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Geometrical Resonance as a Chaos Eliminating Mechanism
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The notion of geometrical resonance is introduced as a natural, fully nonlinear, generalization of
the usual or frequency resonance. The geometrical resonance is shown to provide the mechanism
underlying the so-called nonfeedback control of chaos by means of an almost adiabatic invariant
associated with each geometrical resonance solution. [S0031-9007(96)00576-5]

PACS numbers: 05.45.+b

The notion of resonance (nonlinear resonance) has athe general [and widely used (cf. Refs. [3,4])] system
ways been identified with how well the driving peri@g
fits (a rational fraction of) a natural peridd) of the un- ¥ —gx)=— yxi + Fcha/<@>
derlying conservative system. In this Letter, the aim is to r

extend this linear-system-based notion of resonance to a 2mqt
fully nonlinear formulation based on a local energy con- + Fﬂcha{ﬁ + d’] (3)
servation requirement, considering the one-dimensional,
damped, and nonautonomous, nonlinear oscillator where the notation har) means indistinctly sifx) or
codx), and p, g are relatively prime integers. When the
¥ — glx) = —d(x,x) + p(x,x)F(t), (1)  suppressory driving term is absei#t,. = 0), we assume
_ . _ that the system is in a chaotic state for a certain damping

where g(x) = —dV/ax [V(x) being an arbitrary time- ,, and forcingF,, and for agiveninitial condition. Now,

independent potential}; d(x, x) is the damping force, and  the necessary and sufficient condition to be verified by the
p(x,x)F(r) is a general temporal modulation. The ba-total driving force in order for the system (3) to be found
sic idea is that the amplitude, period, and shap&@) ina GR may be written [cf. Eq. (2)]

must be such as to preserve a previously chosen natural re- | - o

sponse from the underlying conservative system; thiswill . _ (1 2Tt <mqt

be calledgeometrical resonanc@GR), because the shape * <y ) {FC har( T ) * Fuc har[ Tp N ¢}}
driving is just as meaningful as the period for the com- (4)
pletely nonlinear problem [1]. Notice that to take the shape . P
into account is equivalent to considering at orakethe where xgr(r) is a ("-periodic) response—based on the

nonlinear resonances (periods) suitably weighted. In gerTQiame afotr_emenn;)ned |(r13|t|al colndltl(o)r1—_|?fbthe undtle_rlylng
eral, if xgr(#) is @ GR solution of Eq. (1), it must satisfy conservative system. enerallisr (1) Wi € a noniin-
ear periodic response [5], and so we can write

—~d(xcr, ¥Gr) + p(xcr, fr)For() = 0. (2 >
(xGr, XGr) * p(xcR,XGr)FGR(7) @ iar(t) = D ay ha’<2ﬂ-m + %/1) ©)
n=1

/
This is equivalent to the (local) energy conservation r

requirement(1/2)x&x (t) + V[xgr(1)] = const. The pe-
riod, shape, and amplitude aofgr(z) will be deter-
mined by those ofxgr(z). Obviously, in the fully
linear limit we recover the usual resonance requiremen
[For(r) = —constX xgr(?), i.e., Fgr(¢) harmonic and

Clearly there cannot exist an added harmonic suppres-
sory driving force exactly satisfying the GR condition
Eq. (4)]. However, we can find the optimal values of
wer @, and(p/q) which most closelypreserve the energy
- 77 in the following sense. Let us assume that for the optimal
Iy = To]. The GR for nonautonomous Hamiltonian qy,qice (and the same initial condition) the corresponding

systems will be (_:on5|dered elsewhere. . actual solutionx(r) remains—after the transient—close
The GR provides the mechanism underlying the soc—g0 the GR solutionx(7) = xgr(t) + 8x(¢), where x(z)

called nonfgedback control techniqge [2—4]. This metho s a small deviation withi(5x)/dr < 8x/T'. Then, one
of suppressing chaos works by adding a weak external p%'onjectures that the ratio of the energy to the frequency

riodic fo_rcing or per_turbing a system parameter by Sma“l/T’ is alocal almost adiabatic invarian{6] to lowest
harmonic perturbations to the initially chaotic system. . qerinsx. i.e

