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Large Quantum Gravity Effects: Unforeseen Limitations of the Classical Theory
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Three-dimensional gravity coupled to Maxwell (or Klein-Gordon) fields is exactly soluble under
the assumption of axisymmetry. The solution is used to probe several quantum gravity issues. In
particular, it is found that if there is an electromagnetic wave of Planckian frequency even with such
low amplitude that the curvature of the classical solution is small, the uncertainty in the quantum metric
can be very large. More generally, the quantum fluctuations in the geometry are large unless the number
and frequency of photons satisfy the inequality (iGw)?> < 1. Results hold also for a sector of the
four-dimensional theory (consisting of Einstein-Rosen gravitational waves). [S0031-9007(96)01849-2]

PACS numbers: 04.60.Ds, 04.60.Kz, 04.62.+v

This work has several motivations. The first stemssystem. For simplicity, we will use the scalar field
from the fact that recently there has been considerabl®rmulation. Since this system is exactly soluble under
mathematical progress in various approaches to quantuthe assumption of axisymmetry [5—7], we can explicitly
gravity. Hence, it is now important to devise criteria for analyze the status of various quantum issues in the
the physical viability of potential solutions. One obvious solution. We will find that quantum effects can be large
demand is that the theory should admit “a sufficient numin unforeseen situations so that a very large number of
ber of” semiclassical states. However, the precise mearsolutions of the classical theory are spurious: they do not
ing of this requirement is not obvious. What exactly isappear in the classical limit of the quantum theory. It
the set of classical solutions that should admit quantunshould not be difficult to extend the discussion to the
analogs? A natural strategy is to try to develop intuitiontreatment of Callen-Giddings-Harvey-Strominger (CGHS)
by analyzing exactly soluble models. Such models canlilatonic black holes given in [8].
also provide insights into a number of other issues. For In order to compare and contrast various effects and
example, since the modes that are significant at infinitypetter understand their origin, let us proceed in steps,
in the Hawking process have trans-Planckian frequencieswitching z and G on and off” as needed. (However,
near the horizon, there has been considerable interest throughout we set = 1.) Let us begin with quantum
the role of high frequency fields in quantum gravity. Therefield theory without gravity ¢ = 0). Then we just
have been suggestions that an adequate description of sugave an axisymmetric quantum Maxwell field in three-
modes may violate local Lorentz invariance [1]. It has alsadimensional Minkowski space-tim@/, n.,), represented
been suggested that the usual counting of states at hidly the operator-valued distribution
frequencies is inadequate [2] and that the correct count-_ o
ing may lead to a “holographic picture” in which physics ®(R,T) = ] do[fs(R.T)A(0) + f, (R, T)AT(0)].
within a region can be captured by states residing at its 0 1)
boundary [3]. Finally, there exists a mathematically well- N ) i
defined theory called semiclassical gravity in which therere/f, (R, 7) = Jo(wR)exp—ioT (with J,, the Bessel
gravitational field is treated classically but the matter fielddunction) are the positive frequency solutionss, and 4,
are quantized [4]. One hopes that this theory would pdhe creation and annlhllatlon operators. In.the_ rest frame
phenomenologically satisfactory in the low energy regimeUS€d in the expansion (1), the Hamiltonian is given by
Is this indeed the case? Can one derive this theory from ~ (7
full guantum gravity? What does it “miss out?” Ho = fo do 0A(©)A(@). 2)

The purpose of this Letter is to analyze such issues iThe system is Poincaré invariant and other Poincaré
the context of an exactly soluble model: thI’ee—dimensiona‘t’enerators can be expressed similarly. The Hilbert space

