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Geometrical Resonance as a Chaos Eliminating Mechanism
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The notion of geometrical resonance is introduced as a natural, fully nonlinear, generalizat
the usual or frequency resonance. The geometrical resonance is shown to provide the mec
underlying the so-called nonfeedback control of chaos by means of an almost adiabatic inv
associated with each geometrical resonance solution. [S0031-9007(96)00576-5]

PACS numbers: 05.45.+b
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The notion of resonance (nonlinear resonance) has
ways been identified with how well the driving periodTd

fits (a rational fraction of) a natural periodT0 of the un-
derlying conservative system. In this Letter, the aim is
extend this linear-system-based notion of resonance
fully nonlinear formulation based on a local energy co
servation requirement, considering the one-dimensio
damped, and nonautonomous, nonlinear oscillator

ẍ 2 gsxd ­ 2dsx, Ùxd 1 psx, ÙxdFstd , (1)

where gsxd ; 2≠Vy≠x [V sxd being an arbitrary time-
independent potential],2dsx, Ùxd is the damping force, and
psx, ÙxdFstd is a general temporal modulation. The b
sic idea is that the amplitude, period, and shape ofFstd
must be such as to preserve a previously chosen natura
sponse from the underlying conservative system; this w
be calledgeometrical resonance(GR), because the shap
driving is just as meaningful as the period for the com
pletely nonlinear problem [1]. Notice that to take the sha
into account is equivalent to considering at onceall the
nonlinear resonances (periods) suitably weighted. In g
eral, if xGRstd is a GR solution of Eq. (1), it must satisfy

2dsxGR, ÙxGRd 1 psxGR, ÙxGRdFGRstd ­ 0 . (2)

This is equivalent to the (local) energy conservati
requirements1y2d Ùx2

GRstd 1 V fxGRstdg ­ const. The pe-
riod, shape, and amplitude ofFGRstd will be deter-
mined by those ofxGRstd. Obviously, in the fully
linear limit we recover the usual resonance requirem
[FGRstd ­ 2const3 ÙxGRstd, i.e., FGRstd harmonic and
Td ­ T0]. The GR for nonautonomous Hamiltonia
systems will be considered elsewhere.

The GR provides the mechanism underlying the s
called nonfeedback control technique [2–4]. This meth
of suppressing chaos works by adding a weak external
riodic forcing or perturbing a system parameter by sm
harmonic perturbations to the initially chaotic syste
There have been several theoretical [2], numerical [
and experimental investigations [4] of nonfeedback co
trol. As an illustration of the use of this concept, consid
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the general [and widely used (cf. Refs. [3,4])] system

ẍ 2 gsxd ­ 2 g Ùx 1 Fchar

µ
2pt
T

∂
1 Fnchar

∑
2pqt
Tp

1 f

∏
, (3)

where the notation harsxd means indistinctly sinsxd or
cossxd, andp, q are relatively prime integers. When th
suppressory driving term is absentsFnc ; 0d, we assume
that the system is in a chaotic state for a certain damp
g and forcingFc, and for agiveninitial condition. Now,
the necessary and sufficient condition to be verified by
total driving force in order for the system (3) to be foun
in a GR may be written [cf. Eq. (2)]

ÙxGR ­

µ
1
g

∂ Ω
Fc har

µ
2pt
T

∂
1 Fnc har

∑
2pqt
Tp

1 f

∏æ
,

(4)
where xGRstd is a (T 0-periodic) response—based on th
same aforementioned initial condition—of the underlyin
conservative system. Generally,xGRstd will be a nonlin-
ear periodic response [5], and so we can write

ÙxGRstd ­
X̀
n­1

an har

µ
2pnt

T 0
1 w0

n

∂
. (5)

Clearly there cannot exist an added harmonic suppr
sory driving force exactly satisfying the GR conditio
[Eq. (4)]. However, we can find the optimal values o
Fnc, f, andspyqd which most closelypreserve the energy
in the following sense. Let us assume that for the optim
choice (and the same initial condition) the correspond
actual solutionxstd remains—after the transient—clos
to the GR solution:xstd ­ xGRstd 1 dxstd, wheredxstd
is a small deviation withdsdxdydt ø dxyT 0. Then, one
conjectures that the ratio of the energy to the frequen
1yT 0 is a local almost adiabatic invariant[6] to lowest
order indx, i.e.,ø

d
dt

µ
E

1yT 0

∂¿
T 0

;
Z T 0

0

µ
dE
dt

∂
dt . 0 . (6)
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A particular case is studiednumerically by Qu
et al. [3]:

