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Exact Results for Quantum Phase Transitions in RandonXY Spin Chains
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The effect of disorder on the quantum phase transitions induced by a transverse field, anisotropy,
and dimerization inXY spin chains is investigated. The low-energy behavior near the critical point is
described by a Dirac-type equation for which an exact analytic treatment is possible. Results obtained
for the dynamical critical exponent, the specific heat, and the transverse susceptibility agree with results
recently obtained using a real space renormalization group decimation technique. A nonzero transverse
field changes the universality class of the anisotropy transition. [S0031-9007(96)01787-5]

PACS numbers: 75.10.Jm, 68.35.Rh, 75.10.Nr, 75.50.Ee

Theoretical studies of quantum phase transitions irthe disorder-free case but can be derived in the presence
the presence of quenched (i.e., time-independent) disf disorder because distributions become extremely broad
order have been stimulated by recent experimentaear the critical point. The same model was recently
on spin glasses}He absorbed in porous media, andstudied numerically by Young and Rieger [5], who
superconductor-insulator transitions in dirty thin films.found results consistent with Fisher. The RSRGDT
Compared to thermal phase transitions in disorder-fre@as also been used to study the effect of disorder on
systems these transitions are poorly understood becaudamerized [6] and anisotropic [7] spin chains, chains
many of the theoretical methods (e.g., exact solutionswith random spin sizes [8], and quantum Potts and
renormalization group,e expansions) that have been clock chains [9]. Possible experimental realizations of
so useful for pure systems are difficult to implementrandom spin chains are quinoloniRCNQ), [10] and
for disordered systems. Yet these phase transitions a®R;CuPf_,Ir,Og [11].
associated with particularly rich physics such as large This Letter considers quantum phase transition¥XYh
differences between average and typical behavior, newpin chains in the presence of disorder. The spin chains
universality classes, logarithmic scaling, Griffiths phasesre mapped onto a fermion model, the continuum limit
[1] (in which susceptibilities diverge although there of which is a Dirac-type equation with random mass, for
are only short-range correlations), and the breakdowmvhich exactanalytic results can be derived. The results
of folklore such as “the correlation length is inversely agree with those of the RSRGDT [3,6,7], supporting
proportional to the energy gap” [2]. This Letter considersFisher’s claim that it is exact near the critical point [12].
a simple exactly soluble model which has many of thesdNew results are obtained for the anisotropy transition in
interesting properties. a nonzero average transverse field. It is in a different

Fisher recently performed an exhaustive study of thainiversality class to the Ising transition.
effect of randomness on the simplest spin model to The Hamiltonian to be considered is

undergo a quantum phase transition: the transverse field L
Ising spin chain [3]. He used a real space renormalization H = Z Jrofor,, + Jioioi + hio?]l. (1)
group decimation technique (RSRGDT) [4] which he i=1

claims is exact near the critical point. Fisher foundThe{s{'} are Pauli spin matrices, and the interactigphs
the phase diagram (which included Griffiths phases neaf;, and transverse fields; may be independent random
the critical point), all the critical exponents, and scalingvariables (see Table I) with a Gaussian distribution. The
forms for the magnetization and correlation functions inaverage values will be denotég’) = J*, (Jiy=J’, and

an external field. The latter have never been derived foth;) = h, and will all be assumed to be positive.

TABLE |. Different parameters for the continuum limit of three different transitions. Near the critical point all are described by
the low-energy effective Hamiltonian (3). The lattice constant is set to unity. The Fermi wave keadetermines whether the
problem is commensurate or noku is the Fermi velocity. A is a measure of the deviation from criticality. The variance of the
random variable equalg, which enters Eq. (4).

Transition co%r vr A Y(x = n)t Random variable
Ising 1 |lJ* — J7| h—Js—J (ct,cn) h;
Anisotropy h (J* + J¥)sinkgp (J* — J¥)sinkg (cfeinke ¢, einkr) J=J

