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We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets gf-depldted
square lattice found in Ca¥Dy,. The possible phases of the quantum dimer model on this lattice
are obtained by a mapping to a quantum-mechanical height model. In addition to the “decoupled”
phases found earlier, we find a possible intermediate spin-Peierls phase with spontaneously broken
lattice symmetry. Experimental signatures of the different quantum paramagnetic phases are discussed.
[S0031-9007(96)01749-8]

PACS numbers: 75.10.Jm

The recent observation of a two-dimensional gappedome form of spin-Peierls ordering that breaks the sym-
guantum paramagnet in Ca¥y [1,2] has stimulated a metry of the lattice, except possibly in the case wBén
number of theoretical studies [3—5] of the spth=  is a multiple of the coordination numberof the lattice,

1/2 antiferromagnetic Heisenberg model with Hamiltonianwhen a nondegenerate state with the full lattice symmetry
H=>u Ji;8;: - §;, with §; a spinS operator on each site that has only integer-spin excitations is possible [10]; (ii)

i of the1/5-diluted square lattice (Fig. 1) df ions. The for strongly frustrated systems, such as those with third-
largestJ;; are the nearest neighbdg, Jzc (see Fig. 1), neighbor couplings on bipartite lattices [8], or on nonbi-
but we also allow additional, moderately frustrating, short-partite lattices [9], a ground state without spin-Peierls order
range exchanges. Theoretically, one possibility for thecan occur regardless of the value2sf (mod z), with un-
ground state is an ordinary Néel state in which the spins areonfined spinon excitations, which behave as bosons [11].
ordered in opposite directions on the two sublattices. Al-All these states have an energy gap for local excitations,
ternatively, forJ, > Jgc or Jpc > Ju, the ground state except at the second-order zero-temperature transitions that
is paramagnetic and its excitations are well understoodyccur between some of them.

the lattice can be divided into essentially decoupled pairs The earlier results for bipartite lattices use the equiva-
(Jpc > Ja) or quadrupletsfy > Jpc) of spins. How- lence under lattice symmetries of all the links (and,
ever, the real material is near neither limit [5], and if thethus, nearest-neighbor interactions). This property does
ground state is not Néel ordered, then there are a num-
ber of experimentally important questions about the result-
ing quantum paramagnet state. Among them are: Does
the ground state always have the full symmetry of the un-
derlying lattice, as do the two states mentioned above, or
can this symmetry be spontaneously broken? If the lat-
ter is the case, what is the nature of the excitations above
the gap—does the system have unbound sphsbinons,

or are they permanently bound into excitations with inte-
ger spin? Here, we will address these questions using the
framework of earlier work on quantum paramagnet states
of two-dimensional antiferromagnets [6—8]. We will find
that while some of the physics is similar to that studied
earlier on other bipartite lattices (the square and the hon-
eycomb), the 15-diluted square lattice also displays some
interesting new phenomena.

Earlier work considered both unfrustrated [6,7] and frus-
trated [8] Heisenberg antiferromagnetic Hamiltonians on
the square and honeycomb lattices. Based on various
methods, a general theory of the quantum paramagnet
phases of such systems was obtained, and also appliedt§>. 1. The ¥5-depleted square lattice, and the three sublat-

tices @, B, C) of its dual lattice. The exchangg, acts be-

the triangular and kagomé lattices [9]. The results areg - spins on a link in an plaguette, while/s acts on links

(i) on bipartite .Iattipes, with an unfrustrated_ or weakly ¢pared by thed and C plaquettes. Fo¥zc > J4, the ground
frustrated Hamiltonian, the spinons are confined to formtate is in the “flat” phase of Fig. 2, and fdg > Jpc it is in
integer-spin excitations, and the ground state must exhibthe “disordered flat’ phase.
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- with a close-packed dimer covering of the lattice under
L I | — consideration, each dimer representing a valence bond.
N | gl | The effective Hamiltonian in this space consists of local

S OF [ SN =1 Lod | diagonal potential energy terms, and off-diagonal terms
U1 | | T which produce local rearrangements of the dimer packing.
i i T I - It has been shown [7,14,17] that the imaginary time path
| 5 | - integral of the QD model can be recast as a “height” or
<x‘>_”2 4y <?C1>=D “roughening” model in space and imaginary time. The
(II1) disordered 2 (1) flat mappin? rhelieSDon ador;e-to(;onr:e mappin? betwelen ever)]c
flat ST state of the model and the equivalence classes o
f_,_f”"_: h\“-}lﬁ__ﬁ a configuration of heightsk, [on the sites,a, of the
_— | | Sty dual lattice (Fig. 1)], undeh, — h, + 1. For the ¥5-
_— 1/2 depleted square lattice we have
| = 0 <{Xy <
1 |_ 1 — (Il) spin- Peierls hy = n, + £, @
I ._I I wheren,, is an integer which fluctuates from site to site,
— while ¢, is a fixed fractional offset, = 0, a, —a for

