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The linewidths of exciton features in spectra from semiconductor quantum wells normally correspond
directly to the width of the probability distribution of the disorder potential causing the broadening. This
is because the mass of the exciton is large, so its motion in the potential is essentially classical. We
show that in a microcavity, where polariton mixing leads to much smaller masses, quantum mechanical
effects are expected to cause significant spatial averaging over the disorder potential and hence motional
narrowing of the spectral lines. Our prediction is verified by experimental measurements of linewidths
near resonance in a high quality microcavity structure. [S0031-9007(96)01794-2]

PACS numbers: 71.36.+c, 71.35.Cc, 72.15.Rn
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The term “motional narrowing” is applied to many situ
ations in which the width of a spectral line in a disorder
system is reduced by some averaging process. An im
tant example arises from transitions involving a quantu
particle moving in a disorder potential. A classical pa
ticle can be fully localized, giving a transition line shap
which simply reflects the probability distribution of th
potential. By contrast, the states of a quantum parti
must have a finite extent, with the consequence that s
tial averaging over the disorder potential causes a red
tion in the linewidth [1]. Analogous processes occur
many areas of physics, particularly NMR and ESR [2
and molecular transitions in high pressure gases [3].

In this Letter we present the first experimental demo
stration of motional narrowing due to the center of ma
motion of excitons in a semiconductor. Though narro
ing has been predicted theoretically [4], the large exci
mass,Me , m0, in a typical semiconductor means th
the magnitude is small. However, in microcavity stru
tures such as the one we describe, polariton effects
important and the exciton-polariton has a much sma
effective mass,Mp , 1025m0. As a result, the polari-
ton is much less localized by the disorder, and signific
motional narrowing occurs. Most importantly, by tunin
through the cavity resonance, we are able to vary the m
and see corresponding changes in linewidth.

Before discussing polaritons in a microcavity, w
describe the treatment of the effects of disorder
a normal quantum well exciton. There are numero
microscopic mechanisms which can cause disorder i
quantum well—interface roughness, alloy fluctuation
etc. Whatever the mechanism, the disorder introduce
potential, Vdis, which depends on the electron and ho
coordinates. Provided the disorder is weak compared
the exciton binding energy, an adiabatic approximat
can be used to decouple the exciton internal and ce
of mass coordinates. The center of mass then moves
a particle of massMe in an effective potentialVesRd ­
792 0031-9007y96y77(23)y4792(4)$10.00
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kesRdjVdisjesRdl, wherejesRdl represents an exciton wit
the center of mass coordinateR. This decoupling in
itself causes some spectral narrowing, since the effec
potential is an average ofVdis over length scales typically
of the order of the exciton Bohr radius,aB , 100 Å [5].

There are two important length scales for a parti
moving in a disordered potential: One islc, the corre-
lation length of the potential, the other islqm, the scale
associated with the quantum mechanical state of the
ticle. lc depends on the properties of the microsco
disorder in a particular sample, but, because of the ave
ing in the potential definition, it has a lower bound of t
same order asaB, a bound which is typically reached. W
estimatelqm by noting that the optically active excito
states have energies of orderG, the observed linewidth
The corresponding length scale is thenlqm , h̄y

p
2MeG.

If we take reasonable values for GaAs ofMe ­ 0.25m0,
G ­ 5 meV, we findlqm , 50 Å. Hence, for a normal
quantum well exciton,lqm is of the same order aslc, and
quantum mechanical effects are not very important. Th
is little motional narrowing, and the exciton line has a
proximately the same width as the probability distributi
of the effective potential [4].

Having established that there is little motional narro
ing in normal quantum wells, we now discuss the behav
of polaritons in semiconductor microcavities. Our m
crocavity is a Fabry-Pérot structure consisting of a Ga
cavity contained between two GaAsyAlGaAs Bragg
reflecting mirrors. The cavity supports confined ele
tromagnetic modes at energies for which its width is
integer multiple of half the wavelength. In our structur
the width of the cavity is chosen such that the seco
order confined mode is resonant with the excito
transition in three InGaAs quantum wells located ne
its center. More details of the structure and the grow
procedure are given in Ref. [6].

Polaritons are the mixed eigenmodes which are form
when the exciton and cavity states couple together c
© 1996 The American Physical Society
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to resonance. Each polariton mode,jpl, is a linear com-
bination of an excitonjel and a cavity photonjll: jpl ­
cejel 1 cljll. Exactly on the resonance, both polarito
consist of equal mixtures of the exciton and photon sta
so ce ­ 6cl ­ 1y

p
2. The symmetric and antisymme

ric modes are then split by a finite energy, known as
vacuum Rabi splitting [7]. When the system is detun
from resonance, the mixture is not equal, with one mo
predominantly exciton in character (ce ! 1, cl ! 0), the
other predominantly photon (ce ! 0, cl ! 1).

