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A universal formula for an action associated with a noncommutative geometry, defined by a sp
triple sA, H , Dd, is proposed. It is based on the spectrum of the Dirac operator and is a geom
invariant. The new symmetry principle is the automorphism of the algebraA which combines both
diffeomorphisms and internal symmetries. Applying this to the geometry defined by the spectr
the standard model gives an action that unifies gravity with the standard model at a very high
scale. [S0031-9007(96)01860-1]
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Riemannian geometry has played an important role
our understanding of space-time, especially in the de
opment of the general theory of relativity. The basic d
of Riemannian geometry consists of amanifold Mwhose
points x [ M are locally labeled by finitely many co
ordinatesxm [ R, and in the infinitesimalline element,
ds2 ­ gmn dxmdxn . The dynamics of the metric is gov
erned by the Einstein action, and the symmetry princ
is diffeomorphism invariance. The other basic interactio
consisting of strong, weak, and electromagnetic forces
well described by the standard model action, and the s
metry principle is the gauged internal symmetry. The
fore the natural group of invariance that governs the s
of the Einstein and standard model actions is the sem
rect product of the group of local gauge transformatio
U ­ C`sssM, Us1d 3 SUs2d 3 SUs3dddd by the natural ac-
tion of Diff(M). Another concept which is vital to th
construction of the standard model is spontaneous sym
try breaking and Higgs fields, but this has no geometr
significance.

In a new development in mathematics, it has be
shown that Riemannian geometry could be replaced w
a more general formulation, noncummutative geome
The basic data of noncommutative geometry consist
an involutivealgebraA of operators in Hilbert spaceH
and of a self-adjoint unbounded operatorD in H [1–6].
The geodesic distance between points is recovered by

dsx, yd ­ Suphjasxd 2 as ydj;

a [ A, jjfD, agjj # 1j ,

which implies that the inverseD21 of D plays the role of
the infinitesimal unit of lengthdsof ordinary geometry.

There is no information lost in trading the origin
Riemannian manifoldM for the corresponding spectr
triple sA, H , Dd where A ­ C`sMd is the algebra
of smooth functions onM, H ­ L2sM, Sd the Hilbert
space ofL2-spinors, andD the Dirac operator of the
Levi-Civita spin connection. More importantly, it wa
shown in [4] that the axioms of commutative geome
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characterizing spectral triplessA, H , Dd coming from
the above spinorial construction could be given in a fo
generalizable to the noncommutative case which invol
the dimensionn of M. The parity of n implies a Zy2
gradingg of the Hilbert spaceH such that

g ­ gp, g2 ­ 1, ga ­ ag

; a [ A, gD ­ 2Dg .

Moreover, one keeps track of thereal structureon H as
an antilinear isometryJ in H satisfying simple relations

J2 ­ ´, JD ­ ´0DJ, Jg ­ ´00gJ;

´, ´0, ´00 [ h21, 1j ,

where the values of́ , ´0, ´00 are determined byn modulo
8. A great advantage in adopting noncommutative geo
etry is that it allows the study of spaces which could n
be handled otherwise. The usual emphasis on the po
x [ M of a geometric space is now replaced by the sp
trum S , R of the operatorD. Indeed, if one forgets
about the algebraA in the spectral triplesA, H , Dd but
retains only the operatorsD, g, andJ acting in H one
can characterize this data by the spectrumS of D which is
a discrete subset with multiplicity ofR. In the even case
S ­ 2S. The existence of Riemannian manifolds whic
are isospectral (i.e., have the sameS) but not isometric
shows that the following hypothesis is stronger than
usual diffeomorphism invariance of the action of gene
relativity: “The physical action depends only onS”. The
most natural candidate for an action that depends only
the spectrum is

Trx

µ
D
L

∂
1 kc , Dcl , (1)

where x is a positive function andL is an arbitrary
scale. This form of the action is dictated by the conditi
that it is additive for disjoint union. In the usua
Riemannian case the group Diff(M) of diffeomorphisms
of M is canonically isomorphic to the group AutsAd of
© 1996 The American Physical Society
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automorphisms of the algebraA ­ C`sMd. To each
w [ Diff sMd one associates the algebra preserving m
aw : A ! A given by

aws fd ­ f ± w21 ; f [ C`sMd ­ A .

