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Using extensive numerical analysis and exact calculations we show that the relaxation of a classical
particle in 1D anharmonic potential landscapes with a leading quartic term follolys decay law
at all temperatures, leading to a logarithmically increasing mean square displacement. For leading
anharmonic terms of form?" we find that the asymptotic relaxation is consistent wifh?, where
¢ = 1/(n — 1) at all temperatures. We briefly comment on the possible implications of this result in
the study of displacive structural transitions and in complex systems. [S0031-9007(96)01811-X]

PACS numbers: 05.20.Gg

A variety of problems of considerable interest in physics|) ﬁx2 + £x4 + Cx, (II) coshx), () cogx).
is closely related to the behavior of a single classical parti- 4
cle relaxing in an anharmonic single or multiwell potential 1)
landscape while in thermal contact [1]. A detailed micro- Our objective is to study the time-dependent behavior
scopic understanding of relaxation in 1D multiwell poten-of some chosen dynamical variabi(r) (e.g., position
tials could give important clues to the problems associatefi(z)], velocity [v(7)], etc.). We assume that the system
with thermally activated dynamics in the glass transitionis in thermal contact which may or may not lead to relax-
[2] and of relaxation in related complex systems [3]. ation to equilibrium after the system has been subjected
In this Letter we show both numerically and analytically to an infinitesimal perturbation (i.e., no assumptions re-
that the relaxation of any dynamical variable of a classicabarding ergodicity are made [4]). The study of the asymp-
particle in a variety of anharmonic potentials follows atotic behavior of such a relaxation process, after the
1/t asymptotic decay law. This relaxation representgerturbation has been removed, which can generally be
the loss of knowledge of the initial conditions of the characterized by the normalized relaxation function (RF)
anharmonic oscillator due to thermal effects. We find that W ()W (0))/{(¥(0)?), where(- - -) represents canonical en-
¢ is sensitive to the exponent of theading anharmonic  semble averages, is the focus of this Letter.
termin the potential. To our knowledge, these are the Cases (I) and (I) in Eq. (1) describe systems in which
simplest systems for which a wide variety of slow algebraicthe particle is spatially localized for all energies. To study
decay is found. We conclude with a discussion of thethe relaxation of the particle in (1) and (Il) numerically, we
possible implications of our findings. integrate the equations of motion for each case at fixed to-
We start with a classical particle in an anharmonictal energyE from some initial timer to some final time
potential, V,,n(x) and consider several distinct forms for (r + 7¢), whererg refers to the period of motion for the
Vann(x). Initially, we focus on potentials with leading chosent. x(t), v(¢), anda(z) (i.e., acceleration) and their
quartic anharmonicity, perhaps the most common form ofcorresponding microcanonical ensemble RF’s are calcu-
anharmonicity encountered in simple physical problemslated and tabulated at 1024 equally spaced time intervals
These potentials arg,,(x), spanning the periodg. The canonical ensemble RF is
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FIG. 1. Positive side of the velocity RF and correspondingFIG. 2. Positive side of the velocity RF and corresponding
power spectrum (inset) for the symmetric Duffing potentialpower spectrum (inset) for the potenti&(x) = cosHx) at

Vix) = %xz + %x“ atg = 1. B = 2.75.

computed by first evaluating the microcanonical ensembléd. B} = {1, 1}, C # 0, i.e., with a linear field term. For
RF's at a number of different energies (typically, 2000) inthe double well, the velocity RF and the corresponding
the rangeEmm = E < Emax and by then performing the spectrum_ls shown in Fig. 3 and has the asymptotic be-
integration over all the energies of the Boltzmann weightemaviorm. To our knowledge, the asymmetric sin-
microcanonical RF [5]. We usaghequal energy spacing gle well is not amenable to an exact solution. We find
to ensure that the energy integral is correctly evaluatedhat the presence of a linear term strongly affects the
The range of energies over which the microcanonical RF'KRF at short times. However, the asymptotic behavior
are calculated is determined by the temperature of the sysf the RF’s, which sets in at a significantly later time
tem. We chose as the lower limit of integration an en-in this spatially asymmetric potential, compared to the
ergy slightly higher than the potential minimum, typically,
Enin = 5 X 1077, and, as the upper limiE ., such that
exp(—BEmax) < 1 X 107", where 8 = 1/kT, k is the e — e by
Boltzmann constant, arl is the temperature. ]
For the symmetric anharmonic single well, Case (1), with
coefficients{A, B, C} = {1,1,0}, atB = 1/kT = 100, the 13
velocity RF can be numerically evaluated for times; ]
2 X 10%, yielding results that agree well with the exact
asymptotic solution, which will be discussed below. Al-
though it is more difficult to accurately calculate the RF’'s
at long times for highef’s, we still have been able to
extend the solutions out sufficiently far so that it is possi-
ble to extract the asymptotic behavior. The velocity RF’'s
(and related power spectra) are shown in Fig. 1 for the 0.01
symmetric anharmonic single well gt = 1. Analysis of
the results from the numerical calculations reveal that the
RF’s decay asymptotically as%, i.e., a relaxation
of form 1/t%, ¢ = 1. Although we do not know of an 0001 d
analytic solution for the motion of a particle in a c¢sh 0!1 1' 10 100
potential, numerical studies show that this potential also t
Ieads FO al /1 relaxation law at all as shown in Fig. 2. . FIG. 3. Positive side of the velocity RF and corresponding
Similar results have been obtained for the symmetrigower spectrum (inset) for the symmetric double-well potential
double well, Case (1), with the coefficien{d,B,C} =  y(x) = —1x? + 7x* at B = 1 (barrier height in energy units
{—1,1,0}, and the asymmetric single well, Case (I) with is 1/4).
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FIG. 4. Positive side of the velocity RF and correspondingFIG. 5. Positive side of the velocity RF and corresponding