(Lorentzian) gravity coupled to Maxwell fields, restricted js the Fock space. Giveamy classical solution
by the condition that there be a rotational symmetry. As

is well known, in three dimensions, a Maxwell field;, is CRR,T) = f do[ fF(R,T)C(w) + f, (R, T)C(w)],
dual to a scalar fiel® via F,;, = €,,°V.® and Maxwell 0 3)
equations reduce to the wave equatigf,V,V,® = 0.
Furthermore, the duality map sends the stress-energfiere is a coherent stat¢W.) which remains peaked
tensor T, (F) to T.,(®). Therefore, mathematically, aroundC for all times:

the Einstein-Maxwell system (without further fields and 1 [~ "

interactions) is equivalent to the Einstein-Klein-Gordon We) = K. expEj; do C(@)AN(@)10),  (4)
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whereK. is the normalization constant. However, quan-geometry isquite differentfrom that of the globally
tum fluctuations in physical quantities are often negligibleflat metric n,;, (whereI' = 0). In particular, there is a
compared to the expectation value of that quantity onlydeficit angle27[1 — exp(—GH,/2)] at infinity [10]. As
when the the expected number of photons, a consequenceye no longer have Poincaré invariance
R 1 even at infinity{10—12]. There is a preferred rest frame

N = (U N|V,) = g] dw|C(w)|?, (5)  given bya/aT selected by the total energy momentum of
. A A the system. Perhaps the most dramatic difference from
:;hlgrrg,e.aSFggue;f Am 552’ v:ve< Ig?;(éilf;q/jg Oizztr; IL{ nj(;fe . the Minkowskian situation is that the total Hamiltonian

tainty in the value of the (normal ordered) Hamiltonian.mc the system (including gravity) is now bounded above

The entire discussion is independent of whéfa) may [11,12]:itis given by
be peaked; since there is no preferred scale, the theory
cannot distinguish high frequency photons from the low
frequency ones.

Let us now switch offi and switch onG; i.e., consider
classical general relativity. (Since in three dimensiohs
has the physical dimensions of inverse mass, we no
have a mass scale which features prominently in th
description.) The theory is now governed by a setai-
pled, nonlinearmpartial differential equations o = R*:

_ b,
H 4G(l e ). 9

In the weak field limit (i.e., a&H,(C) — 0), H does tend

to H,. However, in the strong field regime, the general
\Kplativistic corrections dominate and the total Hamiltonian
és a boundednonpolynomiafunctional ofH,.

Let us now switch on bothG and #, i.e., consider
quantum gravity proper. [Now, we have a natural mass
b scale G ') as well as a natural length scalék).] As

8VaVy® =0 and Ry =87GV, OV, @, (6) gpe might expect, the model can be quantized exactly
whereR,; is the Ricci tensor of,y,. [6,7,13]. In a Hamiltonian framework, one can first

However, because of rotational invariarare presence quantize the fieldb exactly as in Minkowski space and
of the axis, two simplifications arise [5,9]. Firsi  then define the metric operator by suitably regularizing
admits a global charf’,R,6 (unique up toT — T +  the right side of (8). As in any nontrivial model which is
const) such that the norm of the rotational Killing field solved by mapping it to a trivial model, the nontrivialities
a/00 is R. In this chart, the metric has the form lie in the relation between the two models. In the

gapdx®dx® = TR (—qT2 + 4R?) + R%d6?; (7) present case, the physical model_leads us to consider,
in particular, operators corresponding to gxp'(R,T)]
and study the resulting quantum geometry which exhibits
several interesting features [7].

For simplicity, here we will focus our attention on

; o ) the asymptotic form of the metric [whose only nontrivial
by settingI'(R,T) = 0 in (7). Thus, the two equations component isgrr = —grr = ex(GH,)] and on the

in (6) can now bedecoupled:we can first solve for> amijionian H. The corresponding operators will be
and then attempt to solve Einstein’s equation to determing,, on, to be

I'(R,T). Given a solutionC (R, T) to the wave equation,
the correspondin@(R, T) turns out to be . GH, and f — L(l _ o 4GH) (10)
G b

there is only one unknown metric coefficiedi(R, T).

The second simplification is thab satisfies the wave
equation with respect tg,;, if and only if it satisfies the
wave equation with respect to the flat mettig, obtained

8RR — €

R
I'(R,T) = %[ dR R[(07C)* + (0gC)*], (8)  which are both positive definite and self-adjoint.