In general the group AutsAd of automorphisms of the
involutive algebraA plays the role of the diffeomor
phisms of the noncommutative (or spectral for short)
ometry sA, H , Dd. The first interesting new feature o
the general case is that the group AutsAd has a natu-
ral normal subgroup, IntsAd , AutsAd (which is analo-
gous to the normal subgroupU of the symmetry group
G ­ U H Diff sMd), where an automorphisma is inner
iff there exists a unitary operatoru [ A suup ­ upu ­
1d, such thatasad ­ uaup ; a [ A. This leads us to
the postulate thatThe symmetry principle in noncommut
tive geometry is invariance under the group AutsAd.

We now apply these ideas to derive a noncommu
tive geometric action unifying gravity with the standa
model. The starting point is the spectrum of the st
dard model. The symmetries of the spectrum indic
that the algebra to be taken isA ­ C`sMd ≠ AF where
the algebraAF is finite dimensional,AF ­ C © H ©
M3sCd, and H , M2sCd is the algebra of quaternion

H ­

Ωµ
a b

2b̄ ā

∂
; a, b [ C

æ
. A is a tensor produc

which geometrically corresponds to a product space
instance of spectral geometry forA is given by the prod-
uct rule

H ­ L2sM, Sd ≠ HF , D ­ ≠yM ≠ 1 1 g5 ≠ DF , (2)

where sHF , DFd is a spectral geometry onAF , while
both L2sM, Sd and the Dirac operator≠yM on M are
as above. The choice ofAF could be related to the
quantum group SUs2dq at the cubic root of unity [4]. The
Dirac operatorD ­ ≠yM on M is taken, for simplicity, to
correspond to a space without torsion.

The group AutsAd of diffeomorphisms falls in equiva
lence classes under the normal subgroup IntsAd of inner
ap
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automorphisms. In the same way the space of metrics
a natural foliation into equivalence classes. Theinternal
fluctuationsof a given metric are given by the formula

D ­ D0 1 A 1 JAJ21, A ­ SaifD0, big,

ai , bi [ A and A ­ Ap. (3)

Thus starting fromsA, H , D0d with obvious notations,
one leaves the representation ofA in H untouched and
just perturbs the operatorD0 by (3) whereA is an arbitrary
self-adjoint operator inH of the formA ­ SaifD0, big;
ai , bi [ A. For Riemannian geometry these fluctuatio
are trivial.

The hypothesis which we shall test in this Letter is th
there exists an energy scaleL in the range1015 1019 Gev
at which we have a geometric action given by (1).

The quarksQ and leptonsL are

Q ­

0BBB@
uL

dL

dR

uR

1CCCA , L ­

0B@ nL

eL

eR

1CA .

We now describe the internal geometry. The choice
the Dirac operator and the action ofAF in HF comes
from the restrictions that these must satisfy

J2 ­ 1, fJ, Dg ­ 0, fa, JbpJ21g ­ 0,

ffffD, ag, JbpJ21ggg ­ 0 ; a, b .(4)

We can now compute the inner fluctuations of the me
and thus operators of the formA ­ SaifD, big. This
with the self-adjointness conditionA ­ Ap gives aUs1d,
SU(2), and U(3) gauge fields as well as a Higgs field.
the computation ofA 1 JAJ21 one removes a U(1) par
from the above gauge fields. One drops the trace
which does not affect the metric (see [4] for details). T
Dirac operatorDq that takes the inner fluctuations int
account is given by the36 3 36 matrix (acting on the 36
quarks) (tensored with Clifford algebras)
Dq ­

2664 gm ≠ sDm ≠ 12 2
i
2 g02Aa

msa 2
i
6 g01Bm ≠ 12d ≠ 13, g5 ≠ kd

0 ≠ H, g5 ≠ ku
0 ≠ H̃

g5 ≠ kdp

0 ≠ Hp, gm ≠ sDm 1
i
3 g01Bmd ≠ 13, 0

g5kup

0 H̃p, 0, gm ≠ sDm 2
2i
3 g01Bmd ≠ 13

3775 ≠ 13

1 gm ≠ 14 ≠ 13 ≠

µ
2

i
2

g03V i
mli

∂
, (5)
sion

ner
where sa are Pauli matrices andli are Gell-Mann
matrices satisfying Trsliljd ­ 2dij. The vector fields
Bm, Aa

m, and V i
m are the U(1), SUs2dw , and SUs3dc

gauge fields with gauge couplingsg01, g02, and g03.
The differential operatorDm is given by Dm ­ ≠m 1

vm wherevm ­
1
4 vab

m gab andgm ­ e
m
a ga. The Dirac

operator of the Riemannian manifoldM is taken to be that
of a torsion free space; the more general case with tor
will not be considered here. The scalar fieldH is the
Higgs doublet, andH̃ ­ sis2Hd is the SU(2) conjugate
of H.