power spectrum (inset) for the asymmetric Duffing potentialpower spectrum (inset) for the potentid(x) = coqx) at

V(x) = _%x + %XZ +xtatg =1. B = 1. The velocity RF has been shifted so that the asymptotic
value atr = « is zero.

symmetric case, exhibits a robustwi—;”(’) relaxation as  for Case (I)in Eq. (1). Letussét, B, C} = {1, r,0}, with

shown in Fig. 4. Unlike the symmetric well and césh . > (. The formal solution to the equation of motion is
potentials, the position RF's for these two cases tend/to a tnen given by [6]

dependent constank; (7') due to the fact that the potential .
minimum no longer lies at = 0. . .

We now briefly focus on Case (lll) in Eq. (1), which ) =C Z apsinp + ot, (2)
describes a system in which the particle becomes spatially .
delocalized at energies exceeding twice the amplitude g¥here the Iead3|ng terms of th‘; constaqts, are Cap =
the corrugation potential. We have carried out numericaf: Ca1 = (—ra’/32) (1 N 21ra /3;24+ RIS "’}7201 the
calculations in the manner sketched above. Since in th§€auencyw = (1 + 3ra”/4 + 3r%a"/128 + ...)/% In
canonical ensemble there will always be contributiondn® above expressions, the variableis obtained as a
from energies for which the particle is no longer localized,function of £ by substituting thze formal solutions fai()
the position RF will diverge, but the periodicity of the @ndv(z) into the Hamiltoniarp=/2 + Vau yielding
potential ensures thai(r) and a(r) will still be periodic 9E3/2,
leading to convergence of the corresponding RF’s. The a=QE)"* - RV RS 3)
canonical RF’s no longer tend to zero for Case (lll), but
the asymptotic behaviot/r + A,(T) is observed. The A normalized microcanonical ensemble RF, say the veloc-
velocity RF for this potential is shown in Fig. 5. ity RF, is exactly obtained by substituting(s) obtained

The exact asymptotic analysis was accomplished asom Eq. (2) into the following equation for the velocity
follows. We outline below the key steps in the CalculatioPsRF,

p=0

[Z v + dr Y,—0a,2p + 1)*cod2p + Dwt @
[ v ar > —0a3(2p + 1) '
I
It is difficult to carry out a closed form energy integral the terms withp > 0 and retain only thep = 0 term in
with the result of Eq. (4) above to obtain the canonicalthe summation of Eq. (4). As we shall show later, the
RF. We therefore focus on the nature of its asymptoticy = 0term contributes to the slowest decay. Successively
behavior and start by expressiagin powers ofyE (by  faster decays are contributed by the terms with increasing
substitutinga in the expression fow above), wherey = magnitude ofp. We substitute Eq. (4) with the = 0
is a system dependent constamt/4. To leading order term into the expression for the canonical RF and assume
we obtainw = 1 + yE. For the moment let us ignore that at low enough temperatures the density of states is an
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energy independent constant. This gives square displacement?(r) ~ {1 ast — «. To our
o _ . knowledge, these are the simplest Hamiltonian systems for
foe BEOSOS(I + yE)tdE _ p?codt) — ypisin() which such a rich variety of slow algebraic decays have
[o e PEdE yi + B2 " ever been reported.
(5) The study presented above is relevant to a variety of
) s . . problems of considerable interest in condensed matter
which decays as—7 sin(r)/1 for yr > B. This, of physics. We briefly illustrate some of these connections
course, is the behavior obtained from the numerical analypg|gw.
sis .reported above. The asymptotic functional formis that The Krumhansl-Schrieffer (KS) model [1] is described
of jo(z), i.e., th.e zeroth order spherlca! Bessel fun_ct|on. by the Hamiltonian H = >, 5* + Zi(% + BTM?) +
The result in Eq. (5), although originally derived to Coluimu)
describe the asymptotic behavior of the velocity RF in theXi>; — 2 » With A <0 and B,C;; > 0. w; andv;
low T limit, applies at allT’s. This can be shown easily are the d|splacement and velocny, re_spectlvely, of particle
by retaining higher order terms if in the expression - In the acoustic mode apprOX|mat|on,_KS h'ave shovyn
for the RF at a fixed energy before substituting into thethat when well depths are Iess_than the intersite energies,
equation for the canonical RF. Keeping tergis> 0 in H can_be reduced to an.effec_tlvely one-body problem in
Eq. (4) leads directly to the appearance of powerszof @ continuum representation with = u;(x), v; = vi(x),
in the integrals while retaining higher order terms in the* = %; = Jjl, andc, equal to the velocity of low ampli-
expansion fore leads to trigonometric functions with tude sound waves. The equation of motion is given as
arguments involving higher powers &f This results in SE =mn — n°, wheren = u/ug = f(x — vt)/up, s =
contributions to the canonical RF from integrals of the(y — y1)¢, and &2 = ’”(CE;l”z), with phase velocity
form [, E? e PE[cossin] (ytE)[cos sin] (catE?) - - - dE 41\1/2
B

