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Large Quantum Gravity Effects: Unforeseen Limitations of the Classical Theory
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Three-dimensional gravity coupled to Maxwell (or Klein-Gordon) fields is exactly soluble under
the assumption of axisymmetry. The solution is used to probe several quantum gravity issues. In
particular, it is found that if there is an electromagnetic wave of Planckian frequency even with such
low amplitude that the curvature of the classical solution is small, the uncertainty in the quantum metric
can be very large. More generally, the quantum fluctuations in the geometry are large unless the numbe
and frequency of photons satisfy the inequalityN sh̄Gvd2 ø 1. Results hold also for a sector of the
four-dimensional theory (consisting of Einstein-Rosen gravitational waves). [S0031-9007(96)01849-2]
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This work has several motivations. The first ste
from the fact that recently there has been consider
mathematical progress in various approaches to quan
gravity. Hence, it is now important to devise criteria f
the physical viability of potential solutions. One obvio
demand is that the theory should admit “a sufficient nu
ber of” semiclassical states. However, the precise me
ing of this requirement is not obvious. What exactly
the set of classical solutions that should admit quan
analogs? A natural strategy is to try to develop intuit
by analyzing exactly soluble models. Such models
also provide insights into a number of other issues.
example, since the modes that are significant at infi
in the Hawking process have trans-Planckian frequen
near the horizon, there has been considerable intere
the role of high frequency fields in quantum gravity. The
have been suggestions that an adequate description of
modes may violate local Lorentz invariance [1]. It has a
been suggested that the usual counting of states at
frequencies is inadequate [2] and that the correct co
ing may lead to a “holographic picture” in which physi
within a region can be captured by states residing a
boundary [3]. Finally, there exists a mathematically we
defined theory called semiclassical gravity in which
gravitational field is treated classically but the matter fie
are quantized [4]. One hopes that this theory would
phenomenologically satisfactory in the low energy regim
Is this indeed the case? Can one derive this theory f
full quantum gravity? What does it “miss out?”

The purpose of this Letter is to analyze such issue
the context of an exactly soluble model: three-dimensio
(Lorentzian) gravity coupled to Maxwell fields, restricte
by the condition that there be a rotational symmetry.
is well known, in three dimensions, a Maxwell fieldFab is
dual to a scalar fieldF via Fab ­ eab

c=cF and Maxwell
equations reduce to the wave equation,gab=a=bF ­ 0.
Furthermore, the duality map sends the stress-en
tensor TabsFd to TabsFd. Therefore, mathematically
the Einstein-Maxwell system (without further fields a
interactions) is equivalent to the Einstein-Klein-Gord
4 0031-9007y96y77(24)y4864(4)$10.00
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system. For simplicity, we will use the scalar fiel
formulation. Since this system is exactly soluble und
the assumption of axisymmetry [5–7], we can explicit
analyze the status of various quantum issues in
solution. We will find that quantum effects can be larg
in unforeseen situations so that a very large number
solutions of the classical theory are spurious: they do
appear in the classical limit of the quantum theory.
should not be difficult to extend the discussion to t
treatment of Callen-Giddings-Harvey-Strominger (CGH
dilatonic black holes given in [8].

In order to compare and contrast various effects a
better understand their origin, let us proceed in ste
“switching h̄ and G on and off” as needed. (However
throughout we setc ­ 1.) Let us begin with quantum
field theory without gravity (G ­ 0). Then we just
have an axisymmetric quantum Maxwell field in thre
dimensional Minkowski space-timesM, habd, represented
by the operator-valued distribution

F̂sR, T d ­
Z `

0
dvf f1

v sR, T dAsvd 1 f2
v sR, TdAysvdg .

(1)

Heref1
v sR, T d ­ JosvRd exp2ivT (with Jo , the Bessel

function) are the positive frequency solutions,Ay andA,
the creation and annihilation operators. In the rest fra
used in the expansion (1), the Hamiltonian is given by

Ĥo ­
Z `

0
dv vAysvdAsvd . (2)

The system is Poincaré invariant and other Poinc
generators can be expressed similarly. The Hilbert sp
is the Fock space. Givenanyclassical solution

C̃sR, T d ­
Z `

0
dvf f1

v sR, TdCsvd 1 f2
v sR, T dC̄svdg ,

(3)

there is a coherent state,jCcl which remains peaked
aroundC̃ for all times:

jCcl ­ Kc exp
1
h̄

Z `

0
dv CsvdAysvd j0l , (4)
© 1996 The American Physical Society
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whereKc is the normalization constant. However, qua
tum fluctuations in physical quantities are often negligib
compared to the expectation value of that quantity o
when the the expected number of photons,

N ­ kCcjN̂jCcl ;
1
h̄

Z
dvjCsvdj2, (5)

is large. For example, we havesnĤoykĤold2 , 1yN ,
where, as usual,snĤod2 ­ kĤ2

ol 2 kĤol2 is the uncer-
tainty in the value of the (normal ordered) Hamiltonia
The entire discussion is independent of whereCsvd may
be peaked; since there is no preferred scale, the th
cannot distinguish high frequency photons from the l
frequency ones.

