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A universal formula for an action associated with a noncommutative geometry, defined by a spectral
triple (A, H , D), is proposed. It is based on the spectrum of the Dirac operator and is a geometric
invariant. The new symmetry principle is the automorphism of the algebravhich combines both
diffeomorphisms and internal symmetries. Applying this to the geometry defined by the spectrum of
the standard model gives an action that unifies gravity with the standard model at a very high energy
scale. [S0031-9007(96)01860-1]
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Riemannian geometry has played an important role ircharacterizing spectral triple&4, H , D) coming from
our understanding of space-time, especially in the develthe above spinorial construction could be given in a form
opment of the general theory of relativity. The basic datageneralizable to the noncommutative case which involves
of Riemannian geometry consists ofranifold Mwhose the dimensionn of M. The parity ofn implies aZ/2
points x € M are locally labeled by finitely many co- gradingy of the Hilbert spaceH such that
ordinatesx* € R, and in the infinitesimaline element, o ) _
ds* = g,, dx*dx”. The dynamics of the metric is gov- y=v, v =1L ya=ay
erned by the Einstein action, and the symmetry principle Vae A, yD= —-Dy.

is diffeomorphism invariance. The otherbasicinteractionsM K K of theal af
consisting of strong, weak, and electromagnetic forces ar oreover, one keeps track of tmea! structureon as

well described by the standard model action, and the syr'n‘a—m antilinear isometry in 31 satisfying simple relations

metry principle is the gauged internal symmetry. There- J2=s, JD=¢DJ, Jy=2g"yJ:
fore the natural group of invariance that governs the sum ’ ’ ’
of the Einstein and standard model actions is the semidi- e, & e €{-1,1},

rect product of the group of local gauge transformations, )

U = C*(M,U(1) X SU(2) X SU(3)) by the natural ac- Where the values of, z', ¢” are determined by modulo

tion of Diff(M). Another concept which is vital to the 8- A greatadvantage in adopting noncommutative geom-

construction of the standard model is spontaneous symmé&lry is that it allows the study of spaces which could not

try breaking and Higgs fields, but this has no geometricaP€ handled otherwise. The usual emphasis on the points

significance. x € M of a geometric space is now repIaped by the spec-
In a new development in mathematics, it has beedUm = C R of the operatoD. Indeed, if one forgets

shown that Riemannian geometry could be replaced witbout the algebraa in the spectral triplé A, 31, D) but

a more general formulation, noncummutative geometry/€tains only the operato, y, andJ acting in 3 one

The basic data of noncommutative geometry consists dfan characterize this data by the spect@if D which is

an involutivealgebra A of operators in Hilbert spacé{ & discrete subset with multiplicity . In the even case

and of a self-adjoint unbounded operaBin H [1-6]. % = —3. The existence of Riemannian manifolds which

The geodesic distance between points is recovered by 2re isospectral (i.e., have the salp but not isometric
shows that the following hypothesis is stronger than the

d(x,y) = Sudla(x) — a(y)l; usual diffeomorphism invariance of the action of general
relativity: “The physical action depends only &fi. The
a € AD.alll = 1}, most natural candidate for an action that depends only on
which implies that the inversB ! of D plays the role of the spectrum is
the infinitesimal unit of lengthls of ordinary geometry. D
There is no information lost in trading the original TFX<—> + (¢, D), (1)
Riemannian manifoldV for the corresponding spectral A
triple (A, H ,D) where A = C*(M) is the algebra where y is a positive function and\ is an arbitrary
of smooth functions orM, H = L?(M, S) the Hilbert scale. This form of the action is dictated by the condition
space ofL?-spinors, andD the Dirac operator of the that it is additive for disjoint union. In the usual
Levi-Civita spin connection. More importantly, it was Riemannian case the group DMJ of diffeomorphisms
shown in [4] that the axioms of commutative geometryof M is canonically isomorphic to the group Aull) of
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automorphisms of the algebréd = C*(M). To each automorphisms. Inthe same way the space of metrics has
¢ € Diff (M) one associates the algebra preserving magp natural foliation into equivalence classes. Titernal

a,: A — A given by fluctuationsof a given metric are given by the formula
a,(f)=foe ' YfeEC M) =A. D =Dy + A+ JAJ', A= 3al[Dyb;],
In general the group AWA) of automorphisms of the a,b; E A and A = A" 3)

involutive algebra A plays the role of the diffeomor-

phisms of the noncommutative (or spectral for short) geThus starting from(A, H, Do) with obvious notations,
ometry (A, H,D). The first interesting new feature of one leaves the representationf in H untouched and
the general case is that the group A@f) has a natu- just perturbs the operatdr, by (3) whereAis an arbitrary
ral normal subgroup, IRtA) C Aut(A) (which is analo-  Self-adjoint operator ir#{ of the formA = ;[ Dy, b;];
gous to the normal Subgrouﬁu of the Symmetry group a;, b, € A. For Riemannian geometry these fluctuations
G = U % Diff (M)), where an automorphisia is inner ~ are trivial.

