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Exact Results for Quantum Phase Transitions in RandomXY Spin Chains
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The effect of disorder on the quantum phase transitions induced by a transverse field, aniso
and dimerization inXY spin chains is investigated. The low-energy behavior near the critical poin
described by a Dirac-type equation for which an exact analytic treatment is possible. Results ob
for the dynamical critical exponent, the specific heat, and the transverse susceptibility agree with r
recently obtained using a real space renormalization group decimation technique. A nonzero tran
field changes the universality class of the anisotropy transition. [S0031-9007(96)01787-5]
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Theoretical studies of quantum phase transitions
the presence of quenched (i.e., time-independent)
order have been stimulated by recent experim
on spin glasses,4He absorbed in porous media, a
superconductor-insulator transitions in dirty thin film
Compared to thermal phase transitions in disorder-
systems these transitions are poorly understood bec
many of the theoretical methods (e.g., exact solutio
renormalization group,e expansions) that have bee
so useful for pure systems are difficult to impleme
for disordered systems. Yet these phase transitions
associated with particularly rich physics such as la
differences between average and typical behavior,
universality classes, logarithmic scaling, Griffiths pha
[1] (in which susceptibilities diverge although the
are only short-range correlations), and the breakd
of folklore such as “the correlation length is inverse
proportional to the energy gap” [2]. This Letter consid
a simple exactly soluble model which has many of th
interesting properties.

Fisher recently performed an exhaustive study of
effect of randomness on the simplest spin model
undergo a quantum phase transition: the transverse
Ising spin chain [3]. He used a real space renormaliza
group decimation technique (RSRGDT) [4] which
claims is exact near the critical point. Fisher fou
the phase diagram (which included Griffiths phases n
the critical point), all the critical exponents, and scal
forms for the magnetization and correlation functions
an external field. The latter have never been derived
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the disorder-free case but can be derived in the pres
of disorder because distributions become extremely br
near the critical point. The same model was recen
studied numerically by Young and Rieger [5], wh
found results consistent with Fisher. The RSRG
has also been used to study the effect of disorder
dimerized [6] and anisotropic [7] spin chains, cha
with random spin sizes [8], and quantum Potts a
clock chains [9]. Possible experimental realizations
random spin chains are quinoloniumsTCNQd2 [10] and
SR3CuPt12xIrxO6 [11].

This Letter considers quantum phase transitions inXY
spin chains in the presence of disorder. The spin ch
are mapped onto a fermion model, the continuum li
of which is a Dirac-type equation with random mass,
which exactanalytic results can be derived. The resu
agree with those of the RSRGDT [3,6,7], supporti
Fisher’s claim that it is exact near the critical point [12
New results are obtained for the anisotropy transition
a nonzero average transverse field. It is in a differ
universality class to the Ising transition.

The Hamiltonian to be considered is

H  2

LX
i1

fJx
i sx

i sx
i11 1 J

y
i s

y
i s

y
i11 1 his

z
i g . (1)

The hsa
i j are Pauli spin matrices, and the interactionsJx

i ,
J

y
i , and transverse fieldshi may be independent rando

variables (see Table I) with a Gaussian distribution. T
average values will be denotedkJx

i l ; Jx, kJy
i l ; Jy, and

khil ; h, and will all be assumed to be positive.
d by

he
TABLE I. Different parameters for the continuum limit of three different transitions. Near the critical point all are describe
the low-energy effective Hamiltonian (3). The lattice constant is set to unity. The Fermi wave vectorkF determines whether the
problem is commensurate or not.yF is the Fermi velocity. D is a measure of the deviation from criticality. The variance of t
random variable equalsg, which enters Eq. (4).

Transition coskF yF D Csx  ndy Random variable

Ising 1 jJx 2 Jyj h 2 Jx 2 Jy scy
n , cnd hi

Anisotropy h
Jx 1 Jy

sJx 1 Jyd sinkF sJx 2 Jyd sinkF scy
n e2inkF , cne2inkF d Jx

i 2 J
y
i

Dimerization 0 2J D scy
n i2n , cy

n ind Jx
i  J

y
i
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At zero temperature and in the absence of disorder th
model undergoes two distinct quantum phase transition
[13]. Both transitions are second order. The transition
at Jx 1 Jy  h from a paramagnetic to a ferromagnetic
phase will be referred to as theIsing transition[14]. The
transition atJx  Jy for h , sJx 1 Jyd from an Ising
ferromagnet with magnetization in thex direction to one
with magnetization in they direction will be referred
to as theanisotropy transition[7,15]. Thedimerization
transition involves the Hamiltonian (1) withkJx

i l 
kJy

i l  J 1 s21diD and khil  0. At D  0 there is a
transition from a spin liquid to a gapped phase with long
range topological order [6].

