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We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on the 1y5-depleted
square lattice found in CaV4O9. The possible phases of the quantum dimer model on this lat
are obtained by a mapping to a quantum-mechanical height model. In addition to the “decou
phases found earlier, we find a possible intermediate spin-Peierls phase with spontaneously
lattice symmetry. Experimental signatures of the different quantum paramagnetic phases are dis
[S0031-9007(96)01749-8]
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The recent observation of a two-dimensional gap
quantum paramagnet in CaV4O9 [1,2] has stimulated a
number of theoretical studies [3–5] of the spinS ­
1y2 antiferromagnetic Heisenberg model with Hamiltoni
H ­

P
kijl JijŜi ? Ŝj , with Ŝi a spinS operator on each sit

i of the1y5-diluted square lattice (Fig. 1) ofV ions. The
largestJij are the nearest neighborJA, JBC (see Fig. 1),
but we also allow additional, moderately frustrating, sho
range exchanges. Theoretically, one possibility for
ground state is an ordinary Néel state in which the spins
ordered in opposite directions on the two sublattices.
ternatively, forJA ¿ JBC or JBC ¿ JA, the ground state
is paramagnetic and its excitations are well understo
the lattice can be divided into essentially decoupled p
(JBC ¿ JA) or quadruplets (JA ¿ JBC) of spins. How-
ever, the real material is near neither limit [5], and if t
ground state is not Néel ordered, then there are a n
ber of experimentally important questions about the res
ing quantum paramagnet state. Among them are: D
the ground state always have the full symmetry of the
derlying lattice, as do the two states mentioned above
can this symmetry be spontaneously broken? If the
ter is the case, what is the nature of the excitations ab
the gap—does the system have unbound spin-1y2 spinons,
or are they permanently bound into excitations with in
ger spin? Here, we will address these questions using
framework of earlier work on quantum paramagnet sta
of two-dimensional antiferromagnets [6–8]. We will fin
that while some of the physics is similar to that stud
earlier on other bipartite lattices (the square and the h
eycomb), the 1y5-diluted square lattice also displays som
interesting new phenomena.

Earlier work considered both unfrustrated [6,7] and fr
trated [8] Heisenberg antiferromagnetic Hamiltonians
the square and honeycomb lattices. Based on var
methods, a general theory of the quantum parama
phases of such systems was obtained, and also appli
the triangular and kagomé lattices [9]. The results a
(i) on bipartite lattices, with an unfrustrated or weak
frustrated Hamiltonian, the spinons are confined to fo
integer-spin excitations, and the ground state must exh
0031-9007y96y77(23)y4800(4)$10.00
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some form of spin-Peierls ordering that breaks the sy
metry of the lattice, except possibly in the case when2S
is a multiple of the coordination numberz of the lattice,
when a nondegenerate state with the full lattice symme
that has only integer-spin excitations is possible [10]; (
for strongly frustrated systems, such as those with th
neighbor couplings on bipartite lattices [8], or on nonb
partite lattices [9], a ground state without spin-Peierls or
can occur regardless of the value of2S (mod z), with un-
confined spinon excitations, which behave as bosons [
All these states have an energy gap for local excitatio
except at the second-order zero-temperature transitions
occur between some of them.

The earlier results for bipartite lattices use the equiv
lence under lattice symmetries of all the links (an
thus, nearest-neighbor interactions). This property d

FIG. 1. The 1y5-depleted square lattice, and the three sub
tices (A, B, C) of its dual lattice. The exchangeJA acts be-
tween spins on a link in anA plaquette, whileJBC acts on links
shared by theB andC plaquettes. ForJBC ¿ JA, the ground
state is in the “flat” phase of Fig. 2, and forJA ¿ JBC it is in
the “disordered flat” phase.
© 1996 The American Physical Society
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FIG. 2. Mean-field phase diagram of the model defined byS1
[Eq. (4)] with the potential truncated to two cosines. The th
line is a first-order transition, while the thin lines are seco
order. Effects of fluctuations are discussed in the text.

not hold for the 1y5-diluted square lattice, and for th
spin-1y2 antiferromagnet there are limiting casesJA ¿