This behavior of the polariton modes is demonstra
experimentally in Fig. 1 which shows normal inciden
reflectivity spectra from our microcavity structure at
magnetic field of 14 T. Onlys1 circularly polarized
spectra are shown in the figure; thes2 results are
similar, but the energies are shifted by the spin sp
ting of the exciton [6]. The band gap of the well ma
terial decreases with increasing temperature, so rais
the temperature moves the exciton down through re
nance with the photon. The resonance occurs at 85
where the two features have equal strength and are
arated by a vacuum Rabi splitting of 7.3 meV. Th
strength of each of the reflectivity features is determin
by the photon fraction of the corresponding polarito
jclj

2, so the exciton-like polariton mode is only stron
close to resonance, where it mixes significantly with t
photon.

It should be noted that the motional narrowing w
observe does not intrinsically require a magnetic field
the main purpose of the field in our experiment is
shift the exciton energy so that it comes on resona
at a suitable temperature. We observe similar narrow

FIG. 1. Microcavity reflectivity spectra (s1 polarization)
at a magnetic field of 14 T for a range of temperatur
demonstrating the anticrossing which occurs as the excito
tuned through the cavity peak. The inset shows the bare exc
with the top mirror of the cavity removed, at a temperature
22 K.
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at zero magnetic field and fixed temperature by using
electric field to tune the exciton through resonance.

The cavity only confines the photon in the directio
perpendicular to the mirrors. There is no confinemen
the parallel plane, so the cavity photon is free to move
plane. The perpendicular component of the photon w
vector is fixed by the mirrors to be2pyL, whereL is the
cavity width. Hence the energy of a photon with in-pla
wave vectork is

Elskd ­
h̄c
n

sµ
2p

L

∂2

1 k2 ø
h̄c
n

2p

L
1

1
2

h̄c
n

L
2p

k2,

with n the (average) cavity refractive index. Sinc
for small k, the in-plane dispersion takes this parabo
form, we can describe it using an effective mass,Ml ­
nhysLcd , 1025m0.

The in-plane dispersion of the polariton depends on
dispersion of the photon and the extent of its mixing w
the exciton. Polariton dispersions have been studied
detail by Houdréet al. using angle dependent measur
ments [8]. Their results agree well with a simple two-sta
treatment in which the form of the dispersion depends
the strength of the coupling and the extent of the det
ing. Such a treatment is also applicable to experime
at high magnetic fields [9], since the large cyclotron e
ergy means that each Landau level can be considere
interact independently with the photon. Figure 2 sho
such theoretical dispersions (solid lines) for the two p
lariton branches when resonance occurs atk ­ 0. For
sufficiently smallk, the dispersions are parabolic, with a
effective massMp ­ sjcej2yMe 1 jclj

2yMld21, as indi-
cated by the dotted lines in the figure. The depende

FIG. 2. Theoretical polariton dispersion (solid lines) for
on-resonance microcavity. The dashed lines indicate the
coupled exciton (lower) and cavity photon (upper) dispersio
The dotted lines show the parabolic approximation, valid
small wave vectors.
4793
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of Mp on the coefficientsce, cl means that the polari
ton effective mass varies as the system is tuned thro
the resonance. SinceMl is very small compared toMe

[10], we can neglectjcej2yMe and takeMp ø Mlyjcl j
2 ,

1025m0. It is this small value ofMp which makes mo-
tional narrowing important in microcavity structures.

The effect of disorder on the polariton is more co
plicated than for the exciton, since scattering can oc
both between the two polariton branches and to reg
of k space where thek dependence of the coefficien
ce, cl and the nonparabolicity become important. Ho
ever, if the energy scale of the disorder potential is s
ficiently small, each branch can be treated independe
and only smallk behavior needs to be considered. T
requires that the linewidths must be small compared w
the splitting between the modes, a condition which
well fulfilled in our structure, where the Rabi splittin
is 7.3 meV and the linewidths are,1 meV . In this
approximation, the polariton center of mass acts lik
simple particle with massMp moving in a disorder po
tential VpsRd ­ kpsRdjVdisjpsRdl ­ jcej

2VesRd. This
has the same spatial dependence asVesRd, but the am-
plitude is reduced by a factorjcej2, since only the exci-
ton component of the polariton feels the disorder. Tak
Mp ­ Mlyjclj

2, as described above, the center of m
Hamiltonian for the polariton is

Heff ­ 2jcl j
2 h̄2=2

2Ml
1 jcej2VesRd .

In the polariton case, the comparison of leng
scales leads to a different conclusion than for the
citon: lc is unchanged at,100 Å, but, on resonance
lqm ­ h̄jcljy

p
2MlG , 104 Å, using our linewidth of

G ø 1 meV . This comparison shows that the classi
approximation, which is good for the exciton, is tota
inappropriate for the polariton. Since the disord
correlation length is much smaller thanlqm, it is more
realistic to approximate the potential by white Gauss
noise [1]. This has zero correlation length scale and
characterized solely by a correlation function of the fo
kVesR1dVesR2dl ­ adsR1 2 R2d. Though it is not pos-
sible to obtain analytical results for the broadening,
lack of a length scale in the white noise potential me
that we can obtain a simple expression for the varia
of the linewidth asce, cl change on passing through th
resonance. If we choose a length scaleR0 ­ jclj

2yjcej2,
an energy scaleE0 ­ jcej4yjcl j

2, and define variable
R0 ­ RyR0, E0 ­ EyE0, the Hamiltonian transforms to

H 0
eff ­ 2

h̄2=2

2Ml
1

jclj
2

jcej2
Ve

√
jclj

2

jcej2
R0

!
­ 2

h̄2=2

2Ml
1 V 0

esR0d .