The Dirac operator acting on the leptons, taking in
fluctuations into account, is given by the9 3 9 matrix
(tensored with Clifford algebra matrices),
4869
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D, ­

"
gm ≠ sDm 2

i
2 g02Aa

msa 1
i
2 g01Bm ≠ 12d ≠ 13 g5 ≠ ke

0 ≠ H
g5 ≠ kpe

0 ≠ Hp gm ≠ sDm 1 ig01Bmd ≠ 13

#
. (6)
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The matriceskd
0 , ku

0 , and ke
0 are 3 3 3 family mixing

matrices. According to our universal formula the spec
action for the standard model is given by

Tr fxsD2ym2
0dg 1 sc, Dcd , (7)

wherem0 is a cutoff mass scale andsc , Dcd will include
both the quark and leptonic interactions. It is a sim
exercise to compute the square of the Dirac operator g
by (5) and (6). This can be cast into the elliptic opera
form [7]

P ­ D2 ­ 2sgmn≠m≠n ? I 1 Am≠m 1 Bd ,

whereI, Am and B are matrices of the same dimensio
asD. Using the heat kernel expansion for

Tr e2tP .
X
n$0

tsn2mydd
Z

M
ansx, Pd dysxd ,

where m is the dimension of the manifold inC`sMd,
d is the order ofP (in our casem ­ 4, d ­ 2), and
e

e

o
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g dmx wheregmn is the metric onM appearing
in P, we can show that

TrxsPd .
X
n$0

fnansPd ,

where the coefficientsfn are given by

f0 ­
Z `

0
xsudu du, f2 ­

Z `

0
xsud du ,

f2sn12d ­ s21dnx snds0d, n $ 0 ,

and ansPd ­
R

ansx, Pd dysxd are the Seeley–de Wi
coefficients.ansPd vanish for odd values ofn and the first
four an for evenn are given in Gilkey [7]. A very lengthy
but straightforward calculation, the details of which w
be reported somewhere else [8] gives for the boso
action
Ib ­
Z

d4x
p

g

∑
1

2k
2
0

R 2 m2
0sHpHd 1 a0CmnrsCmnrs 1 b0R2 1 c0

pRpR 1 d0R;m
m 1 e0 1

1
4

Gi
mnGmni

1
1
4

Fa
mnFmna 1

1
4

BmnBmn 1 jDmHj2 2 j0RjHj2 1 l0sHpHd2

∏
1 O

µ
1

m2
0

∂
, (8)
a-
tral

rm.
d

en

the
e-

s
the
le

nto
ion
kin
le,
ost
rry
in

of
h a
whereGi
mn , Fa

mn , and Bmn are the field strengths of th
gauge fieldsV i

m, Aa
m, andBm, respectively. Cmnrs is the

Weyl tensor andpRpR is the Euler characteristic, and

m2
0 ­

4

3k
2
0

, a0 ­ 2
9

8g2
03

, b0 ­ 0, (9)

c0 ­ 2
11
18

a0, d0 ­ 2
2
3

a0, e0 ­
45

4p2 f0m4
0 ,

l0 ­
4
3

g2
03

z2

y4
, j0 ­

1
6

.

We have also denoted

y2 ­ Tr sjkd
0 j2 1 jku

0 j2 1
1
3 jke

0 j2d ,

z2 ­ Tr sjkd
0 j4 1 jku

0 j4 1
1
3 jke

0 j4d ,

DmH ­ ≠mH 2
i
2 g02Aa

msaH 2
i
2 g01BmH .

The Einstein, Yang-Mills, and Higgs terms are normaliz
by taking

15m2
0f2

4p2
­

1

k
2
0

,
g2

03f4

p2
­ 1, g2

03 ­ g2
02 ­

5
3

g2
01 .