FIG. 2. Mean-field phase diagram of the model definedpy a € A, B, C, respectively, withl1/4 < o < 1/2 a fixed
[Eq. (4)] with the potential truncated to two cosines. The thickreal constant. All configurations df, which satisfy the

line is a first-order transition, While_r the thin_ lines are Secondconstraintlha — hy| < 1, for every nearest-neighbor pair
order. Effects of fluctuations are discussed in the text. a, b are permitted (two sites are nearest neighbors if their
plaguettes on the direct lattice share a link). To map the
h, configurations onto states of the QD model, examine
not hold for the ¥5-diluted square lattice, and for the the value ofkh, — h; for every pair of nearest neighbors,
spin-1/2 antiferromagnet there are limiting casés>  and if |, — h,| > 1/2, only then place a dimer on the
Jpc, andJge > Jy4, in which it is evident that the ground link of the direct lattice shared by the plaguettes around
state is invariant under all the symmetries of the latticeandb. It can be shown that our choices for the offséts
However, these states fit into the general picture if weensure that there is exactly one dimer terminating at each
remark that, for non-Bravais lattices, it is clearly naturalsite of the direct lattice.
to consider the spin per unit cell as the analog of the spin Itis helpful to examine the heights associated with some
per site on a Bravais lattice. For the present case, the spiegular dimer coverings of the/&-depleted square lattice.
Hamiltonian has a unit cell of 4 sites [12], and we haveThe covering (l) (“flat”) in Fig. 2 corresponds g, = 0,
possible total spin values of 0, 1, or 2 on a lattice withhg = «, and hc = —a; notice that this is the unique
square symmetry, so a nondegenerate ground state alongvering which is invariant under all the symmetries of
the lines of Ref. [10] is possible for the spin-2 case; if thethe underlying lattice. The covering (Il) (“spin-Peierls”)
sites of the square lattice are taken to beAh@aquettes, corresponds tdiy = 0, hg = «, andhc = 1 — «a; this
this can be interpreted as the ground state of the decoupletvering has a partner, under the symmetry operations of
pair limit (Jzc > J4). The decoupled quadruplet limit the lattice that interchangB and C, which hashs = 1,
(J4 > Jpc) is obviously the case of spin0 on eagh hg = a,hc =1 — «a.
plaguette. On the other hand, when the interactions are The path integral of the quantum-mechanical height
more nearly equal, a full analysis that treats each site amodel involves summing over spacetime-dependent
distinct may be more appropriate. We will show here thatconfigurations of the heights, subject to the constraints,
the limiting results, and a spin-Peierls phase, emerge in @ith an action related to the effective Hamiltonian.
unified way by a careful use of our earlier methods. We will next write down a phenomenological effective
Among the various approaches [6,7,13—15] to theaction, S, that correctly describes the height model
unfrustrated case that lead to the same effective actioat long length and time scales; the same method can
(all of which can be applied here), one of the mostalso be used for the classical dimer packing problem
appealing is the quantum dimer (QD) model [6,16]. Thissimply by making all the fields time independent.
model represents the low-energy spin-singlet states bwWe begin by using Poisson summation to promote
forming singlet “valence bonds” out of two spins of the field i,, which can only take the discrete set of
1/2 on nearest-neighbor sites. Spk at a site can values (1), to a fieldy, which can take all real val-
be represented by the symmetrized produce®fspins ues [the{, offsets in (1) require only a slight modi-
of 1/2, and hence there must & bonds ending at fication of the usual method [7,14]]. The constraints on
each site. Here, however, we will consid&r= 1/2  h, are “softened” by adding appropriate potential energy
(the properties for othef are quite similar) and in this terms in the action; we will argue later that this softening
case each basis state of the QD model is associatethinnot modify the main qualitative features of the results.
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We have interface, and also of the QD model. A simple picture of
the phases and phase transitions is obtained by truncating
S = f d‘r{ Z Kap(Xa = Xb)° the on-site periodic potential to the two cosine terms ex-
(ab) plicitly displayed in (4), and minimizing the energy; more

2 _ _ general potentials have the same qualitative features. The
" ;K”’(BTX“) Ya €08 (xa = du))] results are shown in Fig. 2. There are three possible phases
(modulo global translations of, by integers).
+ } (2) () {x1) = 0: This is the “flat” phase. There is no bro-
ken lattice symmetry, which is consistent with,) = 0.
The terms shown are only representative; any term (i) 0 < (y,) < 1/2: This state has spin-Peierls order
obeying the*translational” symmetry of the height model,and has spontaneously broken tBe— C interchange