JBC , andJBC ¿ JA, in which it is evident that the ground
state is invariant under all the symmetries of the latti
However, these states fit into the general picture if
remark that, for non-Bravais lattices, it is clearly natu
to consider the spin per unit cell as the analog of the s
per site on a Bravais lattice. For the present case, the
Hamiltonian has a unit cell of 4 sites [12], and we ha
possible total spin values of 0, 1, or 2 on a lattice w
square symmetry, so a nondegenerate ground state a
the lines of Ref. [10] is possible for the spin-2 case; if t
sites of the square lattice are taken to be theA plaquettes,
this can be interpreted as the ground state of the decou
pair limit (JBC ¿ JA). The decoupled quadruplet lim
(JA ¿ JBC) is obviously the case of spin 0 on eachA
plaquette. On the other hand, when the interactions
more nearly equal, a full analysis that treats each site
distinct may be more appropriate. We will show here th
the limiting results, and a spin-Peierls phase, emerge
unified way by a careful use of our earlier methods.

Among the various approaches [6,7,13–15] to
unfrustrated case that lead to the same effective ac
(all of which can be applied here), one of the mo
appealing is the quantum dimer (QD) model [6,16]. Th
model represents the low-energy spin-singlet states
forming singlet “valence bonds” out of two spins o
1y2 on nearest-neighbor sites. SpinS at a site can
be represented by the symmetrized product of2S spins
of 1y2, and hence there must be2S bonds ending at
each site. Here, however, we will considerS ­ 1y2
(the properties for otherS are quite similar) and in this
case each basis state of the QD model is associ
k
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with a close-packed dimer covering of the lattice und
consideration, each dimer representing a valence b
The effective Hamiltonian in this space consists of lo
diagonal potential energy terms, and off-diagonal ter
which produce local rearrangements of the dimer pack

It has been shown [7,14,17] that the imaginary time p
integral of the QD model can be recast as a “height”
“roughening” model in space and imaginary time. T
mapping relies on a one-to-one mapping between ev
state of the QD model and the equivalence classes
a configuration of heights,ha [on the sites,a, of the
dual lattice (Fig. 1)], underha ! ha 1 1. For the 1y5-
depleted square lattice we have

ha ­ na 1 za , (1)

wherena is an integer which fluctuates from site to sit
while za is a fixed fractional offset:za ­ 0, a, 2a for
a [ A, B, C, respectively, with1y4 , a , 1y2 a fixed
real constant. All configurations ofha which satisfy the
constraintjha 2 hb j , 1, for every nearest-neighbor pa
a, b are permitted (two sites are nearest neighbors if th
plaquettes on the direct lattice share a link). To map
ha configurations onto states of the QD model, exam
the value ofha 2 hb for every pair of nearest neighbor
and if jha 2 hbj . 1y2, only then place a dimer on th
link of the direct lattice shared by the plaquettes arouna
andb. It can be shown that our choices for the offsetsza

ensure that there is exactly one dimer terminating at e
site of the direct lattice.

It is helpful to examine the heights associated with so
regular dimer coverings of the 1y5-depleted square lattice
The covering (I) (“flat”) in Fig. 2 corresponds tohA ­ 0,
hB ­ a, and hC ­ 2a; notice that this is the unique
covering which is invariant under all the symmetries
the underlying lattice. The covering (II) (“spin-Peierls
corresponds tohA ­ 0, hB ­ a, and hC ­ 1 2 a; this
covering has a partner, under the symmetry operation
the lattice that interchangeB and C, which hashA ­ 1,
hB ­ a, hC ­ 1 2 a.