iff there exists a unitary operator € A (uu* = u*u = The hypothesis which we shall test in this Letter is that
1), such thata(a) = uau* ¥ a € A. This leads us to there exists an energy scalein the rangel0'*~10" Gev
the postulate thafhe symmetry principle in noncommuta- at which we have a geometric action given by (1).

tive geometry is invariance under the group Aft). The quark€Q and leptond. are

We now apply these ideas to derive a nhoncommuta- ur
tive geometric action unifying gravity with the standard | dg . L
model. The starting point is the spectrum of the stan- Q= dr |’ L=1e
dard model. The symmetries of the spectrum indicate Up €R

that the algebra to be takenid = C*(M) ® Ay where
the algebraAr is finite dimensional A = Ce H &
M;(C), and H C M,(C) is the algebra of quaternions

H= _a— 'g);a,ﬁ e C}. A is a tensor product

2 — *r—17
which geometrically corresponds to a product space; an J7=1, [1,D]=0, [a,Jb"J']=0,

instance of spectral geometry f&k is given by the prod- .
uct rule [[D,al, Jb*J'1=0 Va,b.4)

o . We can now compute the inner fluctuations of the metric
H =L1M.5) @ Hp,D =dy®1+ys®Dr, (2) and thus operators of the form = Sa,[D,b;]. This
where (Hr, Dr) is a spectral geometry ol -, while  with the self-adjointness conditioh = A* gives aU(1),
both L?(M,S) and the Dirac operato#, on M are SU(2), and U(3) gauge fields as well as a Higgs field. In
as above. The choice afdr could be related to the the computation oA + JAJ ! one removes a U(1) part
quantum group S(2), at the cubic root of unity [4]. The from the above gauge fields. One drops the trace part
Dirac operatorD = ¢,, on M is taken, for simplicity, to which does not affect the metric (see [4] for details). The
correspond to a space without torsion. Dirac operatorD,, that takes the inner fluctuations into

The group AutA) of diffeomorphisms falls in equiva- account is given by thd6 X 36 matrix (acting on the 36
lence classes under the normal subgroup i of inner | guarks) (tensored with Clifford algebras)

We now describe the internal geometry. The choice of
the Dirac operator and the action ddr in Hy comes
' from the restrictions that these must satisfy

v ® (D,u ® 1, — %g()zAzO'a — égOlB,u, ® 1) ® 13, Ys ® kg ® H, v ® k(l; ® H
D, = ys ® ki ® H*, y* ® (D, + 5 gnB,) ® 13, 0 ® 13
S 2i
ysko H, 0, y* ® (Dy — T g0Bu) ® 13

+ ’y'U“ ®14,®13® <—%g03VL)\i>, (5)

where o¢ are Pauli matrices and’ are GeII-Mann| of a torsion free space; the more general case with torsion
matrices satisfying Tn‘A/) = 26. The vector fields will not be considered here. The scalar figilis the

B,, A%, and V} are the U(1), S@),, and SU3). Higgs doublet, and? = (ioc?H) is the SU(2) conjugate
gauge fields with gauge couplings;, g0, and go3.  of H.

The differential operatoD, is given by D, = 9, + The Dirac operator acting on the leptons, taking inner
w, Wherew, = %wz”yab andy* = ¢4 y*. The Dirac fluctuations into account, is given by tifex 9 matrix
operator of the Riemannian manifdidiis taken to be that (tensored with Clifford algebra matrices),
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Dy — |:y" ® (D, — $g0A%0® + Sg0B, ® 1,) ® 13 ys ® k{ ® H } ©)

vs ® ky° ® H* y* ® (D, + ignB,) ® 13

The matricesk{, k&, and k§ are 3 X 3 family mixing  dv(x) = /g d"x whereg#” is the metric orM appearing
matrices. According to our universal formula the spectrain P, we can show that
action for the standard model is given by

Trix(D*/m)] + (b, D), (7) Trx(P) = > fuan(P),
wheremy is a cutoff mass scale arfgh, D) will include n=0
both the quark and leptonic interactions. It is a simplewhere the coefficientg, are given by
exercise to compute the square of the Dirac operator given