I+
Dimerization 0 2J A (cti=m, clim) JF =17
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At zero temperature and in the absence of disorder thand the deviation from criticality, respectively,
model undergoes two distinct quantum phase transitions
[13]. Both transitions are second order. The transition D l, S H
atJ* + J¥ = h from a paramagnetic to a ferromagnetic UF D
phase will be referred to as th&ing transition[14]. The
transition atJ* = JY for h < (J* + J7) from an lIsing
ferromagnet with magnetization in thedirection to one
with magnetization in they direction will be referred
to as theanisotropy transition[7,15]. Thedimerization
transition involves the Hamiltonian (1) with(J;) =
JiYy=1J + (—1)'A and(h;) = 0. At A =0 there is a

transition from a spin liquid to a gapped phase with Iong-o]c states(p (E)) and the localization length(E) [17—-23].
rarc)gedtopolo?mfall or(\j/\?_r [6]. i f i hich (Because of the one-dimensionality all the states are local-
s inr; oer:toas i(r)lrlezg-ferlr%?:r:s r(alr)lsbc;:;rggqéc;n[lv%/] ICh MaPSzeq by the disorder.) The exact results have been found
P P ’ by Fokker-Planck equations [17], supersymmetry [19,20],
L . vt " the replica trick [23],Smatrix summation [18], and the
H = _Z [+ Ji) (cicir + civici) Dyson-Schmidt method [21]. The localization length can
’:lx vo, t t ¥ be found because in one dimension it is related to the real
+ 7 = Ji)(cicivr = cicier) T hi2cici — D], part of the one-fermion Green’s function [19]. The den-
(2)  sity of states and the localization length can be written in
terms of f5(u), the derivative of a dimensionless function
r_f(s(u) given in Table I,

(5)

Note that for the Ising transition witl” = 0, to leading
order inA/J*, the parameteé defined by Fisher [3] and
Young and Rieger [5] ia/D.

The advantage of casting the problem in the form of the
Hamiltonian (3) is that the latter has been studied exten-
sively previously, anéxactanalytic expressions given for
the energy dependence of the disorder-averaged density

where boundary terms have been neglectedcérmhd c
denote creation and annihilation operators for a fermio
on sitei. In the disorder-free case (2) can be diagonalized d 1 . .
by a Bogoliubov transformation [13,15]. dE NE) + imp(E) = mpof5(E/D), (6)

The continuum limit of (2) must be taken relative to
the Fermi wave vectokr, the wave vector at which wherep, = 1/7vy is the value of the density of states at
the energy gap in the fermionic spectrum occurs for thénigh energies|€| > A, D).
disorder-free case [13]. This wave vector depends on The low-energy |E| < D) behavior of the density of
which transition is being considered (see Table I). Thestates is given in Table Il. For the commensurate case
low-energy properties of all the transitions in Table | arethe density of states diverges At= 0 for § < 1/2 and

described by [16] is zero atE = 0 for § > 1/2. These two cases lead
9 to qualitatively very different behavior. In the former
H = fdx‘lff[—ivpa3 ™ + Vix)os + V(x)*th]‘l’, case some susceptibilities will diverge as the temperature

3) approaches zero. This corresponds to a Griffiths or
weakly ordered phase [1]. Hence for the Ising transition
whereo? (a = 1,2,3) ando+ = %(a’l + ¢?) are Pauli  there will be four phases: ferromagnet, weakly ordered
matrices. ¥ (x) is a spinor, with (modulo a transformation ferromagnet, weakly ordered paramagnet, and paramagnet
in spinor space) the components given in Tablé’[x) is  [3]. The full energy dependence of the density of states
Gaussian white-noise potential with for various values o6 is shown in Fig. 1.
_ NN / Distinctly different behavior occurs for the incommen-
V() = A, VEVE)) = ydk —x). (4 surate case. The density of states is always finite at zero
A measures the deviation from the critical point, 4Ad  energy. There is a smooth crossover from gapless behav-
is the energy gap in the absence of disorder. Table | listor ({p(0)) ~ po for § < 1) to effectively gapped behav-
values ofA, the Fermi velocityvr, and the random vari- ior ({p(0)) < po for § > 1). Hence the Griffiths phases
ables whose variance equals for the Ising, anisotropy, still exist but no longer have clearly defined boundaries.
and dimerization transitionskr is commensuratevith the  Similarly, for the commensurate case more than one type
lattice andV(x) is real for the Ising transitionk¢z = 0)  of disorder (e.g., the anisotropy transition with both a ran-
and the anisotropy and dimerization transitions in zeralom transverse field and random anisotropy) removes the
transverse fieldr = 7 /2). It will be seen that the effect singularity in the density of states [17].
of disorder is significantly different for commensurate and The specific heat-Because the eigenstates of the
incommensurate cases. The continuum limit describes thidamiltonian (3) are noninteracting fermions the low-
low-energy propertiesH{ < vg) whenvyg > A, . /v,i.e., temperature behavior of the specific heat and the trans-
arbitrarily close to the critical point and for weak disorder. verse susceptibility (for the dimerization and anisotropy
It is useful to define an energh and a dimensionless transitions) follows from the energy dependence of the
parameterd which are measures of the disorder strengthdisorder-averaged density of states [10,24] and are given
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TABLE Il. Summary of the low-energy behavior of different physical quantities. The commensurate case corresponds to the
Ising transition and to the anisotropy and dimerization transitions in zero transverse field. The incommensurate case corresponds
to the anisotropy transition in a nonzero transverse field. For the commensurate case qualitatively different behavior occurs at the
critical point (6 = 0) and away from it§ # 0). The functionfs(u) determines the full energy dependence of the density of states