The path integral of the quantum-mechanical hei
model involves summing over spacetime-depend
configurations of the heights, subject to the constrai
with an action related to the effective Hamiltonia
We will next write down a phenomenological effectiv
action, S , that correctly describes the height mod
at long length and time scales; the same method
also be used for the classical dimer packing probl
simply by making all the fields time independen
We begin by using Poisson summation to prom
the field ha, which can only take the discrete set
values (1), to a fieldxa which can take all real val-
ues [the za offsets in (1) require only a slight modi
fication of the usual method [7,14] ]. The constraints
ha are “softened” by adding appropriate potential ene
terms in the action; we will argue later that this softeni
cannot modify the main qualitative features of the resu
4801
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We have

S ­
Z

dt

( X
kabl

Kabsxa 2 xbd2

1
X
a

fKtas≠txad2 2 ya cossss2psxa 2 zaddddg

1 · · ·

)
. (2)

The terms shown are only representative; any te
obeying the“translational” symmetry of the height mod
xa ! xa 1 1, is permitted. The coupling constants,Kab,
Kta, and ya, depend only on the sublattice label of th
sites,a, b, and the symmetry of the lattice requires th
KAB ­ KAC, yC ­ yB, etc.

We now change variables from the three sublatt
fields xA, xB, xC to the fieldsx1, x2, x3 which are
related byxA ­ x1 1 x2, xB ­ x1 2 x2 1 x3, xC ­
x1 2 x2 2 x3. Now the translational symmetry of th
height model affects onlyx1, x1 ! x1 1 1, and this
will lead to important simplifications. It is useful to
note here the values ofx1, x2, x3 for the regular dimer
coverings considered earlier. The state (I) (“flat”)
Fig. 2 now corresponds tox1 ­ 0, x2 ­ 0, x3 ­ a.
The two spin-Peierls states [(II)] havex1 ­ 1y4, x2 ­
21y4, x3 ­ a 2 1y2, and x1 ­ 3y4, x2 ­ 1y4, x3 ­
a 2 1y2. These values suggest thatx2 plays the role of
the spin-Peierls order parameter, and that a nonzero m
value ofx2 implies a spontaneous breaking of theB ! C
interchange symmetry.

The invariance ofx2 andx3 under translations in heigh
space implies that “mass” terms likem2

2x
2
2 1 m2

3x
2
3 can,

and do, appear in the actionS . It is therefore safe to
integrate outx2 andx3, which obey

x2 , 2 sins2px1d, x3 , coss2px1d , (3)

at their saddle points, and obtain an effective action
the single scalar fieldx1. We take the spatial continuum
limit for x1 and obtain

S1 ­
Z

dt d2xfKs=x1d2 1 Kts≠tx1d2 2 y1 coss2px1d

2 y2 coss4px1d 2 · · ·g . (4)

Additional terms with more gradients ofx1, or cosines
of higher integral multiples of2px1 are also present
Note that, while, for the square (honeycomb) lattic
considered earlier [7], lattice symmetries require that
effective potential forx1 contain only cosines of integra
multiples of8px1 (6px1) (a fact intimately linked to the
ubiquity of spin-Peierls order), here, lattice symmetri
only impose the requirement that the effective poten
be even inx1, and we will see that phases without spi
Peierls order are also possible.

As S1 describes a three-dimensional interface, the int
face must always be flat, and the symmetryx1 ! x1 1 1
is spontaneously broken, even if ally1, y2, . . . , are zero.
The value ofkx1l, along with (3), identifies the state of th
4802
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interface, and also of the QD model. A simple picture
the phases and phase transitions is obtained by trunc
the on-site periodic potential to the two cosine terms
plicitly displayed in (4), and minimizing the energy; mo
general potentials have the same qualitative features.
results are shown in Fig. 2. There are three possible ph
(modulo global translations ofx1 by integers).

(I) kx1l ­ 0: This is the “flat” phase. There is no bro
ken lattice symmetry, which is consistent withkx2l ­ 0.

(II) 0 , kx1l , 1y2: This state has spin-Peierls ord
and has spontaneously broken theB ! C interchange
symmetry becausekx2l fi 0. The partner state is obtaine
by x1 ! 1 2 x1, x2 ! 2x2, x3 ! x3.