Let us now switch offh̄ and switch onG; i.e., consider
classical general relativity. (Since in three dimensionsG
has the physical dimensions of inverse mass, we n
have a mass scale which features prominently in
description.) The theory is now governed by a set ofcou-
pled, nonlinearpartial differential equations onM ; R3:

gab=a=bF ­ 0 and Rab ­ 8pG=aF=bF , (6)

whereRab is the Ricci tensor ofgab .
However, because of rotational invarianceandpresence

of the axis, two simplifications arise [5,9]. First,M
admits a global chartT , R, u (unique up toT ! T 1

const) such that the norm of the rotational Killing fiel
≠y≠u is R2. In this chart, the metric has the form

gabdxadxb ­ eGGsR,Tds2dT 2 1 dR2d 1 R2du2; (7)

there is only one unknown metric coefficient,GsR, T d.
The second simplification is thatF satisfies the wave
equation with respect togab if and only if it satisfies the
wave equation with respect to the flat metrichab obtained
by settingGsR, T d ­ 0 in (7). Thus, the two equation
in (6) can now bedecoupled:we can first solve forF
and then attempt to solve Einstein’s equation to determ
GsR, Td. Given a solutionC̃sR, T d to the wave equation
the correspondingGsR, Td turns out to be

GsR, Td ­
1
2

Z R

0
dR Rfs≠T C̃d2 1 s≠RC̃d2g , (8)

which is precisely the (Minkowskian) energy of the sca
field C̃sR, T d in a box of radiusR at time T . Thus,
the problem of solving the coupled Einstein-Maxwe
system reduces to that of solving the wave equation
the flat spacesM, habd. As in the previous case (with
h̄ fi 0, G ­ 0), there is no natural frequency scale and t
general description in insensitive to the detailed pro
of Csvd. The asymptotic metric, for example, depen
only on the total (Minkowskian) energyH0sC̃d and not to
whereCsvd is peaked.

Suppose the field̃CsR, T d has initial data of compac
support. Then, a neighborhood of infinity is sourc
free and in that region the metric is locally flat, with
GsR, Td ­ HosC̃d, a constant (given by the total energ
of C̃). Nonetheless, whenGHosC̃d $ 1, the asymptotic
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geometry is quite different from that of the globally
flat metric hab (whereG ­ 0). In particular, there is a
deficit angle2pf1 2 exps2GHoy2dg at infinity [10]. As
a consequence,we no longer have Poincaré invarianc
even at infinity[10–12]. There is a preferred rest fram
given by≠y≠T selected by the total energy momentum
the system. Perhaps the most dramatic difference fr
the Minkowskian situation is that the total Hamiltonia
of the system (including gravity) is now bounded abo
[11,12]: it is given by

H ­
1

4G
s1 2 e24GHo d . (9)

In the weak field limit (i.e., asGHosC̃d ! 0), H does tend
to Ho . However, in the strong field regime, the gener
relativistic corrections dominate and the total Hamiltoni
is a bounded,nonpolynomialfunctional ofHo.

Let us now switch on bothG and h̄, i.e., consider
quantum gravity proper. [Now, we have a natural ma
scale (G21) as well as a natural length scale (Gh̄).] As
one might expect, the model can be quantized exac
[6,7,13]. In a Hamiltonian framework, one can firs
quantize the fieldF exactly as in Minkowski space and
then define the metric operator by suitably regularizi
the right side of (8). As in any nontrivial model which i
solved by mapping it to a trivial model, the nontrivialitie
lie in the relation between the two models. In the
present case, the physical model leads us to consi
in particular, operators corresponding to expfGGsR, T dg
and study the resulting quantum geometry which exhib
several interesting features [7].