Under a Jordan-Wigner transformation which map
spins onto spinless fermions, (1) becomes [15]

H  2

LX
i1

fsJx
i 1 J

y
i d scy

i ci11 1 c
y
i11cid

1 sJx
i 2 J

y
i d scy

i c
y
i11 2 cici11d 1 his2c

y
i ci 2 1dg ,

(2)

where boundary terms have been neglected andc
y
i andci

denote creation and annihilation operators for a fermio
on sitei. In the disorder-free case (2) can be diagonalize
by a Bogoliubov transformation [13,15].

The continuum limit of (2) must be taken relative to
the Fermi wave vectorkF , the wave vector at which
the energy gap in the fermionic spectrum occurs for th
disorder-free case [13]. This wave vector depends o
which transition is being considered (see Table I). Th
low-energy properties of all the transitions in Table I are
described by [16]

H 
Z

dxCy
h
2iyFs3 ≠

≠x
1 V sxds1 1 V sxdps2

i
C ,

(3)

wheresa (a  1, 2, 3) ands6 ; 1
2 ss1 6 s2d are Pauli

matrices.Csxd is a spinor, with (modulo a transformation
in spinor space) the components given in Table I.V sxd is
Gaussian white-noise potential with

kV sxdl  D, kV sxdV sx0dpl  gdsx 2 x0d . (4)

D measures the deviation from the critical point, andjDj
is the energy gap in the absence of disorder. Table I lis
values ofD, the Fermi velocityyF , and the random vari-
ables whose variance equalsg, for the Ising, anisotropy,
and dimerization transitions.kF is commensuratewith the
lattice andV sxd is real for the Ising transition (kF  0)
and the anisotropy and dimerization transitions in zer
transverse field (kF  py2). It will be seen that the effect
of disorder is significantly different for commensurate and
incommensurate cases. The continuum limit describes th
low-energy properties (E ø yF) whenyF ¿ D,

p
g, i.e.,

arbitrarily close to the critical point and for weak disorder.
It is useful to define an energyD and a dimensionless

parameterd which are measures of the disorder strength
e
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and the deviation from criticality, respectively,

D ;
g

yF
, d ;

jDj

D
. (5)

Note that for the Ising transition withJy  0, to leading
order inDyJx, the parameterd defined by Fisher [3] and
Young and Rieger [5] isDyD.

The advantage of casting the problem in the form of
Hamiltonian (3) is that the latter has been studied ext
sively previously, andexactanalytic expressions given fo
the energy dependence of the disorder-averaged de
of stateskrsEdl and the localization lengthlsEd [17–23].
(Because of the one-dimensionality all the states are lo
ized by the disorder.) The exact results have been fo
by Fokker-Planck equations [17], supersymmetry [19,2
the replica trick [23],S-matrix summation [18], and the
Dyson-Schmidt method [21]. The localization length c
be found because in one dimension it is related to the
part of the one-fermion Green’s function [19]. The de
sity of states and the localization length can be written
terms off 0

dsud, the derivative of a dimensionless functio
fdsud given in Table II,

d
dE

1
lsEd

1 iprsEd  pr0f 0
dsEyDd , (6)

wherer0 ; 1ypyF is the value of the density of states
high energies (jEj ¿ D, Dd.

The low-energy (jEj ø D) behavior of the density o
states is given in Table II. For the commensurate c
the density of states diverges atE  0 for d , 1y2 and
is zero atE  0 for d . 1y2. These two cases lea
to qualitatively very different behavior. In the forme
case some susceptibilities will diverge as the tempera
approaches zero. This corresponds to a Griffiths
weakly ordered phase [1]. Hence for the Ising transit
there will be four phases: ferromagnet, weakly orde
ferromagnet, weakly ordered paramagnet, and parama
[3]. The full energy dependence of the density of sta
for various values ofd is shown in Fig. 1.

Distinctly different behavior occurs for the incomme
surate case. The density of states is always finite at
energy. There is a smooth crossover from gapless be
ior (krs0dl , r0 for d , 1) to effectively gapped behav
ior (krs0dl ø r0 for d ¿ 1). Hence the Griffiths phase
still exist but no longer have clearly defined boundari
Similarly, for the commensurate case more than one t
of disorder (e.g., the anisotropy transition with both a ra
dom transverse field and random anisotropy) removes
singularity in the density of states [17].

The specific heat.—Because the eigenstates of t
Hamiltonian (3) are noninteracting fermions the low
temperature behavior of the specific heat and the tra
verse susceptibility (for the dimerization and anisotro
transitions) follows from the energy dependence of
disorder-averaged density of states [10,24] and are g
4805
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TABLE II. Summary of the low-energy behavior of different physical quantities. The commensurate case corresponds
Ising transition and to the anisotropy and dimerization transitions in zero transverse field. The incommensurate case co
to the anisotropy transition in a nonzero transverse field. For the commensurate case qualitatively different behavior occu
critical point (d  0) and away from it (d fi 0). The functionfdsud determines the full energy dependence of the density of st
and the localization length [compare Eq. (6)].I0sxd andI1sxd are the zeroth and first order modified Bessel functions, respectiv
Gsdd is the gamma function.H

s2d
d sud is a Hankel function of indexd. Iiysxd is a modified Bessel function with imaginary inde

For smallx, Gsxd , x21, I0sxd , 1 1 x2y4, andI1sxd , xy2.