0 The question now is: Are there semiclassical states
Which~is precisely the (Minkowskian) energy of the scalaryhich approximate solutiongC(R, T), ga»] of Einstein-
field C(R,T) in a box of radiusR at time 7. Thus, Maxwell equations throughout the space-time? Since we
the problem of solving the coupled Einstein-Maxwell wish to approximate, in particular, the solutiéhto the
system reduces to that of solving the wave equation oyave equation, the obvious candidates are, again, the
the flat spaceM, n.,). As in the previous case (With coherent state$¥.). Let us compute the expectation
i # 0,G = 0), there is no natural frequency scale and theyalues of operators of interest and see if they give us back
general description in insensitive to the detailed profilethe classical fields. Fortunately, these expectation values

of C(w). The asymptotic metric, for example, dependsas well as fluctuations around them can be expressed in
only on the total (Minkowskian) energilo(C) and notto  ¢losed forms. We have

whereC(w) is peaked. R ~
Suppose the field’ (R, T) has initial data of compact (V| P(R,T) W) = C(R.T);

support. Then, a neighborhood of infinity is source- A L [ dolCw)P(et 1)

free andin that regionthe metric is locally flat, with (WelgrrlWe) = e ’ (11)
I'(R,T) = H,(C), a constant (given by the total energy . 1 L [ dolClw)Pe4c 1)

of C). Nonetheless, whetH,(C) = 1, the asymptotic (PelH|W.) = E[l o] ]
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Thus, for the scalar field, of course, we recover the clastpns increases. (Recall that the opposite holds for the
sical field. However, for the metric and the Hamiltonian, ® field.) Suppose the amplitud€(w) is zero every-
the expectation values are not simply related to the correvhere except for a “blip” near Planck frequency with

sponding classical expressions: [dw|C|*> ~ K. Then N ~ 1 and the space-time cur-
= C [do wlC(w)? vature in the classical solution is small. Nonetheless,

SRR 1 _4G’ o lC@)P (12)  Eg. (15) implies thatAg/(g))* > 10. (Quantum uncer-

H = E(l 4G Jdweltle ). tainties can also be large f(w) has a large peak in the

low frequency regime and a blip at a (trans-)Planckian fre-
quency.) Next, consider the low frequency regime. Now,
for the quantum uncertainties in the Maxwell field to be
%egligible, we needN > 1 and for the uncertainties in

can analyze limits. In the low frequency limiG/io <« : L
1, the i dependence disappears in the leading order ant§e metric to be negligible, we need the frequency to be

we recover the classical valugsovided the frequency 0 low thatN(Gﬁw)f < 1. Only in this regime does
is so small thatN'(Gliw)? < 1. In this case, we can the classical solutiofC, g.,) approximate the predictions

also evaluate the quantum corrections systematicall t8f the quantum theory.
q y Y10 10 summarize, the quantum theory does have infinitely

any desired order: many states with semiclassical behavior. This by itself
N _ 1 2 is a nontrivial property, given the nonlinearities of the
(WelgrrlWe) _gRR[l * E‘N(th”) T } Einstein equations. However, all these states are peaked
4 ) at a very restricted class of classical solutidds g.):
(P H|P)=H(C) — =N (Ghw,)?e *H©) +  the Maxwell field profilesC(w) have to satisfy the two
G (13) inequalities: N > 1 and N (Ghw)?> < 1. With hind-
sight, the second condition can be understood intuitively
where in the last terms, we have evaluated the integralss follows [14]. From Eg. (10) we can conclude that
approximately for the case whef(w) is sharply peaked the fluctuations irgzz are large wheneveG(AH,) = 1.
at a frequencyn,. At high frequenciesGhiw > 1, there  But we know thatAH, ~ liw+/N [see the remark be-
is always a significant disagreement with the classicalow Eq. (5)]. Hence, the fluctuations gxz are large un-

(In particular, the expectation values have an explicit
dependence.)

expressions: lessN (Ghiw)? < 1. As aconsequence, many apparently
(W |2rr] W) = eiﬁ jdww(w)ve”w ~ e.’]\f(ecﬁ"’")’ “tame” classical solutions fail tq arise in the classi'cal limit
of the quantum theory; they fail to serve as leading order
WA, = L[l B e—Lﬁ fdwlC(w)F], apprpximations even in regiong where space-tjme curva-
4G ture is small. This is a subtle failure of the classical theory

