangent bifurcation.
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FIG. 3. The map functions (1)y  Fs y, b, a 1 bd,
(2) y  Fs y, a 1 b, bd, (3) y  Fs y, a 1 b, a 1 bd, (4) y 
Fs y, b, bd, with b  3.2 and (a)a  0.1; (b) a 
0.2. The four points A fFs0.5, a 1 b, bdg, B syb,a1b,2d,
C sya1b,b,2d, D ffs0.5, a 1 bdg in (a) are the boundary points
of trapping regions. It can be seen in (b) that a narrow tunn
appears betweeny  Fs y, b, a 1 bd and the45± line.

and closer together. And they will finally annihilate du
to a backward tangent bifurcation at the critical valu
ap

3 (cf. Fig. 2). After that, a narrow tunnel will appea
between the map functiony  Fs y, b, a 1 bd and the
45± line [cf. Fig. 3(b)]. Then the points in one band
can be transformed into another band through this narr
tunnel. Here, the ”tunnel effect” caused by a backwa
tangent bifurcation is the trigger of this new crisis.
is different from the formerly reported cases which a
caused by the collision of a chaotic attractor with a
unstable orbit. This shows that the crisis we find he
is a new one.
el

e

w
d
t
e
n
e

It should be noticed that the narrow tunnel betwe
the iteration curvey  Fs y, zn, zn11d and the45± line
can only appear when some conditions are satisfied.
example, the conditions arezn ø b and zn11 ø b 1 ap

3
for one slightly greater thanap

3. For random variations of
zn, the tunnel can only appear with a small probability.

Similar to the former studies of the crisis behavior, w
can define the characteristic timet as the number of steps
of the iterations which an orbit spends in one band bef
it tunnels into another band. The numerical values
t calculated with the various values ofe  a 2 ap

3 are
shown in Fig. 4. It can be seen that the mean timektl
increases very quickly with the decrease ofe. It is about
107 for e , 0.1 with b  3.1. A numerical fitting of data
shows that lnktl , 1ye; i.e., we havektl , expscyed.
This relation can be deduced rigorously from a stochas
bistable model [16]. The scaling relation ofktl with
e shows that the crisis reported here is different fro
the “unstable-unstable pair bifurcation crisis” given b
Grebogi et al. That crisis has the characteristic scalin
of ktl with e given byktl , expskye1y2d [17].

The origin of this super long characteristic time may b
as follows: First, for random variations ofa and b, the
tunnel between the map functiony  Fs y, b, a 1 bd and
the 45± line can appear only occasionally. Second, f
values ofa slightly greater thanap

3, it takes a long period
of iterations for phase points to trasverse the narr
tunnel. During this long period of iterations, the tunn
can be maintained only with a very small probability.

With the variation ofb, the critical pointsap
3 will form

a curve in thesa, bd plane (cf. Fig. 1). This curve is

FIG. 4. The mean characteristic timektl during which the
system stays in one band vse  a 2 ap

3 . The two curves are
of b  3.2 (p) and b  3.1 (±), respectively. Each point in
this figure is the average of 10 000 examples. The unit oft is
the step of iteration.
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just the critical curve of the new crisis reported he
For parameters below this curve, the orbit iterates in t
separated bands. While for parameters passing thro
this curve, the two separated bands will suddenly exp
their sizes and merge into one. For an ensemble
phase points of different initial values, the merging of tw
bands means that all of the orbits will be synchrono
after the transient iterations. So, this critical curve
crisis is also the critical curve of synchronization. Th
implies that the new crisis may be one of the mechanis
of synchronization (or domain loss) for multiperiod
systems under the influence of a random noise.

For b  3.3, with increasinga, another type of crisis
can be found. It is caused by the collision of the attrac
with the boundary of the system’s trapping region. T
critical value of a for this crisis is determined by the
relation

FsssFs0.5, a 1 b, bd, b, a 1 bddd  yb,a1b,2 . (9)

The numerical calculation of the characteristic time sho
that it is also super long. By slowly decreasingb, this
case of crisis can be transferred into the case caused
“tunnel effect.” A detailed study of this transition will be
reported elsewhere [16].

It can be seen that under the influence of noise,
merging crisis of a deterministic map now occurs at
earlier time. For the deterministic mapfs yd  zys1 2

yd, the merging crisis occurs atz  3.678 . . . when the
two bands of the attractor collide with the unstab
orbit yp  1 2 1yz which separates them. While for th
random map studied here, we have the critical value
merging crisis:b 1 ap

3  3.2 1 0.175  3.375. Under
the influence of parametric noise, the control parameter
two consecutive steps of iterations become nonidenti
The tangent bifurcation, which triggers the new crisis,
just induced by this difference in the control paramete
of two consecutive steps of iterations.

In conclusion, in this paper, a new case of crisis
found in a random map when we increase the strength
the random driving. It is triggered by the tunnel effect d
to a backward tangent bifurcation. This is different fro
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the mechanism of the crises reported formerly. Anoth
crisis caused by the random collision of the attractor w
its trapping region boundary can also be found in th
model. The two cases can transform into each other w
continuous variations of the parameterb.
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