(III) kx1l ­ 1y2: This phase is similar to th
“disordered flat” phase found in earlier work o
two-dimensional interfaces [18], so we will use th
terminology [19]. The interface is flat on large scales,
eachhA fluctuates between two neighboring values w
equal probability for each, and correlations betweenhA’s
at different sites decay exponentially with separation.
the QD language, eachA plaquette has two dimers whic
resonate between the two possible orientations, w
correlations between the orientation of two plaque
decaying exponentially. There is again no broken sy
metry as kx2l ­ 0. Both the phases (I) and (III) ar
invariant under all lattice symmetries. They are nev
theless distinct states [4] which cannot be continuou
connected. There is a nontrivial “topological orde
measured by the mean height, which distinguishes the

It is clear that phases (I) and (III) correspond to t
JBC ¿ JA andJA ¿ JBC limits [4] of the underlying an-
tiferromagnet, respectively. Upon interpolating betwe
these limits, we move along a section through the ph
diagram, and there are two basic possibilities: (a) Ther
a direct first-order transition between phases (I) and (
as occurs in Fig. 2 fory2 . 0. (b) The spin Peierls phas
[(II)] appears in between (I) and (III), as is the case
Fig. 2 fory2 , 0. A third possibility is, (c), an intermedi
ate phase with Néel long-range order. This phase cle
lies beyond the scope of the QD model, and we exp
that it can undergo direct second-order transitions to
of the three quantum paramagnetic phases, though if N
and spin-Peierls phases are both present, we expect
to be adjacent. Finally, we also remark that the param
netic and Néel phases are stable under the addition o
too large, non-nearest-neighbor, frustrating exchange
teractions, although the Néel region is expected to sh
in size as frustration increases, as in Ref. [8].

Beyond mean-field theory, fluctuations are expected
be relatively innocuous. First, as the interface is
in each phase, the softening of the constraints is
expected to have serious consequences; indeed, imp
the constraints rigidly can only make the interface flat
A direct transition between (I) and (III) (or other fla
phases with different mean heights) must always be
order when the dimension of spacetime is greater t
2, because of the spontaneous breakdown of translat
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symmetry inx1 even when the cosines are absent. In
spin-Peierls phase, the mean height varies continuou
and we expect ad ­ 3 Ising transition to both (I) and
(III), though first-order behavior is not ruled out. Th
Ising-like behavior can best be understood by expand
the action in powers ofx1 about zero (or 1y2) to
obtain a Landau-Ginzburg-Wilsonf4 action, withx1 (or
x1 2 1y2) playing the role off; the periodicity can be
neglected here, since there is a much larger energy ba
for fluctuations changingx by 61.

To describe excitations of the antiferromagnet with no
zero spin, we use earlier results [7], which go beyo
the QD model, and show that a flat interface implies t
spinons are confined. For the present model, this me
that all three paramagnetic phases have only integer-
excitations.

We have also studied the finite temperature (T ) proper-
ties of S but will not discuss them here. The results a
similar to those in a paper by Weichman and Prasad [
(which appeared while we were completing this pape
who analyzedS1 for t-independentx1, for application to
roughening of atomic layers.

An experimental signature of the spin-Peierls phase
would be an accompanying lattice distortion, in whi
the links on which the spin-spin correlation is stronge
as shown in Fig. 2, would be shortened relative to
others, reducing the symmetry of thethree dimensional
lattice structure [1]. This would set in below a transitio
temperatureTc set by the antiferromagnetic interaction
It is not yet clear to us how the other phases (I) a
(III) can be experimentally distinguished from one anoth
although in principle a jump in the lattice constants sho
be observable when the first-order transition, also pre
at low T , is crossed. In all three phases, the element
spin-carrying excitations have integer spin, and spin-1
most likely. This should have a clear signature in polariz
neutron scattering: the dynamic structure factorSsk, vd
(k and v are the transferred momentum and frequen
should have a quasiparticle delta function,dsssv 2 eskdddd
at T ­ 0, where eskd is the dispersion relation of th
spin-1 quasiparticle. This signature is analogous to th
of S ­ 1 Haldane gap antiferromagnets ind ­ 1, and is
common to all phases in which spinons are confined
which a survey was given at the beginning of this pape

To conclude, our main prediction is the appearance
the spin-Peierls phase, as shown in the phase diagra
Fig. 2.
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