Quantity Symbol Commensurate Incommensurate
d fi 0 d  0

Density
of states

k rsEdlyr0 d

Gsdd2

É
E
D

É2d21 D

jEj fln j
E
D jg3

1
I0s2dd2

Specific heat kCsT dl d

Gsdd2

√
T
D

!2d 1

flns T
D dg3

T
I0s2dd2

Dynamical z ` 1
critical exponent

1
2d

Localization lsEd
length

yF

D

yF

D
ln

É
D
E

É
4yF

D

"
1 1

8dI1s2dd
I0s2dd

#21

Transverse kxzzsT dl T 2d21

susceptibility
1

Tflns T
D dg2

1
I0s2dd2

fdsud
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≠
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lnfH s2d
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in Table II. The transverse susceptibility clearly sho
a Griffiths singularity. The results for the commensura
case agree with the RSRGDT [3,6,7].

FIG. 1. Energy dependence of the disorder-averaged den
of states for the commensurate case for various values of
dimensionless parameterd [see Eq. (5)], which is a measure o
the deviation from criticality. The density of states is singu
at the Fermi energysE  0d when d ,

1
2 . This parameter

range corresponds to a Griffiths phase. Note that only far fr
criticality (d ¿ 1) is there effectively a gap in the system. Th
contrasts with the disorder-free case, for which there is alw
a gap except at the critical point.
4806
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Dynamical critical exponentz.—This relates the scal
ing of energy (or time) scales to length scales. A cru
scaling argument [25] implies thatkrsEdl , E1yz21. Thus
for the commensurate case, to leading order ind, z 
1y2d, in agreement with Fisher [3] and Young and Rieg
[5]. This is a particularly striking result because it sho
that (i) z is not universal, and (ii)z diverges at the critica
point. The latter implies logarithmic scaling and activat
dynamics [2]. In contrast for the incommensurate ca
the density of states is finite and constant at low ener
and soz  1, as in the absence of disorder.

Finite size scaling.—Monthus et al. [26] studied an
equation equivalent to (3) withV sxd real andD  0 [23].
They have shown that on a line of lengthL, for a typical
potentialV sxd the lowest eigenvalueE0 scales likeE2

0 ,
exps2cL1y2d, where c is a constant. This is consiste
with the scaling of lnE0 with L1y2 at the critical point
found numerically [5]. The averagekE2

0l , exps2dL1y3d
where d is a constant [26], showing the discrepan
betweenaverageandtypical values.

Correlation lengths.—Fisher [3] stressed the distinc
tion between average and typical correlations. IfCij ;
kAiAjl denotes a correlation function of a variableAi then
the average correlation functionCav srd ; 1

L

PL
i1 Ci,i1r

is what is measured experimentally. Away from the cr
cal point Cav srd , exps2ryjavd, wherejav is the aver-
age correlation length. However,Cav srd is dominated by
rare pairs of spins withCij , 1. In contrast, with proba-
bility one Ci,i1r , exps2ryjtypd wherejtyp denotes the
typical correlation length. It is distinctly different from
jav (jtyp ø jav ), having a different critical exponen
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The localization length is useful because it is proportio
to the typical correlation length for quantities that are
agonal in the fermion representation [27]. Consequen
the results in Table II imply that for the commensura
case the typical correlation lengthjtyp , ls0d21 , D21

is consistent with previous work [3,28]. This critical e
ponent is not modified by the presence of disorder.
contrast, for the incommensurate case,ls0d is finite at the
critical point.

Distribution functions.—Both Fisher [3] and Young
and Rieger [5] considered the distribution functions
various quantities. The present approach can be u
to obtain exact results by using known results for t
distribution function for the density of states of on
dimensional conductors [29]. The cumulants (or ir
ducible moments) of the transverse susceptibility for
incommensurate case at criticality are

ksxzzdnlc  xn
0

Gs 3
2 dGsnd2

Gsn 1
1
2 d

µ
pD
16T

∂n21

, (7)

where x0 is the susceptibility in the absence of diso
der. These moments completely determine the distri
tion function which has been extensively analyzed
Ref. [29]. For T ¿ D the distribution is Gaussian an
centered on the mean. In contrast, forT ø D the distri-
bution is extremely broad and asymmetric. The maxim
of the distribution then occurs nearx0 exps21ysdy2s,
wheres  16TyDp , which is much less than the mea
x0. This shows the large discrepancy between typical
average values. Hopefully (7) can be generalized to
commensurate case and away from criticality.
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