For simplicity, here we will focus our attention on
the asymptotic form of the metric [whose only nontrivia
component isgRR ­ 2gTT ­ expsGHod] and on the
Hamiltonian H. The corresponding operators will b
taken to be

ĝRR ­ eGĤo and Ĥ ­
1

4G
s1 2 e24GĤo d , (10)

which are both positive definite and self-adjoint.
The question now is: Are there semiclassical sta

which approximate solutionsfC̃sR, T d, gabg of Einstein-
Maxwell equations throughout the space-time? Since
wish to approximate, in particular, the solutionC̃ to the
wave equation, the obvious candidates are, again,
coherent statesjCcl. Let us compute the expectatio
values of operators of interest and see if they give us b
the classical fields. Fortunately, these expectation val
as well as fluctuations around them can be expresse
closed forms. We have

kCcjF̂sR, Td jCcl ­ C̃sR, T d ;

kCcjĝRR jCcl ­ e
1

h̄

R
dvjCsvdj2seG h̄v21d; (11)

kCcjĤjCcl ­
1

4G
f1 2 e

1

h̄

R
dvjCsvdj2se24G h̄v21dg .
4865



VOLUME 77, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 9 DECEMBER1996

a
n
r

t

w

a

r

ic

n
lu

it
c

the

h
-
ss,

re-
w,
e

be

ely
elf
e
ked

ely
at

tly
it
er

va-
ry

in-
ies

s

al
ion
nt

e
d,

l
he
s

Thus, for the scalar field, of course, we recover the cl
sical field. However, for the metric and the Hamiltonia
the expectation values are not simply related to the co
sponding classical expressions:

gRR ­ eG
R

dv vjCsvdj2

,

H ­
1

4G
s1 2 e24G

R
dv vjCsvdj2

d .
(12)

(In particular, the expectation values have an explicih̄
dependence.)

However, since we now have a natural length scale,
can analyze limits. In the low frequency limit,Gh̄v ø

1, the h̄ dependence disappears in the leading order
we recover the classical valuesprovided the frequency
is so small thatN sGh̄vd2 ø 1. In this case, we can
also evaluate the quantum corrections systematically
any desired order:

kCcjĝRRjCcl ­ gRR

∑
1 1

1
2

N sGh̄vod2 1 . . .

∏
,

kCcjĤjCcl ­ HsC̃d 2
4
G

N sGh̄vod2e24GHosC̃d 1 . . . ,

(13)

where in the last terms, we have evaluated the integ
approximately for the case whenCsvd is sharply peaked
at a frequencyvo . At high frequencies,Gh̄v ¿ 1, there
is always a significant disagreement with the class
expressions:

kCcjĝRR jCcl ­ e
1
h̄

R
dvjCsvdj2eG h̄v

ø eN seG h̄vo d,

kCcjĤjCcl ­
1

4G
f1 2 e2 1

h̄

R
dvjCsvdj2

g ,

ø
1

4G
f1 2 e2N g . (14)

Note that nowh̄ does not disappear even in the leadi
order terms and the departures from the classical va
occur even in theasymptoticmetric.

Let us analyze the quantum uncertainties. For brev
we will now focus just on the metric operator. The exa
expression turns out to be:√

DĝRR

kĝRRl

!2

­ fe
1

h̄

R
dvjCsvdj2s12eG h̄vd2

2 1g . (15)

In the low frequency regime,Gh̄v ø 1, we therefore
have √

DĝRR

kĝRRl

!2

ø eN sG h̄vod2

2 1 , (16)

and, in the high frequency regime,Gh̄v ¿ 1, we have√
DĝRR

kĝRRl

!2

ø eN se2G h̄vo d. (17)

Thus, in the high frequency regime, the quantum flu
tuations in the metric are huge even when the state
sharply peaked at the given classical scalar fieldC̃ and
they become larger as the numberN of expected pho-
4866
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tons increases. (Recall that the opposite holds for
F̂ field.) Suppose the amplitudeCsvd is zero every-
where except for a “blip” near Planck frequency witR

dvjCj2 , h̄. Then N , 1 and the space-time cur
vature in the classical solution is small. Nonethele
Eq. (15) implies thatsnĝykĝld2 . 10. (Quantum uncer-
tainties can also be large ifCsvd has a large peak in the
low frequency regime and a blip at a (trans-)Planckian f
quency.) Next, consider the low frequency regime. No
for the quantum uncertainties in the Maxwell field to b
negligible, we needN ¿ 1 and for the uncertainties in
the metric to be negligible, we need the frequency to
so low thatN sGh̄vd2 ø 1. Only in this regime does
the classical solutionsC̃, gabd approximate the predictions
of the quantum theory.

To summarize, the quantum theory does have infinit
many states with semiclassical behavior. This by its
is a nontrivial property, given the nonlinearities of th
Einstein equations. However, all these states are pea
at a very restricted class of classical solutionssC̃, gabd:
the Maxwell field profilesCsvd have to satisfy the two
inequalities:N ¿ 1 andN sGh̄vd2 ø 1. With hind-
sight, the second condition can be understood intuitiv
as follows [14]. From Eq. (10) we can conclude th
the fluctuations in̂gRR are large wheneverGsDĤod $ 1.
But we know thatDĤo , h̄v

p
N [see the remark be-

low Eq. (5)]. Hence, the fluctuations in̂gRR are large un-
lessN sGh̄vd2 ø 1. As a consequence, many apparen
“tame” classical solutions fail to arise in the classical lim
of the quantum theory; they fail to serve as leading ord
approximations even in regions where space-time cur
ture is small. This is a subtle failure of the classical theo
which has been overlooked so far. Nonlinearities of E
stein’s equations magnify the small quantum uncertaint
in the Maxwell field to huge fluctuations in the metric.