There have been several theoretical [2], numerical [3], /
and experimental investigations [4] of nonfeedback con- <d < E >> _ ]T < dE
T/ 0

trol. As an illustration of the use of this concept, consider dar\1/T’ I)dl =0. 6)
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A particular case is studiechumerically by Qu amplitude which is verysmall in comparison with that

et al. [3]: of the induced-chaos driving, so the optimal valuespof
3 ) 2art must verify sifp, — ¢) = =1, i.e. [cf. Eq. (12)],
X+x’=—vyx +F COS<—> Qn* + 1)’
JL____+_J
¢ = [2K(m ) (mod27r). (15)

2mqt
ok CO{ " qb} Q) It is then obvious that the phase differengebetween
where @ = F,./F.. Analytically, the T'-periodic solu- the two forces plays a fundamental role in nonfeedback
tions of the conservative system are '::f:)mml,t as E’%‘S focl]Jnd num]?rlc;ally ?Y[ QTII 33- [3] fort ed
e system (7), and as was first analytically demonstrate
x(1) = Acnl4K (m = 1/2)t/T" + ¢y m = 1/2], through Melnikov analysis in the two papers of Ref. [2].
x(t) = — A’sf4K(m = 1/2t/T' + ¢'; m = 1/2] (8) From Eq. (15), we see thap hassensitive dependence
on the initial conditions(through ¢’), as is observed in
X dl4K (m = 1/21/T" + ¢y m = 1/2], numerical experiments, cf. Refs. [2,3]. For a givén
where siw;m), cn(u;m), and driu; m) are Jacobian Eq. (13) gives the period”, depending on the approxi-
elliptic functions of parametem, K(m) is the complete mation (n™, p,¢) we are using, and hence the energy
elliptic integral of the first kind [7], andd = 4K(m =  (i.e., A) of the underlying GR response. We can test the
1/2)/T'. From the assumption(t) = xgr(t) + 6x(¢),  predictede value [Eq. (10)] theoretically by considering
the energy is given (to first order i) by E = Ecr +  the limiting casey = 0 (no damping) together with the

[xGr + x&r18x, and thus main resonancl; = p,n" = 0). From Eq. (10), one has
dE 2t thata = — cosp and then, for¢p = 0, one recovers the
<?>T, = — y{ig)r + F. <XGR C05< T >>T corres3ponding expected [cf. Eq. (7)] periodic solution of
X +x°=0.
+ aF, <xGR cos{ + ¢}> Figure 1 shows the characteristic structurgéosfguesn
T the|a|-2¢ /7 plane [cf. Egs. (10), (12), (15)], for several
+ 0(8x). (9) resonancesp/q (and so different GRs) anad™ =

0.3, F. = 8.85, T = 27r. The widths in2¢ /7 of

The integrals can be evaluated from standard mtegra[T.Ie various tongues wheye/q is fixed increase withe|.

tables [8]. Finally, from the almost adiabatic invariant
condition [Eqg. (6)], we obtain

Y= [ 1 H16K4(m = 1/2)<1><i>2 00s N
sin(g, — ¢) 372 F./\p @
X[2n* + 1D)2T2a(m = 1/2)]"! 0031
. sin(wT'/T) lot] 0027
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0 0.2
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FIG. 1. |a| vs 2¢/7 [Egs. (10), (12), (15)] forn™ =0,
ay(m = 1/2) = (n + Dg" "2 (m = 1/2) (14) 7= 03, F. =885 T =27, and different resonances/q.

1+ ¢ ' (m=1/2) ° (a) Mode-locked regions (tongues) fap € [0, 7/2]. (b)

. Corresponding tongues for the same resonances as in (a) and
whereg(m) is the nome [7] of parameten. To control 4 € [37/2,27]. Note that there cannot exist tongues over
chaos, one desires the control driving term to have athe rangep €]7 /2,37 /2[.
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The resemblance to the Arnold tongues [9] is meaningfulAQ s (Q = 27q/Tp, Q > AQ) is introduced. They