(10)

Relations (10) among the gauge coupling constants c
cide with those coming from SU(5) unification.
d

in-

We shall adopt Wilson’s viewpoint of the renormaliz
tion group approach to field theory [9] where the spec
action is taken to give thebareaction with bare quantities
a0, b0, c0, . . . and at a cutoff scaleL which regularizes the
action the theory is assumed to take a geometrical fo
We have included theb0 term because the renormalize
theory would require such a term with theb0 ­ 0 taken as
a boundary condition. The perturbative expansion is th
reexpressed in terms ofrenormalizedphysical quantities.
The fields also receive wave function renormalization.

The renormalized action receives counterterms of
same form as the bare action but with physical param
ters, a, b, c, . . . . The renormalization group equation
will yield relations between the bare quantities and
physical quantities with the addition of the cutoff sca
L. Conditions on the bare quantities would translate i
conditions on the physical quantities. The renormalizat
group equations of this system were studied by Frad
and Tseytlin [10] and are known to be renormalizab
but nonunitary [11] due to the presence of spin-two gh
(tachyon) pole near the Planck mass. We shall not wo
about nonunitarity (see, however, Ref. [12]), because
our view at the Planck energy the manifold structure
space-time will break down and must be replaced wit
genuinely noncommutative structure.
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value of Newton’s constant, and both have quadr
divergences in the limit of infinite cutoffL. The relations
betweenm2

0, e0, and the physical quantities are
m2
0 ­ m2

∑
1 1

sL2ym2 2 1d
32p2

µ
9
4

g2
2 1

3
4

g2
1 1 6l 2 6k2

t

∂∏
1 Osln

L2

m2 d 1 . . . ,

e0 ­ e 1
L4

32p2 s62d 1 . . . . (11)
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For m2sLd to be small at low energiesm2
0 should be

tuned to be proportional to the cutoff scale accord
to Eq. (11). Similarly the bare cosmological consta
is related to the physical one (which must be tuned
zero at low energies). There is also a relation betw
the bare scalek22

0 and the physical onek22 which is
similar to Eq. (11) (but with all one-loop contribution
coming with the same sign) which shows thatk

21
0 , m0

and L are of the same order as the Planck mass.
renormalization group equations for the gauge coup
constantsg1, g2, andg3 are the same as those with SU(
boundary conditions, and can be easily solved using
present experimental values fora21

em sMzd and a3sMzd to
give [14]

L . 1015 sGevd , sin2uw . 0.210 . (12)

There is one further relation in our theory between
l0sHpHd2 coupling and the gauge couplings in Eq. (
imposed at the scaleL. This relation could be simplified
if we assume that the top quark Yukawa coupling
much larger than all the other Yukawa couplings. In t
case the equation simplifies tolsLd ­ s16py3da3sLd.
Therefore the value ofl at the unification scale i
l0 . 0.402, showing that one does not go outside t
perturbation domain. In reality the renormalization gro
equations for l and kt together with the boundar
condition on l could be used to determine the Hig
mass at the low-energy scaleMz. The renormalization
group equations are complicated and must be integr
numerically [15]. One can read the solution for the Hig
mass from the study of the triviality bound, and this giv
mH ­ 170 180 Gev. One expects this prediction to b
correct to the same order as that of sin2 uw which is off
from the experimental value by 10%. Therefore the b
action we obtained and associated with the spectrum
the standard model is consistent within 10% provided
cutoff scale is taken to beL , 1015 Gev at which the
action becomes geometrical.

There is, however, a stronger disagreement wh
Newton’s constant comes out to be too large. This is
because the gravity sector requires the cutoff scale to
of the same order as the Planck scale while the cond
on gauge coupling constants givesL , 1015 Gev. One
easy way to avoid this problem is to assume that
spectrum contains in addition a fermionic particle wh
g
t
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)
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only interacts gravitationally (such as a gravitino), but a
present we shall not commit ourselves. These results m
be taken as an indication that the spectrum of the stand
model has to be altered as we climb up in energy. Th
change may at low energies ( just as in supersymme
which also pushes the cutoff scale to1016 Gev) or at
some intermediate scale. Ultimately one would hope th
modification of the spectrum will increase the cutoff scal
nearer to the Planck mass as dictated by gravity.
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