where the terms in square braces indicate that one or tHe and up = Our calculations prove that the
other trigonometric function is chosen. Replacing the sirrelaxation in the KS system follows the/z| relaxation
and cos functions containing arguments with powers ofaw ast — «, a general property which has not been
E greater than one with their series expansions simplyreviously noted. Perhaps the most striking consequence
result in contributions from a sum of integrals of the form of this result is that particles in the KS model [1], in
f? t'E™e~PE[cos sin] (ytE) dE, where all of the powers this continuum limit, possess ant type mean square
of E have been collected if”, with / andm related by displacement, another new observation.
the inequalitym = [ + 1. In the long time limit, these ~ The dynamical behavior of the 2D Ising spin glass
integrals have the behavior that they tend eitheft#—!  Rb,Cu;—.Co.F; has been carefully probed recently by
or 0, depending on the choice of trigonometric functionDekker et al.[2]. They provide strong evidence that
in the integrand and whethen is even or odd. Since there exists a broad temperature range in whjth =
m — 1 = 1, all contributions to the velocity RF arising (S-(1)S.(0)) ~ exp(—¢/7.)?', wherer. is the character-
from retaining higher order terms if die off faster than istic relaxation time and the exponegt is very small,
1/t. In view of the formal similarities between this and being 0.06 atT” = 6.75 K and increasing to a constant
the double-well problems, similar results can be derived/alue 0.09 below 4 K. They also show that this behavior
for the double well [6]. In Case (lll) the equation of is consistent with a decay law of ~!, where typically
motion is that of a pendulum [7]. The analysis is similar0 < @ < 1 with (& — 1) ~ —1 in this particular system
to the one above except for the issues mentioned earlief[2], p. 11249 below Eq. (11)]. If one can relate the dy-
This will be detailed elsewhere [8]. namics in two-state systems with that in a double well,
The 1/t behavior of the velocity RF leads to the re- the connections between these results and ours may be
sult that the mean square displacement increases logaritstablished. Slow algebraic decay of dynamical density
mically as¢ — «. This can be shown by relating the (and hence position) correlations is also observed via light
mean square displacement of the particle to the velocity RECattering studies in the pregel phase of aqueous gelatin
as follows [9]: o2(¢) = {[x(r) — x(0)]*) =2 ff) dr(t — [3] and in a variety of other complex systems typically
) {v(0)v(7)) = 2¢In(f) — 2t + const. analyzed using mode coupling theories [10]. Itis conceiv-
Although as stated earlier, leading quartic anharmonicity@ble that our study may help develop some new insights
is possibly more common than others, we have numericalljo further clarify the existing analyses of these problems.
probed relaxation in potentials of the forfn? + 5-x2" S.S. thanks SUNY-Buffalo for support. R.S.S. was
for n = 3,4,5. To our knowledge, there are no simple supported by the Office of Naval Research through the
closed form solutions to the equations of motion for thesdNaval Research Laboratory.
anharmonic potentials. Our analysis reveals thatfer
3, =045,forn =4, ¢ = 0.32, and forn = 5, ¢ =
0.23. These results strongly suggest that for arbitrary
n, the asymptotic relaxation exponent follows the law [1] J. Krumhansl and J.R. Schrieffer, Phys. RevlB 3535
¢ = 1/(n — 1) [8]. Thus, for arbitraryn > 2, the mean (1975).
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