ẍ 1 x3 ­ 2 g Ùx 1 Fc cos

µ
2pt
T

∂
1 aFc cos

∑
2pqt
Tp

1 f

∏
, (7)

where a ; FncyFc. Analytically, the T 0-periodic solu-
tions of the conservative system are

xstd ­ A cnf4Ksm ­ 1y2dtyT 0 1 f0; m ­ 1y2g ,

Ùxstd ­ 2 A2 snf4Ksm ­ 1y2dtyT 0 1 f0; m ­ 1y2g (8)

3 dnf4Ksm ­ 1y2dtyT 0 1 f0; m ­ 1y2g ,

where snsu; md, cnsu; md, and dnsu; md are Jacobian
elliptic functions of parameterm, Ksmd is the complete
elliptic integral of the first kind [7], andA ­ 4Ksm ­
1y2dyT 0. From the assumptionxstd ­ xGRstd 1 dxstd,
the energy is given (to first order indx) by E ­ EGR 1

f ÙxGR 1 x3
GRgdx, and thusø

dE
dt

¿
T 0

­ 2 gk Ùx2
GRlT 0 1 Fc

ø
ÙxGR cos

µ
2pt
T

∂¿
T 0

1 aFc

ø
ÙxGR cos

∑
2pqt
Tp

1 f

∏¿
T 0

1 Osdxd . (9)

The integrals can be evaluated from standard inte
tables [8]. Finally, from the almost adiabatic invaria
condition [Eq. (6)], we obtain

a ø
∑

1
sinswnp 2 fd

∏ Ω
16K4sm ­ 1y2d

3p2

µ
g

Fc

∂ µ
q
p

∂2

3fs2np 1 1d2T 2anpsm ­ 1y2dg21

2 sinwnp 2 2

∑
sinspT 0yTd

pT 0

∏
Ssp, q, npd

æ
, (10)

with

Ssp, q, npd ;
X̀
n­0

nfinp

ansm ­ 1y2d
anpsm ­ 1y2d

3

∑
2n 1 1

s2n 1 1d2 2 p2s2np 1 1d2yq2

∏
3 sin

∑
s2np 1 1dpp

q
1 wn

∏
, (11)

wn ;
s2n 1 1dpf0

2Ksm ­ 1y2d
, (12)

T 0 ;
s2np 1 1dpT

q
, (13)

ansm ­ 1y2d ;
sn 1 1dqsn11y2dsm ­ 1y2d

1 1 qn11sm ­ 1y2d
, (14)

whereqsmd is the nome [7] of parameterm. To control
chaos, one desires the control driving term to have
ral
t

an

amplitude which is verysmall in comparison with that
of the induced-chaos driving, so the optimal values off

must verify sinswnp 2 fd ­ 61, i.e. [cf. Eq. (12)],

f ­

∑
s2np 1 1dpf0

2Ksm ­ 1y2d
6

p

2

∏
smod2pd . (15)

It is then obvious that the phase differencef between
the two forces plays a fundamental role in nonfeedba
control, as was found numerically by Quet al. [3] for
the system (7), and as was first analytically demonstra
through Melnikov analysis in the two papers of Ref. [2
From Eq. (15), we see thatf has sensitive dependence
on the initial conditions(throughf0), as is observed in
numerical experiments, cf. Refs. [2,3]. For a givenT ,
Eq. (13) gives the periodT 0, depending on the approxi-
mation snp, p, qd we are using, and hence the energ
(i.e., A) of the underlying GR response. We can test t
predicteda value [Eq. (10)] theoretically by considering
the limiting caseg ­ 0 (no damping) together with the
main resonancesq ­ p, np ­ 0d. From Eq. (10), one has
that a ø 2 cosf and then, forf ­ 0, one recovers the
corresponding expected [cf. Eq. (7)] periodic solution
ẍ 1 x3 ­ 0.