The important property of this transformation is that t
correlation function forV 0

esR0d is just the same as fo
the original VesRd. Hence the transformation produc
4794
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a Hamiltonian with identical properties, regardless
the values ofce, cl. The scaled spectra will therefor
always have the same width,Ge, giving a real linewidth
of E0Ge ­ jcej4yjcl j

2 Ge. The singular behavior of this
function as jclj

2 ! 0 is clearly unphysical—it arises
where the white Gaussian noise approximation is
longer applicable because the polariton mass beco
large. The linewidth must, in reality, tend to the ba
exciton width, but, in the limitjclj

2 ! 0, the exciton-
like mode becomes unobservable, so this width is ne
measured. We have, however, obtained the linewidth
the bare exciton by etching off the top mirror of one
our samples (inset to Fig. 1). The value of 3.1 meV
as the theory predicts, considerably larger than any of
measurements with the mirror in place.

In order to compare the theoretical expression w
experiment, it is necessary to account for the contribut
to the linewidths of the broadening caused by the fin
finesse of the microcavity. The cavity photon can esc
through the mirrors, so it has a finite lifetime, with a
associated homogeneous broadeningGl. The polariton
spends only a fractionjclj

2 of its time as a photon, so i
is less likely to escape, and the lifetime contribution to
width is reduced tojclj

2Gl . To obtain the total linewidth,
the lifetime and disorder contributions are combined
convolving the line shapes for the two processes [11].

Figure 3 shows the experimental linewidths (FWHM
of the spectra in Fig. 1 plotted as a function ofjcej2, the
exciton fraction in the polariton, along with our theoretic
fit. The values ofjcej2 as a function of temperatur
were obtained from the experimental data by fitting t
separation of the polariton modes to the two-state mo
discussed above. Plotted in this way, our theory pred
that the experimental points for both polariton branch
should fall on a single curve. The figure also shows,
triangles, the widths measured using electric field tun
at zero magnetic field and a constant temperature
6 K. The close correspondence between the electric fi
and temperature tuning results allows us to rule out
possibility of the linewidth variations being due to an
thermal broadening mechanism [12] or magnetic fi
effects.

The most significant feature of the experimental d
in Fig. 3 is the decrease in the linewidth near resona
sjcej2 ­ 0.5d, which occurs for the lower branch (fille
symbols). This behavior cannot be explained by sim
averaging the exciton and photon linewidths, as would
valid if both were homogeneously broadened [13]. It a
cannot be explained by using a model which does
include motional narrowing but which takes into accou
the convolution effects discussed above (dashed line).
contrast, the motional narrowing model (solid line) giv
a very good fit [14] to the data, particularly for the low
branch. The comparison for the upper polariton bran
(open symbols) is less satisfactory, with the experimen
points lying above the predicted values. The differen
between the widths of the two branches is not prese
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FIG. 3. The linewidths (squares) of the spectra of Fig
plotted as a function of the exciton fraction in the polarito
jcej

2. The filled symbols are the experimental points for t
lower branch and the open symbols are those for the u
branch. Also shown (triangles) are the corresponding res
for electric field tuning. The solid line is the theoretical fit wi
our motional narrowing model, while the dashed line shows
“fit” obtained without motional narrowing.

understood—additional broadening for the upper bra
has previously been ascribed to effects of absorption
exciton continuum states [9], but this cannot apply
high magnetic fields, where the nearest optically allow
transitions are at much higher energies. We speculate
the difference may be due to coupling with higher ene
optically forbidden states, mixed into the wave functi
by the disorder potential.

Recently, Savonaet al. [15] have reported numerica
simulations of inhomogeneous broadening in a one
plane) dimensional microcavity model which treats dis
der scattering and polariton coupling on the same foot
Their results show that, for disorder strengths compa
ble to ours, the scaling theory works very well. Furth
more, they find that the upper branch is broader than
lower branch, suggesting that disorder scattering can
deed explain the difference between the widths of the
branches. Although a realistic two dimensional simu
tion has yet to be carried out, these results provide str
support for our simpler scaling treatment.

In conclusion, we have shown theoretically that m
tional narrowing is to be expected in high quality semico
ductor microcavities, and we have verified experimenta
that it does indeed occur. This is the first experimen
demonstration of motional narrowing of interband opti
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transitions in semiconductors. It is made possible by
control provided by a microcavity of the mixing betwee
photon and exciton states, and hence the dispersion of
polariton.

*Present address: Toshiba Cambridge Research Cen
260 Science Park, Milton Road, Cambridge CB4 4W
United Kingdom.
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