Xa — Xa T 1,is permitted. The coupling constant,,,  symmetry becausg,) # 0. The partner state is obtained
K:q, andy,, depend only on the sublattice label of theby y; — 1 — yi, x2 = —x2, X3 — xs.

sites,a, b, and the symmetry of the lattice requires that (i1l) (y,) = 1/2: This phase is similar to the

Kap = Kac, yc = ys, €tC. “disordered flat” phase found in earlier work on
We now change variables from the three sublatticawo-dimensional interfaces [18], so we will use that
fields x4, xs, xc to the fieldsxi, x2, xs which are terminology [19]. The interface is flat on large scales, but
related byxs = x1 + x2, x5 = X1 — X2 T X3, Xc =  eachh, fluctuates between two neighboring values with
X1 — x2 — x3. Now the translational symmetry of the equal probability for each, and correlations betwagis
height model affects onlyyi, x1 — x1 + 1, and this gt different sites decay exponentially with separation. In
will lead to important simplifications. It is useful to the QD language, each plaquette has two dimers which
note here the values ofi, x2, x3 for the regular dimer resonate between the two possible orientations, with
coverings considered earlier. The state (I) (“flat”) incorrelations between the orientation of two plaquettes
Fig. 2 now corresponds tor; =0, x2 =0, x3 = @.  decaying exponentially. There is again no broken sym-
The two spin-Peierls states [(I)] haves = 1/4, x2 =  metry as(y,) = 0. Both the phases (I) and (Ill) are
—1/4, x3 = a — 1/2,and x; = 3/4, x2 = 1/4, x3 =  invariant under all lattice symmetries. They are never-
a — 1/2. These values suggest that plays the role of theless distinct states [4] which cannot be continuously
the spin-Peierls order parameter, and that a nonzero megdnnected. There is a nontrivial “topological order,”
value of y, implies a spontaneous breaking of the-~ C  measured by the mean height, which distinguishes them.
interchange symmetry. It is clear that phases (I) and (lll) correspond to the
The invariance ofy> and y; under translations in height j,. > j, andJ, > Jzc limits [4] of the underlying an-
space implies that “mass” terms likes x5 + m3x3 can, tiferromagnet, respectively. Upon interpolating between
and do, appear in the actiofi. It is therefore safe to these limits, we move along a section through the phase
integrate outy, and x3, which obey diagram, and there are two basic possibilities: (a) There is
Y2 ~ —sin2my1), Y3 ~ cof2my;), (3) @ directfirst-order transition between phases (I) and (Il)

. ) . ) , as occurs in Fig. 2 fop, > 0. (b) The spin Peierls phase
at their saddle points, and obtain an effective action for[(”)] appears in between (I) and (lll), as is the case in

the single scalar fielgy;. We take the spatial continuum Fig. 2 fory, < 0. A third possibility is, (c), an intermedi-

limit for y; and obtain ate phase with Néel long-range order. This phase clearly
lies beyond the scope of the QD model, and we expect
St = [ d1 ’x[K(Vx1)* + K-(0,x1)" = y1C0827X1)  tpat it can undergo direct second-order transitions to any
of the three quantum paramagnetic phases, though if Néel
— y2cod4myy) = -] 4 and spin—PeﬁerIs phaS%S are goth prpesent, we ex%ect them
Additional terms with more gradients of;, or cosines to be adjacent. Finally, we also remark that the paramag-
of higher integral multiples oRsy, are also present. netic and Néel phases are stable under the addition of not
Note that, while, for the square (honeycomb) latticestoo large, non-nearest-neighbor, frustrating exchange in-
considered earlier [7], lattice symmetries require that theeractions, although the Néel region is expected to shrink
effective potential fory; contain only cosines of integral in size as frustration increases, as in Ref. [8].
multiples of87 y1 (677 x1) (a fact intimately linked to the Beyond mean-field theory, fluctuations are expected to
ubiquity of spin-Peierls order), here, lattice symmetriesbe relatively innocuous. First, as the interface is flat
only impose the requirement that the effective potentiain each phase, the softening of the constraints is not
be even iny;, and we will see that phases without spin- expected to have serious consequences; indeed, imposing
Peierls order are also possible. the constraints rigidly can only make the interface flatter.
As S, describes a three-dimensional interface, the interA direct transition between (1) and (lll) (or other flat
face must always be flat, and the symmefty— y; + 1  phases with different mean heights) must always be first
is spontaneously broken, even if all, y,, ..., are zero. order when the dimension of spacetime is greater than
The value of y1), along with (3), identifies the state of the 2, because of the spontaneous breakdown of translational
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