Figure 1 shows the characteristic structure oftonguesin
the jaj-2fyp plane [cf. Eqs. (10), (12), (15)], for severa
resonancespyq (and so different GRs) andnp ­ 0,
g ­ 0.3, Fc ­ 8.85, T ­ 2p. The widths in2fyp of
the various tongues wherepyq is fixed increase withjaj.

FIG. 1. jaj vs 2fyp [Eqs. (10), (12), (15)] fornp ­ 0,
g ­ 0.3, Fc ­ 8.85, T ­ 2p, and different resonancespyq.
(a) Mode-locked regions (tongues) forf [ f0, py2g. (b)
Corresponding tongues for the same resonances as in (a)
f [ f3py2, 2pg. Note that there cannot exist tongues ov
the rangef [gpy2, 3py2f.
483
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The resemblance to the Arnold tongues [9] is meaningf
it is straightforward to show that, given any resonan
pyq . const. 0, there exists a tongue given byf ­
fspyqd [cf. Eq. (10)], and also that for fixedjaj the
width of a tongue increases if the denominatorq in the
corresponding resonancepyq increases. Thus, the motion
should be phase locked [cf. Eq. (13)] inside the tongu
and chaotic outside them, as is, in fact, observed
numerical experiments. Figure 2 provides an illustrati
example for the resonancepyq ­ 1y3 with the other
parameters as in Fig. 1. Notice that the boundaries of
tongues obtained numerically [Fig. 2(a)] and theoretica
[Fig. 2(b)] correspond very closely in the positions o
their minima. The numerical tongues are wider than tho
from the almost adiabatic invariance, partly because
dots in Fig. 2(a) represent regular motions with perio
#12, and partly because of the perturbative nature
the theoretical approach. Similar agreement between
numerical results and theoretical predictions is found f
other resonancesspyqd. It is worth mentioning that
Azevedo and Rezende [4] experimentally found a simi
structure of tongues in a microwave-pumped spin-wav
instability experiment.

Quet al. [3] providednumericalevidence of a new type
of intermittency, characterized by periodic appearance
regular and chaotic motions, which they call “breathing
when a time-dependent phase differencefstd ­ f0 1

FIG. 2. (a) Boundaries between chaotic and regular motio
in thea-2fyp plane forg ­ 0.3, Fc ­ 8.85, T ­ 2p, q ­ 3,
p ­ 1, and the initial condition for which the motion is chaoti
at a ­ 0. The points represent actual numerical results a
are connected by lines to guide the eye. (b) Correspond
boundaries from Eqs. (10), (12), (15) for the same paramet
as in (a) andnp ­ 0.
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DVt sV ; 2pqyTp, V ¿ DVd is introduced. They
indicated phenomenologically that “the dynamics of t
new type of intermittency is due to the quasistatic drift
the phasefstd; this drift comes from the small detuning.
In light of the present theory, the aforementioned breath
effect [3] can be explained as follows: With fixeda, p,
andq, let us suppose that, forfst ­ 0d ­ f0, the initial
motion is chaotic, i.e., we are at a pointsa, f0d between
two tongues (see Fig. 1), in thea-2fyp plane. As t
increases, so doesf—but very slowly—and thus, over
the first time interval, the motion evolves chaotically u
to an instanttp

1 for which fa, fstp1 dg is a point close to
the boundary of the correspondingspyqd tongue. For
t . tp1 , the motion then evolves under the correspondi
local almost adiabatic invariant, and so it cannot be chao
if the tongue iswide enough(depending ona andDV).
Of course, the motion cannot be periodic (phase lock
over that second time interval, sincef does not remain
constant. But, asf changes very slowly, the motion
will be quasiperiodic up to a second instanttp2 such that
fa, fstp2 dg is a point close to the opposite boundary
the tongue. Fort . tp2 , the motion is again chaotic, an
after a time2pyDV the motions are qualitatively repeate
[the point sa, fd crosses the same tongue in the sam
direction, during the same time intervalDt ø tp2 2 tp1 ].
In a forthcoming paper, I will present a more detaile
study, including the application to suppressory parame
perturbations.

In summary, I have introduced the concept of G
(period plus shape) as the natural, completely nonlinea
generalization of the common resonance (period).
was shown to provide the dynamics underlying th
nonfeedback control of chaos through the conservation
a local almost adiabatic invariant associated to each
solution. The same ideas were seen to explain a previo
numerically observed, new type of intermittency.
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