We will conclude by summarizing some ramification
of these results.

(1) Semiclassical gravity.—Recall [4] that a solution
to semiclassical gravity is a quadrupletsM, gab, F̂, jCld
consisting of a metricgab (of hyperbolic signature) on
a manifold M, a quantum matter fieldF̂ satisfying
a field equation onsM, gabd, and a statejCl of the
field such that the semiclassical Einstein equationGab ­
8pGkCjT̂abjCl is satisfied. In four dimensions, it is
difficult to find exact solutions to this theory and sever
important issues about the nature of the approximat
involved remain open. What is the situation in the prese
model? Now, it is straightforward to show that th
theory admits an infinite number of solutions. Indee
given any (axisymmetric) classical solutionsC̃, gabd to
Einstein-Maxwell equations onM ­ R3, the quadruplet
sM, gab, F̂, jCcld is an exact solution to semiclassica
gravity. While this abundance serves to show that t
theory is mathematically rich, it also brings out it
physical limitations. For, unless the profilesCsvd of
the Maxwell field satisfyN sGh̄vd2 ø 1, the solution to
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semiclassical gravity is spurious; it does not approxim
the situation in the full theory. Very roughly, it know
about bothG and h̄ separately, but does not fully explo
the Planck length which requiresbothat once.

(2) High frequency behavior.—We saw that something
peculiar does happen at (trans-)Planckian frequenc
However, local Lorentz invariance is not broken; th
field equation governing̃C does not, for example, involve
an additional vector field. The frequency refers to t
asymptotic rest frame (≠y≠T ). The relativistic dispersion
relation is not modified, nor is there a high frequen
cutoff. Similarly, within this model, there is no hint o
the behavior suggested by the holographic hypothesis
is sometimes conjectured that in a full quantum theo
the trans-Planckian strangeness will trickle down and e
affect the vacuum since the vacuum fluctuations invo
all modes. There is no evidence of such a behav
either. The vacuumj0l is stable although the vacuum
fluctuations involve modes of arbitrarily high frequencie
Furthermore, the vacuum is an eigenstate both ofĤ (with
eigenvalue zero) and of̂gRR ­ 2ĝTT (with eigenvalue
one). The peculiarity that does arise is of a rath
different nature:classical geometry simply fails to be
good approximationwhen Csvd has a significantly high
frequency component and one has to take the quan
nature of geometry—with all its fluctuations—seriously

(3) Three versus four dimensions.—Since Newton’s
constant in three dimensions has physical dimensions
inverse mass (rather than length times inverse mass)
cannot associate a Schwarzschild radius to a given m
(without introducing a cosmological constant). This e
plains intuitively why we did not encounter gravitation
collapse. If we consider a spherical scalar field in fo
dimensions, on the other hand, the theory has two s
tors: one leading to black holes (strong data) and the o
leading just to scattering (weak data). The present mo
can only give us insights into the second sector. Hen
it would be imprudent to draw from it definitive conclu
sions about the Bekenstein bound [2] and related con
tures [3]. A second difference is that (in the asympt
ically flat context) while in three dimensions the metr
outside sources is flat, in four-dimensional general re
tivity it falls off as 1yr . Therefore, in four-dimensiona
asymptotically flat situations, the effect of trans-Plancki
frequencies will decay and the fluctuations will be si
nificant only near (but possibly in a macroscopic regi
around) the sources. The model does, nonetheless,
vide concrete evidence for large quantum gravity effe
in low-curvature regimes that have been generally ignor
te
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Furthermore, they are not artifacts of an unusual qu
tization procedure; we used only traditional Fock-spa
methods. Therefore, with appropriate modifications, fe
tures encountered here should persist in more sophistic
models such as a spherically symmetric scalar field c
pled to gravity in3 1 1 dimensions. Indeed, our model i
completely equivalent [5] to a “midisuperspace” consisti
of Einstein-Rosen waves infour-dimensionalsource-free
general relativity. Hence, our results apply directly to th
sector of four-dimensional quantum gravity [13]. Simila
reductions exist also in string theory [15].

Details as well as several other issues will be discus
in [16].
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[13] K. Kuchař, Phys. Rev. D4, 955 (1971).
[14] D. Marolf (private communication).
[15] A. Sen, Nucl. Phys.B434, 179 (1995).
[16] A. Ashtekar and C. Beetle (to be published).
4867