1 iy which has been overlooked so far. Nonlinearities of Ein-
=~ E[l —e V] (14)  stein’s equations magnify the small quantum uncertainties

. , .__in the Maxwell field to huge fluctuations in the metric.
Note that now does not disappear even in th? leading We will conclude by summarizing some ramifications
order terms and the departures from the classical value%
occur even in theasymptotianetric Of these results.
ymp : - . (1) Semiclassical gravity—Recall [4] that a solution
Let us analyze the quantum uncertainties. For brewtyto

we will now focus just on the metric operator. The exact se_m_lclassmal gravity Is a quadrup@{, 8ab- @, [¥)
. ) consisting of a metrigg,;, (of hyperbolic signature) on
expression turns out to be: 2

2 a manifold M, a quantum matter fieldP satisfying
(A§RR) _ [eiﬁjdeC(w)Iz(lfe”“)2 — 1] (15) a field equation on(M, g.;), and a state|¥) of the
(&rr) ’ field such that the semiclassical Einstein equatibp =
In the low frequency regimeGiow < 1, we therefore 8mG(W|Tq|W) is satisfied. In four dimensions, it is
have difficult to find exact solutions to this theory and several
R 2 important issues about the nature of the approximation
(M) ~ ¢N(Ghw)? _ (16)  involved remain open. What is the situation in the present
(&rr) model? Now, it is straightforward to show that the
and, in the high frequency regimé/iw > 1, we have theory admits an infinite number of solutions. Indeed,
(A£’RR )2 Ao given any (axisymmetric) classical solutiofC, g,,) to
26 T

- (17)  Einstein-Maxwell equations oM = R*, the quadruplet
(8rr) (M,gab,dAD,I‘lfc» is an exact solution to semiclassical
Thus, in the high frequency regime, the quantum flucgravity. While this abundance serves to show that the
tuations in the metric are huge even when the state igheory is mathematically rich, it also brings out its
sharply peaked at the given classical scalar fi€léind  physical limitations. For, unless the profil&3(w) of
they become larger as the numh@f of expected pho- the Maxwell field satisfy N (Giw)?> < 1, the solution to
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semiclassical gravity is spurious; it does not approximatd-urthermore, they are not artifacts of an unusual quan-
the situation in the full theory. Very roughly, it knows tization procedure; we used only traditional Fock-space
about bothG and 7 separately, but does not fully exploit methods. Therefore, with appropriate modifications, fea-
the Planck length which requirémthat once. tures encountered here should persist in more sophisticated
(2) High frequency behavior—We saw that something models such as a spherically symmetric scalar field cou-
peculiar does happen at (trans-)Planckian frequenciepled to gravity in3 + 1 dimensions. Indeed, our model is
However, local Lorentz invariance is not broken; the completely equivalent[5] to a “midisuperspace” consisting
field equation governing does not, for example, involve of Einstein-Rosen waves ifour-dimensionalsource-free
an additional vector field. The frequency refers to thegeneral relativity. Hence, our results apply directly to this
asymptotic rest framed(aT). The relativistic dispersion sector of four-dimensional quantum gravity [13]. Similar
relation is not modified, nor is there a high frequencyreductions exist also in string theory [15].
cutoff. Similarly, within this model, there is no hint of  Details as well as several other issues will be discussed
the behavior suggested by the holographic hypothesis. in [16].
is sometimes conjectured that in a full quantum theory | thank Chris Beetle, Eanna Flanagan, Donald Marolf,
the trans-Planckian strangeness will trickle down and eveMonica Pierri, and Thomas Thiemann for discussions.
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either. The vacuunj0) is stable although the vacuum University, and by the Erwin Schrodinger International
fluctuations involve modes of arbitrarily high frequencies.Institute for Mathematical Sciences, Vienna.
Furthermore, the vacuum is an eigenstate botH dfvith
eigenvalue zero) and ofgr = —27r (with eigenvalue
one). The peculiarity that does arise is of a rather
different nature:classical geometry simply fails to be a
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