it is straightforward to show that, given any resonancendicated phenomenologically that “the dynamics of the
p/q > const> 0, there exists a tongue given by =  new type of intermittency is due to the quasistatic drift in
¢(p/q) [cf. Eq. (10)], and also that for fixedlw| the the phasep(z); this drift comes from the small detuning.”
width of a tongue increases if the denominagom the  In light of the present theory, the aforementioned breathing
corresponding resonangg g increases. Thus, the motion effect [3] can be explained as follows: With fixed p,
should be phase locked [cf. Eq. (13)] inside the tonguesandg, let us suppose that, fa(r = 0) = ¢, the initial
and chaotic outside them, as is, in fact, observed imotion is chaotic, i.e., we are at a poift, ¢) between
numerical experiments. Figure 2 provides an illustrativetwo tongues (see Fig. 1), in the-2¢ /7 plane. Ast
example for the resonancg/q = 1/3 with the other increases, so doag—but very slowly—and thus, over
parameters as in Fig. 1. Notice that the boundaries of ththe first time interval, the motion evolves chaotically up
tongues obtained numerically [Fig. 2(a)] and theoreticallyto an instant; for which [a, qb(t;k)] is a point close to
[Fig. 2(b)] correspond very closely in the positions of the boundary of the correspondirig/q) tongue. For
their minima. The numerical tongues are wider than those > ;;", the motion then evolves under the corresponding
from the almost adiabatic invariance, partly because thgcal almost adiabatic invariant, and so it cannot be chaotic
dots in Fig. 2(a) represent regular motions with periodsf the tongue iswide enough(depending ony and AQ).
=12, and partly because of the perturbative nature ofOf course, the motion cannot be periodic (phase locked)
the theoretical approach. Similar agreement between thever that second time interval, singe does not remain
numerical results and theoretical predictions is found foconstant. But, asp changes very slowly, the motion
other resonancesp/g). It is worth mentioning that will be quasiperiodic up to a second instahtsuch that
Azevedo and Rezende [4] experimentally found a similar,, 4 (:))] is a point close to the opposite boundary of
structure of tongues in a microwave-pumped spin-waveghe tongue. For > 75, the motion is again chaotic, and
instability experiment. after a time2 7 /AQ) the motions are qualitatively repeated

Quet al. [3] providednumericalevidence of a new type [ihe point («, ¢) crosses the same tongue in the same
of intermittency, characterized by periodic appearance Ogirection during the same time intervAlr ~ t;k _ t;k]'

regular and chaotic motions, which they call “breathing,”\y 3 forthcoming paper, | will present a more detailed

when a time-dependent phase differensé) = &0 +  gydy, including the application to suppressory parametric
perturbations.

In summary, | have introduced the concept of GR

0.07 ' (period plus shape) as the natural, completely nonlinear,
0.06 = @ generalization of the common resonance (period). It
0.05] was shown to provide the dynamics underlying the
o 0.04] nonfeedback control of chaos through the conservation of
0.03 7 a local almost adiabatic invariant associated to each GR
0.02] solution. The same ideas were seen to explain a previous,
0.01 7 numerically observed, new type of intermittency.
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FIG. 2. (a) Boundaries between chaotic and regular motions 8294)IY?WIXL. Elynzg’gg'(l?éihe’ W. Huang, and C.X. Yu,
inthea-2¢ /7 plane fory = 0.3, F. = 885, T = 2w, q = 3, ys. Rev. Lett72, 96 ( ; )'. .

» = 1, and the initial condition for which the motion is chaotic [°] In the most unfavorable situation, one can obtain valuable
at « = 0. The points represent actual numerical results and  information about the GR solutions from experimental
are connected by lines to guide the eye. (b) Corresponding  power spectra.

boundaries from Egs. (10), (12), (15) for the same parameters[6] Local means that each almost adiabatic invariant is only
as in (a) and:™ = 0. postulated for (trajectories based on) initial conditions on
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a given T’-periodic solution from the associated conser- [7] See, e.g., L. M. Milne-Thomson, iflandbook of Mathe-
vative system. To my knowledge, most of the previ- matical Functions,edited by M. Abramowitz and I. A.
ous investigations on adiabatic invariants have dealt only Stegun (Dover, New York, 1972).

with Hamiltonian systems with slowly varying parameters; [8] I. Gradshteyn and I. RyzhikTable of Integrals, Series and

see, e.g., V.l. ArnoldGeometrical Methods in the Theory Products(Academic, New York, 1994).
of Ordinary Differential EquationgSpringer-Verlag, New  [9] See, e.g., H.G. SchusteDeterministic chaos(VCH,
York, 1988), and references therein. Weinheim, 1989).
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