?g/rrf%??nd (6). This can be cast into the elliptic operator fo= ]0 udu, fr = /; () du.
P - D2 — _(g,lU/(:)luaV . [l + A,u,aﬂ‘ + B), f2(n+2) — (_l)nX(n)(O), n= 0’
wherel, A* and B are matrices of the same dimensions
asD. Using the heat kernel expansion for and a,(P) = [a,(x,P)dv(x) are the Seeley—de Witt
coefficients. a, (P) vanish for odd values af and the first
Tre ™ = t(""”/d)f an(x, P)dv(x), four a, for evenn are given in Gilkey [7]. A very lengthy
n=0 M

but straightforward calculation, the details of which will
where m is the dimension of the manifold i€”(M), be reported somewhere else [8] gives for the bosonic
d is the order ofP (in our casem = 4, d = 2), and | action

1 1 . .
Iy = ] d4x\/§[2—K%R — pd(H*H) + aoCphppoeC*"P7 + boR* + co"R*R + doR;, " + ep + 7 GG

+ %Fﬁ,,F’“’“ + %BWB’“’ + |D, HI* — &RIHI* + )\O(H*H)z} + 0<mi%>, (8)
where Gj“,, F,,, andB,, are the field strengths of thé We shall adopt Wilson’s viewpoint of the renormaliza-
gauge fields/?, A%, andB,, respectively. C,, . is the tion group approach to field theory [9] where the spectral
Weyl tensor andR*R is the Euler characteristic, and action is taken to give theare action with bare quantities

4 9 ao, by, co, ... and at a cutoff scald which regularizes the
ui = —5, a=——5, by=0, (9) action the theory is assumed to take a geometrical form.

3Ky 8503 We have included thé, term because the renormalized

co = —an, dy = _2 ap, ey = 4—52f0m3 , theory would require such a term with thg = 0 taken as
18 3 4 a boundary condition. The perturbative expansion is then

A = 4 5 ﬁ o = 1 reexpressed in terms oénormalizedphysical quantities.

07 3803 yi 0 g The fields also receive wave function renormalization.
We have also denoted The renormalized action receives counterterms of the
same form as the bare action but with physical parame-

2 _ d2 2 4 Lygep o :
y? =Trkgl” + Ikgl™ + 3|k5| ) ters, a,b,c,.... The renormalization group equations
1 will yield relations between the bare quantities and the
2 = Trdlkgl + 1 + 5lksl) | ties wi it

- 0 0 3ol /> physical quantities with the addition of the cutoff scale
D H=0.H—tonAcH — % o0 B H. A. Qqndltlons on the bare quant!tles would translqte mto
e TR 2 80287 _ 2 80150 _conditions on the physical quantities. The renormalization
The Einstein, Yang-Mills, and Higgs terms are normalizedyroup equations of this system were studied by Fradkin

by taking and Tseytlin [10] and are known to be renormalizable,
15mif> _ 1 g8 S _ 2 _ 2 _ 5 5 but nonunitary [11] due to the presence of spin-two ghost
472 K2l » 803 T 8oz T 3 801 (tachyon) pole near the Planck mass. We shall not worry

about nonunitarity (see, however, Ref. [12]), because in

(10)  our view at the Planck energy the manifold structure of

Relations (10) among the gauge coupling constants coirspace-time will break down and must be replaced with a
cide with those coming from SU(5) unification. genuinely noncommutative structure.
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Relations between the bare gauge coupling constantalue of Newton’s constant, and both have quadratic
as well as Egs. (9) have to be imposed as boundarglivergences in the limit of infinite cutofk. The relations
conditions on the renormalization group equations [9,13]betweenn, ¢, and the physical quantities are
The bare mass of the Higgs field is related to the b?re

mo—m[l-l-T Zg2+2g1+6)\—6kt +0(|nﬁ)+...,
4
ep = e + 92 62) + .... (12)

For m*(A) to be small at low energies:} should be ! only interacts gravitationally (such as a gravitino), but at
tuned to be proportional to the cutoff scale accordingpresent we shall not commit ourselves. These results must
to Eq. (11). Similarly the bare cosmological constantbe taken as an indication that the spectrum of the standard
is related to the physical one (which must be tuned tanodel has to be altered as we climb up in energy. The
zero at low energies). There is also a relation betweeshange may at low energies (just as in supersymmetry
the bare scalec, > and the physical one& 2 which is  which also pushes the cutoff scale 16'° Gev) or at
similar to Eqg. (11) (but with all one-loop contributions some intermediate scale. Ultimately one would hope that
coming with the same sign) which shows thgt' ~ m,  modification of the spectrum will increase the cutoff scale
and A are of the same order as the Planck mass. Theearer to the Planck mass as dictated by gravity.
renormalization group equations for the gauge coupling A.H.C. would like to thank Jurg Frohlich for very
constants, g», andg; are the same as those with SU(5) useful discussions and I. H. E. S. for hospitality where part
boundary conditions, and can be easily solved using thef this work was done.
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