and the localization length [compare Eq. (6)(x) andl,(x) are the zeroth and first order modified Bessel functions, respectively.

I'(6) is the gamma function.Hfsz)(u) is a Hankel function of index. I;,(x) is a modified Bessel function with imaginary index.
For smallx, T'(x) ~ x7', Iy(x) ~ 1 + x%/4, andI;(x) ~ x/2.

Quantity Symbol Commensurate Incommensurate
6 #0 6=20
Density (p(E))/po 6 | E a — 1
of states 62| D IEI[In| 5[] 1y(26)2
28
Specific heat (C(T)) o (T 17 _T
)\ b [In(5)P 1p(26)*
Dynamical Z 1 el 1
critical exponent 28
-1
Localization AME) vr vE 1l 2 dvrp| | 804(29)
length A D E D 15(26)
Transverse (xz:(T)) 7281 1 1
susceptibility T[In(%)]z IH(26)?
Jolw) - (A )] 6 - [1_2,(25)]
u a6

in Table Il. The transverse susceptibility clearly shows Dynamical critical exponent.—This relates the scal-
a Griffiths singularity. The results for the commensurateing of energy (or time) scales to length scales. A crude
case agree with the RSRGDT [3,6,7]. scaling argument [25] implies thgp (E)) ~ E'/*~!. Thus
for the commensurate case, to leading ordejnz =
1/28, in agreement with Fisher [3] and Young and Rieger
5 [5]. This is a particularly striking result because it shows
-——- 0 that (i) z is not universal, and (ii} diverges at the critical
""""""" 0.4 point. The latter implies logarithmic scaling and activated
dynamics [2]. In contrast for the incommensurate case,
\ — 3 the density of states is finite and constant at low energies
i and soz = 1, as in the absence of disorder.
RN Finite size scaling—Monthus et al. [26] studied an
B equation equivalent to (3) with (x) real andA = 0 [23].
T A They have shown that on a line of length for a typical
e // potential V (x) the lowest eigenvalug, scales likeEj ~
- exp(—cL'/?), wherec is a constant. This is consistent
, with the scaling of IrE, with L'/2 at the critical point
/ P found numerically [5]. The averad&?) ~ exp(—dL!/3)
/ - B where d is a constant [26], showing the discrepancy
/ - _ betweeraverageandtypical values.
o — e | Correlation lengths—Fisher [3] stressed the distinc-
0 1 tion between average and typical correlations.CJf =
E/D (A;A;) denotes a correlation function of a variadlethen
FIG. 1. Energy dependence of the disorder-averaged densigﬂe average correlation fU_nCtIOfﬁav(Y) = %ZiLzl Ciivr
of states for the commensurate case for various values of thé what is measured experimentally. Away from the criti-
dimensionless parametér[see Eq. (5)], which is a measure of cal point C,,(r) ~ exp(—r/&.y), Whereé,, is the aver-
the deviation from criticality. The density of states is singularage correlation length. Howevet,,(r) is dominated by

at the Fermi energyE = 0) when § < x. This parameter ; i O i -
range corresponds to a Griffiths phase. Klote that only far fro rare pairs of spins WIﬂC” I In contrast, with proba

criticality (5 > 1) is there effectively a gap in the system. Thisnbi”t,y one Cii+r ~ exp(—r/&yp) Whereé,y, denotes the
contrasts with the disorder-free case, for which there is alwaydypical correlation length. It is distinctly different from

a gap except at the critical point. Eav (Eyp <K &av), having a different critical exponent.
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The localization length is useful because it is proportional [5] A.P. Young and H. Rieger, Phys. Rev.33, 8486 (1996).
to the typical correlation length for quantities that are di- [6] R.A. Hymanet al., Phys. Rev. Lett76, 839 (1996).
agonal in the fermion representation [27]. Consequently,[7] D.S. Fisher, Phys. Rev. B0, 3799 (1994).

the results in Table Il imply that for the commensurate [8] E. Westerbergt al., Phys. Rev. Lett75, 4302 (1995).
case the typical correlation length,, ~ X0)"! ~ AT [9] T. Senthil and S.N. Majumdar, Phys. Rev. Lét6, 3001
is consistent with previous work [3,28]. This critical ex- (1996).

- cr - 10] L. N. Bulaevskiiet al.,Zh. Eksp. Teor. Fiz62, 725 (1972)
ponent is not modified by the presence of disorder. Ir{ [Sov. Phys. JETR5, 384 (1972)].

cqr}trast, for the incommensurate cas) is finite at the [11] T.N. Nguyen, P.A. Lee, and H.-C. zur Loye, Scier,
critical point. 489 (1996).

Distribution functions—Both Fisher [3] and Young [12] However, it should be noted that in the fermion rep-
and Rieger [5] considered the distribution functions for resentation, results involving the magnetization and its
various quantities. The present approach can be used correlations cannot be derived because of the nonlocal
to obtain exact results by using known results for the relationship between the spin and the fermion operators.
distribution function for the density of states of one-[13] M. den Nijs, inPhase Transitions and Critical Phenom-
dimensional conductors [29]. The cumulants (or irre-  €na, edited by C. Domb and J.L. Lebowitz (Academic,

ducible moments) of the transverse susceptibility for th?14] Forggﬂ{yl?fg’ \ng;slz(ll\lp\.(;g‘l.?g (1970)
incommensurate case at criticality are [15] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.YL5,

. S TGT ()2 (7D \"! 407 (1961); S. Katsura, Phys. Re\27, 1508 (1962).

((Xz)e = xo F(——i—l)<ﬁ> ) (7 [16] An easy way to derive (3) for the transverse Ising model
n 2 in a random transverse field is to take the continuum limit

where yo is the susceptibility in the absence of disor- of Eqg. (39) in Ref. [5]. For the disorder-free case, see

der. These moments completely determine the distribu- R. Shankar, Acta Phys. Pol. 365, 1835 (1995).

tion function which has been extensively analyzed in[17] I.M. Lifshits, S.A. Gredeskul, and L. A. Pastuntroduc-

Ref. [29]. ForT > D the distribution is Gaussian and tion to the Theory of Disordered SysterfWiley, New

centered on the mean. In contrast, for< D the distri- York, 1988), p. 109. o

bution is extremely broad and asymmetric. The maximun}!8l A-A. Golub and Y.M. Chumakov, Fiz. Nizk. Temi,

LT 900 (1979) [Sov. J. Low Temp. Phys,. 427 (1980)].
of the distribution then occurs neay,exp(—1/s)/2s, [19] R. Hfayn aiug W. John, Z. Phyz.w,nyQ (19(87). )

Wheres_ = 16T /D, Wh'Ch_'S much less than the mean 50] H.J. Fischbeck and R. Hayn, Phys. Status Solidl 58

Xo- This shows the large discrepancy between typical and ~ 565 (1990).

average values. Hopefully (7) can be generalized to thg1] J. Mertsching, Phys. Status Solidil4, 129 (1992).

commensurate case and away from criticality. [22] For another application of this model, see R. H. McKenzie
This work was supported by the Australian Research  and J. W. Wilkins, Phys. Rev. Let89, 1085 (1992).

Council. | thank D.D. Betts, R.J. Bursill, D.S. Fisher, [23] A mathematically equivalent model describes diffusion of

M. Gulacsi, G. Honner, and V. Kotov for very helpful a classical particle in a random force field. J.P. Bouchaud

discussions. D. Scarratt produced the figure. etal,, Ann. Phys. (N.Y.)201, 285 (1990).
[24] E.R. Smith, J. Phys. G, 1419 (1970).

[25] The total number of states (per unit length) with energy
less thanE, N(E) = ff p(E")dE' scales with the inverse
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